O Apocalipse Inevitável (parte I)

end-of-the-world 

Um ufólogo salvou o mundo. Carl Sagan também salvou o mundo. Nós precisamos salvar o mundo. Ou, como George Carlin dizia, precisamos salvar a nós mesmos, afinal o planeta pode se virar muito bem. “Tem estado aí por 4,5 bilhões de anos. O planeta não vai a lugar nenhum. Nós vamos”.

Quem tem mais de vinte anos deve se lembrar do chamado buraco na camada de ozônio. Ele ainda está lá e todos, mesmo os mais jovens, deveriam saber a respeito. Porém há vinte anos o tema era tão ou mais discutido quanto o aquecimento global é hoje. Confira, por exemplo, este comercial futurista do protetor solar Sunblock 5000 em “Robocop 2” (1990):

Paródia, claro, mas representando os temores da época. Duas décadas depois podemos comemorar o sucesso do Protocolo de Montreal e o banimento do CFC, principal vilão da história, e como desde 1994 a concentração de tais substâncias na alta atmosfera vem diminuindo. A camada de ozônio deve se recuperar completamente até a segunda metade do novo século – um bom tempo, mas um bom prospecto e uma prova de que acordos internacionais podem funcionar. O desafio de controlar emissões de carbono é um imensamente maior do que controlar o CFC, mas é extremamente interessante ver como à época, indústrias que lucravam com o CFC também afirmavam que seria primeiro desnecessário, e então de toda forma impossível banir o produto químico tão útil à economia.

Virar o jogo e convencer o público e os governantes da necessidade de medidas economicamente custosas e que só veriam resultados a longo prazo envolveu uma história igualmente longa e complexa, e no próximo nexo abordaremos a participação do ufólogo que salvou o mundo: James McDonald.

– – –

Releia toda a série:

Ciência na Copa do Mundo: Troféu, Vuvuzelas, HD e Sorte

FIFA_World_Cup_Trophy_2002_0103

Milhões de brasileiros torcem para que em vinte dias a seleção levante o troféu da Copa. Dourado, erguido duas vezes por nosso time – até o tricampeonato, erguemos, e levamos para casa, a taça Jules Rimet – o troféu tem 36 centímetros de altura e pesa pouco mais de seis quilos, feito de “ouro maciço 18 quilates”, segundo a FIFA.

Há uma mentira no parágrafo acima, você pode descobrir qual é?

Não é a torcida, não é nosso penta. São as dimensões, o peso, a composição do troféu que tanto almejamos para o hexa. Eles simplesmente não batem. Aqui entra ciência, e ciência simples de ensino médio que pode denunciar o que seria uma grande fraude. Vamos lá, para estimar o peso do troféu, sendo este maciço de acordo com a FIFA, basta saber seu volume e a densidade do ouro 18 quilates.

pic90Ouro 18 quilates pesa ao redor de 16 gramas por centímetro cúbico, é sua densidade. Estimar o volume exato do troféu é algo mais complicado, mas podemos fazer uma estimativa com base na fotografia acima: são 600 pixels de altura, 230 no ponto mais largo e 100 pixels mais estreito. Como vacas esféricas, suponha que seja um troféu cilíndrico com 600 pixels de altura por 150 de largura, isto é, quatro vezes mais alto do que largo. Como a FIFA informa que o troféu tem 36 centímetros de altura, o cilindro equivalente para estimar o seu volume teria 9 centímetros de diâmetro.

Com isso obtemos um volume ao redor de 2.290 centímetros cúbicos. Lembrando que cada centímetro cúbico do ouro usado no troféu pesa por volta de 16 gramas, basta multiplicar os valores para estimar o peso do troféu. Resultado: mais de 36kg. Mais de seis vezes o peso informado pela FIFA, e um valor de fato muito grande, parece pouco provável que Cafú estivesse erguendo mais de 30kg acima de sua cabeça com tanta facilidade.

O peso indicado pela FIFA parece ser verdadeiro, então alguma das outras informações não deve estar correta. Mesmo que o volume do troféu fosse estimado pela sua menor largura, que é seis vezes menor que sua altura, ainda teríamos um volume superior a 1.000 centímetros cúbicos, ou 16 kg. Os números não batem, não têm como bater. Seria um troféu de bijuteria?

Como o professor Martin Poliakoff nota, a resposta pode ser simples. O troféu é em verdade oco. Esta explicação faz muito sentido, e significaria que a FIFA não mente em nenhum de seus números sobre a composição, dimensões e peso. Nem mesmo quando informa que o troféu é de “ouro maciço” estaria mentindo, porque em verdade a FIFA informa em inglês que é de “solid gold”, que embora traduzido comumente como “ouro maciço”, pode significar em inglês apenas que é feito de uma só substância, de uma só liga de metal. É de fato sólido, só não é maciço. A FIFA não mente, mas deixa todos presumirem que a Copa do Mundo é um belo troféu de ouro maciço quando, embora de fato belo, deve ter ar em seu interior.

É uma Copa do troféu oco. A ciência demonstra, embora a FIFA não admita, nem à BBC. Só dizem que o troféu é “solid”, não informam que seja oco.

vuvuzelas-desde-1660

Neste campeonato mundial, a ciência também se envolve com as Vuvuzelas. O scibling Igor Zolnerkevic do Universo Físico publicou um excelente post: Vuvuzelas, aprenda a amá-las sem ficar surdo. Para estimar a frequência do som fundamental das Vuvuzelas, o professor Dulcídio do Física na Veia também trabalhou com vacas esféricas, e com física estimou a vuvuzela como um cilindro de 68 centímetros, obtendo o primeiro harmônico de 250Hz, muito próximo do valor de fato medido e ao qual as vuvzelas são afinadas (pois elas são afinadas, embora irritantes, o que explica por que vuvuzelas soam todas igualmente irritantes). O Igor explica melhor as sutilezas de uma vuvuzela, incluindo como se pode filtrar as frequências específicas para que os jogos pela TV fiquem livres de vuvuzelas.

O problema de filtrar a frequência das vuvuzelas, contudo, é que a voz humana também se sobrepõe ao redor das mesmas frequências, principalmente no primeiro harmônico, justamente o fundamental. O espectrograma abaixo mostra como a vuvuzela se sobrepõe à voz do narrador, e por mais que alguns não apreciem um conhecido narrador esportivo, assistir a uma partida sem narração não deve ser uma experiência muito divertida.

Vuvuzela

Ao final, e porque as próprias emissoras já processam o áudio dos jogos, reforçando a narração e abafando as vuvuzelas do estádio, pode-se sim remover a frequência das vuvuzelas sem afetar muito a narração, que soa apenas um pouco estranha. Só há mais um problema: caso se escute tempo suficiente ao som com a frequência filtrada, seu ouvido se adapta e… você passa a escutar novamente as vuvuzelas abafadas, e talvez especialmente as vuvuzelas ao vivo em sua sala e vizinhança. Nosso sistema auditivo é algo fabuloso, não?

Um nexo complementar antes de pular ao próximo: filtrar as vuvuzelas e a adaptação de nosso ouvido têm relação com a compressão MP3, uma tecnologia que revolucionou a música. E um dos mais importantes truques que permitem que o formato de arquivo MP3 reduza o tamanho de arquivos de som é similar ao filtro da vuvuzela, mas enquanto calar as vuvuzelas afeta o som da voz humana como o percebemos, o MP3 comprime e remove justamente a gama de frequências sonoras que nosso sistema auditivo não processa muito bem de toda forma. É a psicoacústica. Deixando de lado os sons que não escutaríamos bem, ao contrário
das vuvuzelas, arquivos MP3 soam quase idênticos a gravações integrais do som, a uma fração do tamanho.

hdtv3ns

Falando em compressão digital, esta Copa também é aquela em que como nunca se promovem transmissões em alta definição, e a curiosa ironia é que, como notou a Folha, “quem assiste ao Mundial com sinal HD via satélite escuta o grito de gol do vizinho muito antes; quanto melhor a recepção, maior é o ‘delay’”. A imagem analógica cheia de fantasmas pode chegar até 15 segundos antes que aquela digital límpida em que se vêem os detalhes da bola. A culpa é, entre outros, da mesma compressão digital.

A imagem em alta definição envolve um volume tão grande de informação que é simplesmente impossível que seja transmitida sem alguma forma de compressão, mesmo no curto trajeto entre o decodificador e a TV. E toda forma de compressão envolverá alguma espécie de “delay”, para que um determinado volume de informações seja acumulado (nos infames “buffers”) para ser então processado e comprimido. Por certo que estes pacotes não duram 15 segundos, podem ser em verdade muito rápidos, mas um sinal de alta definição vindo de outro continente provavelmente será comprimido e descomprimido mais de uma vez, passando por diferentes redes, incluindo, via satélite.

O curioso é que mesmo o sinal analógico também possui um “delay”, afinal, mesmo a velocidade da luz não é instantânea. Leva pouco mais de um décimo de segundo para dar a volta ao mundo – rápido, mas não instantâneo. A “via satélite”, contudo, é um caminho muito mais longo do que uma volta ao mundo! Satélites de comunicação em órbita geoestacionária se encontram a aproximadamente 36.000km de altitude (de fato, em órbita), e um sinal leva um quarto de segundo para chegar até lá e retornar a outro ponto da superfície. Menos rápido, e bem menos instantâneo. Um hipotético cabo de TV ligando diretamente a África do Sul ao Brasil permitiria gritar “Gol!” frações de segundo antes que todos os outros mesmo em suas TVs analógicas via satélite.

Volume de cilindros e densidade do ouro, vuvuzelas e psicoacústica, compressão digital e órbitas geoestácionarias é apenas algo da ciência e tecnologia presentes em todos os aspectos de nossas vidas, por trás de cada torcida, de cada “fóóóóm”. E a ciência, em especial a matemática estatística, pode fornecer mesmo uma revelação inacreditável sobre a Copa do Mundo.

250_0_KEEP_RATIO_SCALE_CENTER_FFFFFF Todos presumem que a seleção campeã de uma Copa seja merecidamente a melhor seleção. Mas pense um pouco sobre isso: como podemos estar seguros de que a seleção campeã era mesmo a melhor de todas, 32 no total, quando joga apenas sete partidas rumo ao troféu? Sendo que pode empatar ou mesmo perder em jogos durante as três primeiras partidas nos grupos? Qualquer um pode entender que, para assegurar que uma seleção é a melhor de todas, deveria jogar pelo menos uma vez contra todas as outras 31 seleções. Provavelmente mais.

Pesquisadores norte-americanos do Los Alamos National Lab, Eli Ben-Naim e Nick Hengartner mostram que o número de partidas necessário para garantir que a melhor equipe ganhe um campeonato é realmente muito, muito maior. Algo em torno do número de equipes elevado ao cubo, o que no caso da Copa do Mundo significariam 32.768 partidas (ao invés de meras 64). Cada seleção precisaria jogar em torno de 1.000 partidas, ao invés de sete.

Mais de 32 mil jogos, mil para cada seleção. Apenas isso asseguraria matematicamente com margem de erro desprezível que a melhor seleção se sagre vencedora de um campeonato. A diferença destes números aos números da Copa (64 e 7, respectivamente) mostra o quanto a Copa do Mundo e a seleção campeã dependem do acaso.

Ao final, que erga um troféu de ouro sólido, mas oco, pode não ser tão inapropriado assim. Não é apenas a FIFA que não diz toda a história ao falar de seu troféu, a seleção campeã, mesmo uma pentacampeã, também não irá fazer questão de dizer que ganhar depende tanto de habilidade quanto da sorte.

Boa sorte, Brasil!

A Busca pela Longitude, a uma década do GPS civil

1-Navigation

Somos cercados por tecnologias fabulosas, que podem por vezes combinar em uma pequena bugiganga tantos avanços e conhecimentos científicos que não surpreende que sejam consideradas mágicas. E podem ser tanto mais mágicas quanto mais simples seja sua função. Vide o caso do GPS.

Por algo ao redor de um salário mínimo é possível adquirir um aparelho que informará sua posição em praticamente qualquer ponto da superfície do planeta, atualizada a cada intervalo de segundos. Simples assim, o GPS diz onde você está. Mas mágico, porque esta simples tarefa envolve não apenas a aplicação de inúmeras áreas da ciência em um feito surpreendente de engenharia, como também reflete as complexidades da história humana.

Não iremos nos estender aqui sobre as complexidades científicas que tornam a maquininha capaz de localizá-lo com uma precisão em torno de 15 metros em um planeta com superfície de 510 milhões de quilômetros quadrados. O Carlos Orsi publicou há pouco um texto fantástico indo da Teoria da Relatividade de Einstein à poeira cósmica a 1 bilhão de anos-luz, que já deve fornecer uma boa idéia do quão incrível é a façanha: Relatividade, buracos negros e o GPS.

Nosso interesse maior aqui são as complexidades da história dos macacos que inventaram essa bugiganga, a pretexto de uma misteriosa mensagem recebida do professor José Ildefonso.

 

Vire à direita 100 metros à frente. Ou atrás.

“Neste mês de maio comemora-se o 10º aniversário do fim do SA (Selective Availability)”, ele me avisava. Muito bem, antes de seguir o link, não fazia a menor idéia do que ele estava falando. Selective Availability? Depois de visitar o link, caiu a ficha. Faz dez anos que o sistema GPS deixou de ter erros deliberados inseridos em seu sinal.

Erros deliberados? Um fabuloso sistema de navegação global derivado de testes da precisão da teoria da relatividade com relógios e medidas ultra-precisas… e temos erros deliberados?

Somos muito afortunados porque para nós, uma pequena máquina capaz de dizer com uma precisão de 15 metros ou menos aonde estamos nos parece algo útil para saber em que rua pegar o retorno, ou avisar todos no Twitter que acabamos de chegar à pizzaria, incluindo suas coordenadas no planeta. Para outras pessoas em diferentes confins do mundo uma máquina com esta capacidade é atraente ao invés para coordenar melhor ataques de guerrilha ou direcionar mísseis. Não há tantas ruas asfaltadas para se perder em, nem muitas pizzarias em tais lugares.

Há guerras neste momento, e em uma guerra, um GPS é extremamente útil. Este choque entre nossas confortáveis vidas de classe média no mundo ocidental e a realidade em outros cantos do planeta também ocorre com outras tecnologias incluindo imagens de satélite e mapeamento aéreo disponíveis pelo Google, por exemplo.

Pequeno detalhe, o sistema GPS foi criado pelo Departamento de Defesa americano e ainda é administrado pela Força Aérea gringa. Foi e é um sistema militar. Sua disponibilidade pública, civil, o que significa que poderia ser usada mesmo pelo inimigo, foi oferecida inicialmente então com uma ressalva, que era a “Selective Availability”.

Qualquer um poderia utilizar o sinal do GPS para localizar-se pelo globo, mas o sinal continha erros propositais variantes de até 100 metros. Isto tornaria seu GPS muito pouco útil pela navegar pela cidade, com erros do tamanho de um quarteirão. Também seriam menos úteis para combatentes inimigos. Receptores seletos, disponíveis apenas aos militares americanos, eram capazes de compensar o erro no sinal, que era em verdade pré-definido de acordo com chaves reservadas, podendo assim contar com a melhor precisão disponível pelo sistema.

Precisão esta que, no entanto, todos nós podemos usufruir desde 1 de Maio de 2000, quando Bill Clinton ordenou que a “Selective Availability” fosse efetivamente encerrada, com o erro introduzido sendo reduzido a zero. Por esta época, já fazia mais de uma década que a União Soviética havia se esfacelado, o GPS já estava sendo usado mesmo pela avião civil americana, e, outro pequeno detalhe, os militares americanos haviam desenvolvido técnicas para impedir que o sinal GPS seja usado em áreas seletas pelo globo, tornando efetivamente desnecessário tornar o sinal globalmente impreciso. Eles podem “desligá-lo” nas em áreas determinadas quando desejarem.

Se Orsi o lembrou de sinais a um bilhão de anos-luz de certa forma determinando a posição precisa da sua seta no GPS, 100nexos quer lembrá-lo também de como macacos pelados sempre podem encontrar usos terríveis para algo à primeira vista tão singelo quanto dizer “vire à direita para chegar ao seu destino”. Complicados, esses humanos.

 

Pombos e Longitude

Antes do advento da tecnologia espacial – e tantas outras tecnologias – que permitiram o desenvolvimento do sistema GPS, localizar-se pelo planeta não era mesmo tarefa fácil. Volte apenas algumas décadas, e temos uma fantástica ilustração de como mísseis inteligentes se guiavam antes do GPS, antes da miniaturização de componentes eletrônicos: o famoso psicólogo behaviorista B.F. Skinner, famoso por treinar e experimentar com pombos, chegou a treinar e desenvolver pombos capazes de guiar mísseis na Segunda Guerra.

Na imagem abaixo, um protótipo, os três receptáculos são espaço reservado para três pombos saírem bicando o caminho do míssil em direção ao alvo através de pequenas telas. Usariam três pombos para que, combinados, o erro fosse menor. Era o “Projeto Pomba”. E não, esta não é uma piada.

353a

Mísseis guiados por pombos. Só não seriam algo pior do que mísseis guiados por seres humanos, como os Kamikazes japoneses. Um sistema GPS fez muita falta.

Voltemos mais alguns séculos, e o problema de localizar-se pelo mar durante a era das Grandes Navegações, da expansão mercantil, era ainda mais vital. Não apenas em guerras, mas simplesmente para cruzar os oceanos pacificamente, incontáveis vidas foram perdidas em navios deparando-se inesperadamente com terra, ou andando em círculos no mar.

Pois bem, com seus primitivos instrumentos, a bordo de navios sacolejando, marinheiros podiam determinar com alguma precisão a sua latitude, isto é, quanto ao norte ou sul estavam. Bastava uma olhada na elevação das estrelas, do Sol. Grosso modo, no equador o Sol estaria a pino, próximo dos pólos, estará baixo no horizonte.

grid

O problema maior, muito maior, er
a descobrir a longitude. Um problema que levou séculos para ser solucionado, e pode ser considerado sem exagero um dos mais importantes problemas científicos do século XVIII. É simples entender a dificuldade: a Terra está girando. Não bastam observações astronômicas simples como as da latitude. A longitude não é medida como a distância ao equador ou aos pólos, e sim como a distância ao meridiano zero que passa pelo Observatório de Greenwich, Inglaterra. Algo um tanto arbitrário, mas há um motivo para isso.

Quem finalmente solucionou o problema da longitude foi um inglês, foi John Harrison. Um relojoeiro auto-didata que dedicou praticamente toda sua vida a solucionar o problema da longitude, ao qual o Parlamento Britânico ofereceu um prêmio de milhões – e que Harrison, apesar de tê-lo solucionado, acabou nunca ganhando oficialmente. É uma biografia das mais incríveis na história da tecnologia, incluindo Isaac Newton declarando que a idéia de Harrison jamais teria frutos, e momentos de grande tensão e expectativa enquanto as tentativas de Harrison eram testadas.

A leitura imperdível sobre a história do problema da longitude e os percalços e a vitória de John Harrison é o livro “Longitude”, de Dava Sobel, que dramatiza levemente as aventuras, que são contudo em sua essência completamente reais. A história de Harrison também foi dramatizada em um seriado homônimo, “Longitude”, e em um documentário da PBS americana, “Lost at Sea: The Search for Longitude”, todos fascinantes.

Aos interessados pelos feitos técnicos de Harrison, confira suas invenções como o “escape gafanhoto” ou o simples e engenhoso pêndulo Gridiron, combinando metais diferentes para que a dilatação por calor não afetasse o comprimento final do conjunto. Harrison também utilizou inovações como rolamentos em seus mecanismos em busca da máxima precisão na medida do tempo.

Porque Harrison solucionou o problema da longitude com um relógio. Ou melhor, vários relógios. Vários dos mais precisos relógios já construídos até então, com uma precisão de frações de segundo ao dia, mesmo em condições adversas a bordo de navios cruzando os trópicos. De posse de um relógio preciso, bastaria comparar a hora local com aquela de um meridiano conhecido, geralmente Greenwich, para descobrir sua longitude.

Sabemos, por exemplo, que quando aqui é meio-dia, no Japão, nosso antípoda, é meia-noite do dia seguinte. São doze horas de diferença. O inverso também vale: caso não soubéssemos em que longitude estamos, e descobríssemos que nossa hora local difere doze horas daquela no Japão, saberíamos que estamos do outro lado do planeta em relação ao Japão. Saberíamos nossa longitude, saberíamos nossa posição, usando um relógio. A Terra girar se tornava finalmente algo a favor da medida de longitude.

 

Espaço-Tempo

Definir nossa posição no espaço através do registro preciso do tempo. Como o sistema GPS viria a demonstrar de vez, testando e aplicando mesmo a Teoria da Relatividade, estes dois conceitos fundamentais estão intrinsecamente relacionados. Não é um mero recurso adicional pedido pelo cliente que todos aparelhos receptores de GPS também registrem horário. O registro da hora com precisão absurda continua sendo, como era com os relógios de Harrison, algo fundamental para localizá-lo pelo planeta.

A relação intrínseca entre espaço e tempo se traduz na constante fundamental da velocidade da luz, a razão absoluta e imutável da distância percorrida por um fóton em um determinado período de tempo. Idéias das mais revolucionárias e fundamentais à física moderna, aplicadas em uma máquina em seu bolso, para uma precisão de metros, que foi contudo inicialmente disponibilizada com uma imprecisão deliberada para que macacos pelados não a usassem contra os macacos pelados que criaram tal tecnologia.

Finalmente, há dez anos, completados este mês, nós podemos usufruir de toda esta tecnologia, de toda esta ciência, de toda esta história para Twittar nossa latitude… e longitude.

Ataque dos salgadinhos gigantes

giant-cheetos--large-msg-124243806447

O que um Cheetos gigante, insetos afogados, cavalos explodindo, cabeças decepadas e JBS Haldane têm em comum? É física, é matemática, é biologia em mais uma série de nexos para nosso blog.

Em mais um lançamento para o mercado americano destinado ao futuro de Wall-E, a Frito-Lay começou a vender o Giant Cheetos, que como o nome diz, é um salgadinho gigante, do tamanho de uma pequena bola de golfe. “O dobro do tamanho, o dobro do sabor”. Ou não.

Eis que um blog fabuloso que leio, mas destinado a adultos primariamente do sexo masculino pela exibição de imagens de indivíduos do sexo feminino com poucas ou nenhuma vestimenta, vulgo mulher pelada, Greenshines [link para maiores de 18 anos!], publica um excelente texto lembrando que em uma primeira análise a propaganda da junk food é enganosa.

index.php

Dobre o tamanho de um objeto tridimensional, e o que você dobrará será a rigor apenas o tamanho. A área de superfície do objeto irá quadruplicar, seu volume crescerá oito vezes. Para isso, basta lembrar da geometria: dobre o lado l de um cubo para 2l, e a área de sua superfície aumentará o quadrado desta duplicação, ou quatro vezes, enquanto o volume aumentará ao cubo, oito vezes.

O dobro do tamanho, quatro vezes a superfície, oito vezes o volume. Como isso afeta o sabor?

Uma análise preliminar de um Cheetos, evidenciada tanto pela degustação quanto pelo fato de que costumamos lamber os dedos todos melecados, mostra que o sabor do salgadinho está principalmente no tempero que recobre sua superfície. O interior tem consistência e mesmo sabor de isopor. Nunca comi isopor, e espero que você também, mas podemos imaginar qual seja o gosto de isopor.

Seja como for, concluímos: Dobre o tamanho, e você multiplicará por quatro vezes a superfície coberta com o tempero, mas por oito o volume de isopor insípido. O resultado? A metade do sabor. “Giant Cheetos, o dobro do tamanho com a metade do sabor pelo mesmo preço!” não parece um slogan de muito sucesso.

Israel de Greenshines diz ter experimentado a novidade e confirma que o gosto, a textura e tudo o mais seriam terríveis, mas este autor por sua vez cogita que a Frito-Lay deva entender algo de física, ou pelo menos, possa ter testado a novidade antes de lançá-la e talvez tenha compensado a diluição do sabor seja aumentando a concentração do sabor na superfície – há alguns relatos de que o salgadinho gigante parece sim mais salgado, e é vendido também na versão picante – seja também modificando algo da fórmula da massa no interior.

Física e matemática, “é impossível comer um só”.

 

Insetos afogados, Cavalos explodindo

Não são apenas empresas de salgadinhos que enfrentam problemas para encontrar o tamanho certo de suas guloseimas de isopor condimentado. Estes pequenos detalhes geométricos que sustentam toda a física do mundo em que vivemos não escapam a ninguém, nem mesmo do próprio Universo, da própria natureza.

6

Em 1926, o biólogo JBS Haldane, escreveu um ensaio fabuloso e pioneiro lembrando da relação simples da geometria com as implicações bem mais complexas no mundo da biologia. Em “On Being the Right Size”, ou algo como “Sobre ter o Tamanho Certo”, Haldane lamentou como “as diferenças mais óbvias entre diferentes animais são as diferenças de tamanho, mas por alguma razão os zoologistas prestaram pouca atenção a elas. Em um longo livro sobre zoologia à minha frente não encontro indicação de que a águia é maior que o pardal, ou que o hipopótamo é maior que a lebre, embora alguns comentários de má vontade sejam feitos a respeito no caso do rato e da baleia”. É um ensaio imperdível, alguém deveria traduzi-lo ao português.

Haldane continua: “No entanto é fácil mostrar que uma lebre não poderia ser tão grande quanto um hipopótamo ou uma baleia tão pequena quanto um peixinho. Uma vez que para cada tipo de animal há um tamanho mais conveniente, e uma grande mudança em tamanho inevitavelmente leva a uma mudança na forma”.

O biólogo então lembra da geometria, e como um homem gigante com 18 metros de altura, isto é, dez vezes o tamanho médio de um homem, teria contudo um peso mil vezes maior – dez elevado ao cubo. Uma seção transversal de seus ossos, contudo, teria apenas cem vezes a superfície, o que significa que deverá suportar dez vezes mais peso por centímetro quadrado. “Como um fêmur quebra quando submetido a dez vezes o peso humano, [o gigante] quebraria seus ossos toda vez que desse um passo. Esta é sem dúvida a razão pela qual estava sentado na ilustração de que me lembro”.

Ele vai além nas implicações das diferenças de tamanho. “A gravidade, mero incômodo [ao homem comum], era um terror [ao gigante]. Ao camundongo e qualquer animal menor, não representa praticamente nenhum perigo. Você pode jogar um camundongo do topo de uma mina profunda, e quando ele chegar ao fundo ele se sacudirá e sairá andando, contanto que o chão seja razoavelmente macio. Uma ratazana é morta, um homem acaba quebrado, um cavalo explode. Isto ocorre porque a resistência apresentada pelo movimento do ar é  proporcional à superfície do objeto em movimento”.

“Um inseto, assim, não tem medo da gravidade, ele pode cair sem perigo, e pode escalar ao teto sem qualquer problema. (…) Mas há uma força que é tão formidável ao inseto quanto a gravidade é a um mamífera. Ela é a tensão superficial. Um homem saindo de um banho carrega consigo um fino filme de água com frações de milímetro de espessura. Ele pesa ao redor de meio quilograma. Um rato molhado precisa carregar seu próprio peso em água. Uma mosca molhada precisa levantar várias vezes seu próprio peso, e como todos sabem, uma mosca uma vez molhada em água ou qualquer outro líquido está em uma posição muito séria”.

 

Democracia e Cabeças Decepadas

O
ensaio segue abordando questões de circulação sanguínea em animais maiores, absorção de oxigênio em plantas e ao final, o que o torna ainda mais fabuloso, termina em dois parágrafos sobre como “assim como há o melhor tamanho para cada animal, também há para cada instituição humana”. A democracia grega funcionava para grupos pequenos, e a invenção do governo representativo tornou uma grande nação democrática possível. “Com o desenvolvimento da mídia em massa tornou-se novamente possível a cada cidadão ouvir as visões políticas de seus oradores representativos, e o futuro pode ver o retorno do estado nacional da forma grega de democracia”, especula Haldane. Um ensaio, relembrando, publicado há quase um século.

Dos salgadinhos gigantes com gosto de isopor a humanos gigantes, cavalos explodindo e insetos afogados, há ainda outro nexo que não poderia faltar. Quer ver o próprio Haldane em um filme?

Confira “Experimentos na Ressuscitação de Organismos”. Sim, esse é o título do filme que trata exatamente do que descreve: experimentos soviéticos para manter vivas cabeças de cachorro decepadas. A apresentação e narração é do bom e velho JBS Haldane.

Lembre disso no próximo Cheetos.

Divulgando ciência “errada” do jeito certo

“O Sol é uma Massa de Gás Incandescente” pode soar como mais um daqueles “fatos científicos” de um monótono livro. Mas em sua versão em inglês já permite perceber a rima que pode formar mesmo um refrão: “The Sun is a Mass of Incandescent Gas” – repita três vezes, ou assista ao fantástico clipe da música acima cantada pelos They Might Be Giants, todo legendado para vocês.

Já havíamos destacado as excelentes canções de divulgação científica da banda TMBG no ano passado, mas um detalhe passou despercebido. A música acima é a nona faixa do CD e DVD, intitulada “Por que o Sol Brilha?”. Ela é seguida pela última faixa, “Por que Realmente o Sol Brilha?”. Porque, muito simplesmente, a divertida música original de divulgação científica estava errada.

Confira a próxima faixa, também legendada, “Por que Realmente o Sol Brilha?”:

O refrão é agora “O Sol é um Miasma de Plasma Incandescente”, ou na rima em inglês, “The Sun is a Miasma of Incandescent Plasma”. Não é realmente feito de gás, e sim de plasma, “nem gás, nem líquido, nem sólido”, o quarto estado da matéria.

É sensacional apresentar duas músicas bacanas, uma após a outra, em que a segunda contraria a primeira. Alguns estranhariam, mas esta é a própria natureza do processo científico, e pode ser bem entendida porque a música original ensinando que o Sol é uma massa de gás foi originalmente escrita da década de 1950, baseada em um livro de divulgação de 1951.

A série original de discos de vinil de onde a banda TMBG tirou a música sobre o Sol foi produzida há mais de meio século por Hy Zaret e Lou Singer, e algo fortuitamente curioso é que Zaret também escreveu a letra de “Unchained Melody”, uma das mais tocadas músicas de todos os tempos, conhecida mesmo das gerações atuais como “a música do filme Ghost”. Da próxima vez que escutar o refrão “oooohhhh my love”, você pode se lembrar que o mesmo compositor ensinava que “the sun is a mass of incandescent gas”. e tantas outras lições que ao contrário desta continuam válidas – mas podem se mostrar não tão válidas em mais alguns anos.

Em tempos de Internet, Jef Poskanzer converteu todos os discos da série original “Baladas para a Era da Ciência” ao formato digital e disponibiliza as músicas para download, são imperdíveis. Clique para conferir:

space

Imperdíveis, ainda que algumas contenham conhecimento datado, e que de fato, já era datado na década de 1950. A divulgação científica não raro caminho com um pouco de atraso em relação aos avanços da ciência, e antigamente isso era ainda mais verdade. Mais importante que uma coleção de “fatos”, seja o sol gás ou plasma, é entender que a ciência envolve o método científico através do qual o conhecimento é constantemente atualizado.

O caso das músicas lembra outro episódio de letras de música com referência à ciência sendo corrigidas, como “Nine Million Bicycles” de Katie Melua, que já foi blogado por aqui em 2008. Você também pode conferir Michael Shermer comentando o caso no final de sua apresentação TED em 2006 (pouco depois dos 11 minutos), clique em “view subtitles” para legendas.

Cientistas ou mesmo divulgadores de ciência não são seres perfeitos. Além dos erros, há fraudes e há mau caráter como em todo empreendimento onde houver seres humanos. Mas em nenhum outro empreendimento humano a busca, exposição e reconhecimento de erros e enganos é um dos mecanismos centrais e essenciais como é na ciência, e é fabuloso que esta capacidade de reconhecer e lidar com erros se transmita mesmo na forma como divulgadores de ciência possam lidar com suas próprias trapalhadas. Quem dera outras instituições e figuras tratassem suas próprias limitações com tanta naturalidade.

Como bem resumiu Shermer, “quão sensacional não é isto?”.

[Dica inestimável do @uoleo, scibling do 42]

O Fiasco da Inteligência

toy2r-emilio-garcia-jumping-brain-toy

rb2_large_gray1 Em um futuro distante, a humanidade finalmente descobre sinais de uma civilização alienígena no planeta “Quinta” próximo de Beta Harpiae, e uma ambiciosa missão é enviada para estabelecer contato. Mas este é um romance de Stanislaw Lem, “Fiasco” (1987), e a história é muito diferente dos lugares comuns da ficção científica.

Depois de vencer as enormes distâncias, a missão se depara com um pequeno problema: os alienígenas não estão minimamente interessados em estabelecer contato. Descobre-se que, de certa forma, pior do que encontrar uma civilização alienígena hostil é encontrar uma civilização alienígena completamente indiferente à existência da humanidade. O oposto do amor não é o ódio, é a indiferença.

Com o orgulho mais do que ferido, os humanos da missão não se contentarão até cumprir o objetivo tão simples de estabelecer “contato”. Tomarão medidas cada vez mais drásticas para chamar a atenção dos Quintanos, completamente alheios ao fato de que os Quintanos, como alienígenas, simplesmente pensam de forma alienígena.

O final do romance é o fiasco do título, enquanto o protagonista finalmente descobre por que os ETs não receberam os humanos de braços abertos, no tão almejado e presumivelmente simples “contato”.

Provocador como possa ser, e leitura mais do que recomendada, não é preciso viajar até Beta Harpiae para encontrar inteligências diferentes da nossa.

 

Cérebros de Passarinho

Incrivelmente, uma destas inteligências superiores é a dos pombos. Em um trabalho publicado recentemente, Walter Hebranson e Julia Schroder demonstraram como pombas comuns (Columba livia) podem aprender a melhor tática para o problema de Monty Hall muito mais rapidamente que os tais orgulhosos seres humanos, que de fato podem jamais adotar a melhor estratégia.

Isso ocorre porque o problema de Monty Hall é literalmente uma “pegadinha” com um resultado contra-intuitivo. Já escrevi sobre o tema em um texto anterior, mas basicamente envolve três portas, uma das quais tem um prêmio. Você escolhe uma porta, e então uma das outras duas portas, que não contém o prêmio, é aberta. Finalmente vem a pergunta que testará se sua inteligência é superior à de um pombo: é vantajoso trocar a porta que você escolheu inicialmente pela porta que restou?

monty-hall-problem-doors

A maioria das pessoas utilizará parte de seus 100 bilhões de neurônios e concluirá que, restando duas portas, apenas uma das quais tem o prêmio, as chances de que qualquer uma delas seja a premiada é de 50%. Não faria diferença trocar ou não de porta.

E é aqui que pombos, com seus cérebros menores que uma noz, o humilharão. Treinados no experimento de Hebranson e Schroder, onde o prêmio era algo tão simples como alpiste, eles ajustaram sua estratégia para a melhor resposta, que é… trocar. Porque no problema de Monty Hall, ao trocar você terá o dobro de chances de levar o prêmio. Se permanecer com a escolha inicial, terá apenas 1/3 de chances de ganhar. Se isto lhe parece absurdo, confira o texto, ou experimente simular o problema milhares de vezes aqui, aqui ou aqui, porque este é um resultado tão matematicamente certo quanto 1+1=2.

Pombos não são, claro, realmente mais inteligentes que eu ou você, esta foi apenas uma provocação. Porém neste caso específico, apesar ou exatamente por causa de sua inteligência limitada, foram capazes de perceber após muitas e muitas tentativas que trocar é a melhor estratégia. Um ser humano é capaz de dar uma resposta – errada – antes mesmo de qualquer tentativa, simplesmente porque é capaz de modelar o problema mentalmente e aplicar raciocínios lógicos. Ainda que incorretos.

A lição fabulosa está neste trecho do sumário do trabalho:

“A replicação do procedimento com participantes humanos mostrou que os humanos falharam em adotar estratégia ótimas, mesmo com extenso treinamento”.

Isto é, presos à modelagem mental de que somos capazes com nosso fabuloso cérebro mesmo antes de uma única tentativa, podemos deixar de perceber que ela está incorreta mesmo após inúmeras tentativas reais que deveriam deixar isto claro. A pesquisa ainda indicou algo fascinante: “participantes humanos” mais jovens se saíram melhor que os mais velhos, talvez mais propensos a observar os resultados do experimento do que confiar em seu julgamento prévio.

Alguns poderiam dizer que jovens têm um cérebro mais parecido com o de um “passarinho”, ao que um jovem poderia responder que na mesma medida em que um “passarinho” pode ser mais inteligente que um ser humano.

Antes de louvar as pombas, ou mesmo esta abordagem simplista centrada unicamente na observação de resultados, contudo, vale lembrar que pombas também podem desenvolver comportamentos “supersticiosos”, sem ao que sabemos jamais refletir sobre o que estão realmente fazendo. O equilíbrio da dedução, observação e indução em busca dos melhores resultados pode ser visto justamente como o objetivo do método científico aplicado.

 

O Dilema dos Camundongos

Em outro trabalho recente atingindo diretamente nosso orgulho humano, pesquisadores portugueses demonstraram que ratos de laboratório também conseguem “resolver” o famoso dilema do prisioneiro, adotando estratégias ótimas de acordo com a estratégia de seus pares. A descrição clássica do dilema:

“Dois suspeitos, A e B, são presos pela polícia. A polícia não tem provas suficientes para condená-los, mas, mantendo os prisioneiros separados, oferece a ambos o mesmo acordo: se um dos prisioneiros, confessando, testemunhar contra o outro e esse outro permanecer em silêncio, o que delatou sai livre enquanto o cúmplice silencioso cumpre 10 anos de sentença. Se ambos ficarem em silêncio, a polícia só pode condená-los a 6 meses de cadeia cada um. Se ambos traírem o comparsa, cada um passará 5 anos na cadeia. Cada prisioneiro faz a sua decisão sem saber que decisão o outro vai tomar, e nenhum tem certeza da decisão do outro”.

A solução ao dilema simples não é muito “bonita”: trair é a resposta, porque na melhor das hipóteses se sai livre, na pior cumprem-se cinco anos. Silencie e na melhor das hipóteses cumprem-se seis meses, e na pior, dez anos. Trair é a resposta.

Se isto não parece “bonito”, isto curiosamente pode se dever ao fato de que o dilema do prisioneiro, como apresentado acima, raramente ocorre dessa forma. Ou melhor, dilemas muito similares podem sim se apresentar, com a pequena diferença de que se podem se apresentar diversas vezes, de forma imprevisível. Seria o dilema do prisioneiro iterado, e nele, a melhor estratégia… é a “bonita” cooperação.

journal.pone.0008483.g006 (1)

E foi isto que os ratos de laboratório no experimento português aprenderam. O estudo demonstra que “os ratos possuem as capacidades cognitivas necessárias para a cooperação baseada em reciprocidade emergir no contexto do dilema do prisioneiro”.

Uma demonstração de implicações fantásticas. Um detalhe, no entanto, me pareceu outra lição fabulosa, que também pinçamos do sumário:

“Mostramos que o comportamento dos ratos é dependente de seu estado motivacional (faminto versus saciado)”.

Isto é, os pesquisadores notaram que em experimentos anteriores ratos haviam falhado em desenvolver estratégias mais sofisticadas, incluindo a cooperação, e sugerem que isso pode ter se devido ao fato de que em tais estudos os ratos estavam famintos. Em seus testes, os ratos portugueses estavam devidamente saciados e puderam assim se dar ao luxo de experimentar e desenvolver diferentes estratégias.

O detalhe de desenvolver o experimento levando em conta a saciedade dos ratinhos é genial, óbvio em retrospecto, e lembra um discurso de Richard Feynman sobre o esmero necessário no desenvolvimento da ciência.

 

Obrigado pelos Peixes

Depois de ciência fascinante, do tipo que parece se relacionar diretamente com questões das mais relevantes a nós, não poderia deixar de retornar à ficção científica da melhor qualidade e lembrar de Douglas Adams e como em seu fabuloso Universo <SPOILER!>ratos de laboratório são as protrusões físicas em nossa dimensão de uma raça de seres pandimensionais hiper-inteligentes que construíram a Terra, sendo assim os seres mais inteligentes no planeta. Pensamos que os usamos como cobaias em experimentos, mas em verdade são eles que nos usam em seu grande experimento para a Questão da Vida, o Universo e Tudo Mais.</SPOILER!>

pinky-n-the-brain

Comédia, evidente, mas que ratos sejam capazes de desenvolver estratégias de cooperação até então vistas em orgulhosos seres humanos deve provocar questionamentos sobre se o que consideramos “bonito”, a cooperação, é algo que advém de uma moral contida em um manuscrito religioso de quase dois mil anos, ou se pode ser melhor explicada por processos evolutivos muito mais antigos. Processo que nossos parentes camundongos, não tão distantes de nós, também partilham e podem exibir, mesmo sem ter contato com qualquer Messias roedor.

Podem ser, como os pombos, tão ou até mais “inteligentes” que nós, embora de formas diferentes. Ao menos quando não estão famintos. [via Not Exactly Rocket Science e The Scientist, imagem do Jumping Brain de Emilio Garcia]

– – –

  • Herbranson, W., & Schroeder, J. (2010). Are birds smarter than mathematicians? Pigeons (Columba livia) perform optimally on a version of the Monty Hall Dilemma. Journal of Comparative Psychology, 124 (1), 1-13 DOI: 10.1037/a0017703
  • Viana DS, Gordo I, Sucena E, & Moita MA (2010). Cognitive and motivational requirements for the emergence of cooperation in a rat social game. PloS one, 5 (1) PMID: 20084113

Majestosa Imperfeição

duvidabanner2 300px-Aten_disk

A primeira religião monoteísta da história humana, há mais de 3.000 anos, louvava o Sol – Aton – reconhecido como poder supremo e fonte última que alimentava a vida. Não é descabido imaginar que mesmo antes disto, as primeiras reverências de nossos ancestrais proto-humanos já reconhecessem a importância do astro-rei, e mais do que sua importância: a sua perfeição.

Dia após dia, no que por quase toda nossa história foi a própria definição de “dia”, lá surgia pontualmente o disco solar trazendo luz e calor tão essenciais para que sobrevivêssemos. Fácil compreender assim que os raros eventos de eclipses, estas aparentes anomalias na perfeição solar, fossem vistos como maus presságios por culturas isoladas em quase todo o planeta.

Com o tempo, e principalmente, em nossa cultura ocidental, o Sol visto como deus foi deixado um pouco de lado. Heresia, inclusive. Curiosamente, seria então o renascimento da ciência, com observações e argumentações racionais, que viria a ressaltar novamente o que mesmo nossos ancestrais já percebiam como óbvio.

Continue lendo mais uma coluna Dúvida Razoável no blog Sedentário&Hiperativo.

Colisão de Anéis de Vórtice: da Clarividência às Supercordas

Colisão Frontal de Anéis de Vórtice Coloridos”. Um título humilde para um vídeo sensacional, via Fluid Mechanics Group da Universidade Nacional de Singapura. E há mais no título!

“Note a formação de pequenos anéis do cruzamento dos filamentos de vórtice ondulados dos anéis maiores”.

Dois vórtices maiores colidindo, resultando em uma série de vórtices menores. Lembra a colisão de partículas, e de fato, a lembrança é apropriada porque a associação não é nada nova. Muito antes que cordas se tornassem moda na física de partículas, um dos primeiros modelos propostos para o átomo por William Thomson, mais conhecido como Lorde Kelvin, sugeriu que átomos eram anéis de vórtice propagando-se pelo éter.

Como Michael Fowler especula, Kelvin foi provavelmente inspirado em sua idéia revolucionária por demonstrações da estabilidade de vórtices como esta:

O vídeo é uma simulação de Paul Nylander, mas vórtices toroidais podem mesmo fazer esse truque, passando um através do outro, e em condições ideais perpetuariam essa dança eternamente. E o éter luminífero, acreditava-se, ofereceria estas condições ideais. Nylander também oferece esta visualização que ajuda a enxergar o que ocorre e como esta estabilidade se mantém (clique na imagem para outro vídeo):

LeapFrog2

Tudo muito belo, mas infelizmente, vórtices não são estáveis em muitas outras formas além de simples anéis, e não são assim realmente um bom modelo para átomos como propôs Kelvin. Mais do que uma boa analogia (“átomos são cordas como as de um instrumento musical!”, ou “são como pequenos sistemas solares!”, ou “são como anéis de fumaça!”), o que realmente vale em ciência, e particularmente na física, são boas ferramentas matemáticas, e a dinâmica de fluidos ao final não pôde oferecer muito avanço para predizer o comportamento de átomos e partículas.

A idéia inspirada de Kelvin sim impulsionou muito o avanço da própria dinâmica de fluidos e mesmo da matemática, com a teoria da nós na topologia.

Curiosamente, até ocultistas ao final do século 19 abraçaram a idéia de Kelvin. Pseudociência: sempre parasitando a ciência real, ao mesmo tempo em que alega estar além da entidade de que depende. O caso aqui não foi diferente, enquanto há evidência de que os ocultistas não só copiaram a idéia de Lorde Kelvin, como também dados de livros didáticos bem científicos para fundamentar suas visões supostamente místicas.

J. Michael McBride conta toda a história das “Lições Científicas Sérias da Observação Direta de Átomos por Clarividência”.

Enantiomers08

Mas não sejamos tão duros, pelo menos com o Lorde Kelvin, aquele que proclamou que o avião seria impossível. A idéia de átomos de vórtice foi mesmo revolucionária, ela encontra sim uma correlação com teorias de cordas modernas, e pode não ter sido uma idéia ruim.

Assim é a ciência, e é mesmo possível que teorias de supercordas acabem se aproximando ainda mais da proposta original de Kelvin.

O que podemos dizer ao certo é que vórtices são fascinantes, estejam ou não por trás das partículas fundamentais da física. Como fumaça já são mais do que sensacionais.

Montanhas Aleluia e os Óculos de Schrödinger (I)

aleluianuvens 

“Um amigo meu saiu maravilhado depois de assistir a Avatar. Não parava de falar das montanhas flutuantes. E eu disse a ele: ‘Cara, seu planeta tem montanhas gigantescas de água. De água. Que flutuam em cima da sua cabeça todos os dias e quando viram chuva contribuem para o ciclo do líquido mais importante da sua existência’. A maioria vai de um lugar para o outro sem se dar conta da complexidade, maravilha e encantamento que é uma nuvem”. – Ibrahim César, 1001 Gatos de Schrödinger

E se eu lhe disser que ainda mais impressionante que os efeitos tridimensionais dos smurfs gigantes, são os próprios óculos que você deve ter usado no cinema, e como eles podem elevar o “mistério central” da física quântica a algo verdadeiramente absurdo… mas completamente real? Tão real que pode estar agora mesmo frente a seus olhos, e no entanto, como uma montanha de água com a massa de dez mil aviões 747 flutuando no céu, passa despercebido?

Depois de um breve lapso, é mais uma coluna Dúvida Razoável, iniciando uma série na continuação.

A Escala do Universo: do yocto ou yotta

sizescaleanimation

Do menor comprimento físico observável, o comprimento de Planck, medindo 0,00000000000000000000000000000000001 metros; ao maior tamanho, o tamanho do próprio Universo estimado em 930.000.000.000.000.000.000.000.000 metros: são muitos zeros em uma diferença de magnitude difícil de compreender.

Ou talvez nem tanto. Em uma fantástica animação interativa em Flash, você pode viajar por todas as escalas do Universo, começando da espuma quântica na escala de frações de yoctometros, passando por átomos, moléculas, vírus, células, seres vivos, planetas, estrelas, nebulosas, galáxias, aglomerados, o agrupamento local, o universo observável e o próprio Universo, com tamanho medido em yottametros.

De 10^-35 a 10^26, é uma longa viagem, e você pode arrastar a barra com o mouse para navegar ou usar as teclas de direção do teclado se desejar mais precisão.

Como Phil “Bad Astronomer” Plait comentou, “minha parte favorita está no extremo menor, quando você precisa passar por várias potências de dez com nada acontecendo até o comprimento de Planck, a menor escala no Universo. É uma noção um tanto aterradora”.

Será mera casualidade que a maior parte dos objetos que ilustram as escalas do Universo se concentre nas escalas ao redor de nosso próprio tamanho? Teorias físicas sugerem que pode haver uma incrível complexidade em escalas próximas do comprimento de Planck, bem como resta quase literalmente um Universo a descobrir em escalas estelares, galácticas, de grande agrupamentos. São quase 60 potências de dez do mundo bem real em que vivemos disponíveis para exploração científica.

Como dizia Sagan, nós mal começamos a explorar as margens do oceano cósmico, que se estende tanto pelas estrelas quanto pelo interior dos átomos.

[Share do RicBit, confira outra viagem pelo Universo conhecido aqui, e uma de um grão de café a um átomo de carbono aqui]

Sobre ScienceBlogs Brasil | Anuncie com ScienceBlogs Brasil | Política de Privacidade | Termos e Condições | Contato


ScienceBlogs por Seed Media Group. Group. ©2006-2011 Seed Media Group LLC. Todos direitos garantidos.


Páginas da Seed Media Group Seed Media Group | ScienceBlogs | SEEDMAGAZINE.COM