Modelagem em biologia (sintética), um guia para ateus em modelagem.

Para uma pessoa que lida diariamente com biologia, pode ser bastante difícil imaginar uma maneira de abordar matematicamente um problema em sua área ou como isto poderia ter alguma utilidade. A biologia é uma ciência considerada bastante complexa, pois são muitas as variáveis que podem afetar o sistema. Até mesmo um sistema relativamente simples como a expressão de uma proteína em E. coli, pode se tornar um problema bastante complexo de se modelar se todas as variáveis que afetam a expressão desta proteína forem levadas em consideração. Na realidade, não há nem mesmo quem seja capaz de listar todas estas variáveis. Assim sendo, como é possível fazer um modelo disto, se não consigo nem mesmo listar as variáveis que alteram meu sistema? Neste caso, melhor mesmo fazer como o Calvin e ser um ateu em modelagem, não é mesmo?

Na verdade não, fazer um modelo não é tão complicado assim. Pensar que é necessário colocar tudo no modelo é o erro conceitual mais comum de quem tem formação em áreas complexas como a biologia. Já os físicos por exemplo, tem uma visão dita reducionista, de tentar entender um problema dividindo-o em pequenas partes fundamentais e começar pelo modelo mais simples possível para depois aumentar a complexidade, se necessário (ou possível). Reza a lenda que um dono galinheiro certa vez chamou um fisico para solucionar o porquê as galinhas não estavam botando. Uma semana depois o fisico apareceu com a solução. Entretanto, a solução só era válida para galinhas esfericamente simétricas e no vácuo. True story!

Pode parecer contraditório, mas um modelo que leva mais variáveis em consideração não necessariamente é melhor ou mais “realistico”. Na verdade se um modelo leva mais variáveis em consideração do que outro e ambos tem a mesma efeciência, o segundo modelo é considerado melhor, conforme veremos.

Portanto, o melhor caminho para fazer um bom modelo é considerar as poucas e relevantes variáveis do problema, ou seja, ao fazer um modelo, a principal regra é:

Keep it simple, stupid!!
Este é o famoso princípio KISS, uma boa regra para começar um modelo. A maioria dos modelos funcionam melhor e são melhor entendidos se mantidos simples. Complexidade desnecessária deve ser evitada, mas obviamente, simplicidade demasiada não deve resultar em um modelo útil (como no caso das galinhas). Assim, uma boa maneira de se começar um modelo é pensar quais são as variáveis que devem ser realmente importantes para o problema. Tente formular seu modelo com o mínimo de variáveis e veja se seus resultados condizem com o esperado, ou com os experimentos. Se isto não ocorrer, é um sinal de que seu modelo ou é demasiadamente simples e você esqueceu alguma variável muito importante ou você pode ter feito hipóteses que não sejam válidas. Fazer hipóteses condizentes não é uma tarefa na simples e exige um conhecimento profundo do problema em questão.

O principio KISS é um conceito bastante semelhante à famosa navalha de Occam. Este princípio, introduzido por William Occam diz:

“Se em tudo o mais forem idênticas as várias explicações de um fenômeno, a mais simples é a melhor.”

 

Exemplo

Para exemplificar o que foi dito, vamos brincar de modelar com um simples exemplo que discutimos certa vez em nosso grupo.

O problema consiste em estimar a concentração de uma proteína (nosso caso era a Cre recombinase) dentro das bactérias E.coli, ou seja, quantas Cre-recombinases existem, em média, por bactéria? Esta inferência é base para estimar o PoPS (veja post anterior)

Este parece ser um problema simples mas pode se tornar bastante complicado de resolver caso o princípio KISS não seja utilizado. Quem é importante neste problema? Devo considerar a temperatura? Devo considerar a quantidade de alimento no meio?

Você pode pensar, e com razão, que a temperatura e a quantidade de alimento são importantes pois afetam a taxa de produção das proteínas. Entretanto estes são exemplos de variáveis que não precisam
ser levados em consideração pois, nos experimentos não trabalharemos com situações extremas de escassez de alimento nem de mudanças de temperatura e pequenas variações destas variáveis (fora de um regime extremo) não devem afetar significantemente a produção da proteína. Muitas são as variáveis que não afetam significamente o sistema e ter intuição disto é fundamental e repito, exige um bom entendimento do problema.

OK, mas por onde começar?

Bom, sabemos que para se produzir uma proteína primeiramente precisamos da produção do RNA mensageiro. A quantidade de mRNA certamente é uma variável relevante!!!
Portanto, vamos tentar criar uma equação sobre como o mRNA deve variar no tempo. A variação temporal de uma variável é representada matematicamente pela derivada da variável no tempo  

Sabemos que nosso mRNA deve ser produzido pela leitura do DNA, feita pela DNA polimerase. OK, mas com que velocidade ela lê isto? Uma boa referencia, é o Bionumbers (tipo um google para dados biológicos)

Lá encontramos que nossa taxa de transcrição (Ktrans) é de, em média, 40 pares de base por segundo. Mas então precisamos saber qual o tamanho do RNA que gera nossa proteína. No caso da Cre é de 1032 pares de base (Nbp). Portanto, quantidade de proteína produzida por tempo e por volume (V) é de:

Dividimos pelo volume pois queremos saber a variação de concentração, ou seja, quantidade de proteínas por volume (unidade em Molar). Este será o primeiro termo de nossa equação, que se refere a produção do mRNA. Existem outras maneiras dele ser produzido? Se sim, novos termos devem ser adicionados. Neste caso, aparentemente esta é a unica forma dele ser produzido. Mas ele pode ser degradado, não é mesmo? Então precisamos de mais um termo, o de degradação. Novamente se formos até o bionumbers teremos a taxa de degradação (KdRNA) do mRNA. Este novo termo fará com que a taxa do mRNA diminua no tempo, e por este motivo ele é negativo. Portanto nossa equação fica:

Onde o termo positivo se refere a produção e o negativo se refere a degradação.

Agora vamos escrever uma equação para a tradução do mRNA em proteína. Neste caso encontramos uma taxa de tradução de 15 aminoacidos por segundo. Como nossa proteina tem 1032 pares de base ela deve ter 1032/3=344 aminoacidos. Como, além de produzida, nossa proteína também pode ser degradada então temos uma equação bastante semelhate à anterior:

Podemos supor que inicialmente a concentração desta proteína é zero, isto não fará diferença nos cálculos mas suponhamos que não haja proteina inicialmente. Ao longo do tempo, a concentração
desta proteína irá crescer até alcançar o equilibrio entre produção e degradação. Neste equilibrio, a concentração das proteínas não mudam mais no tempo e portanto nossas equações são iguais a zero. Para entender o equilibrio, pense na equação logistica que descreve a curva de crescimento de uma população de bactérias. Inicialmente temos um crescimento exponencial, mas depois de um tempo a população satura, ou seja, estabiliza em uma determinada população. Este ponto de saturação é que chamamos de ponto de equilibrio, onde a quantidade de bactérias não muda mais no tempo. Neste ponto, a quantidade de bactérias que morrem é proporcional às que “nascem”. Matematicamente o ponto de equilibrio é um ponto onde a derivada no tempo é igual a zero, portanto:

ou seja:

e

Agora podemos isolar a concentração do mRNA na primeira equação e substituir na segunda. Com isto, chegamos a:

Qual o sentido deste valor? Bem você pode utilizar o volume da bactéria e calcular qual a concentração de uma única proteína dentro de uma bactéria e você chegará que isto é aproximadamente 1 nM. Portanto, nosso resultado nos diz que há aproximadamente 2.000 proteínas, em média, dentro da bactéria.

OK, isto quer dizer que se eu fizer um experimento eu vou encontrar exatamente 2000 proteínas dentro da bactéria?

Obviamente não, devemos ter em mente a limitação de nosso modelo. Aproximações foram feitas e há muitas variáveis que podem fazer com que este valor mude. Entretanto, podemos dizer com certa segurança que teriamos algo de 1.000 à 10.000 proteínas na bactéria. Pode parecer muito inexato e que nosso modelo não foi tão útil por não ser preciso. Mas devemos lembrar que inicialmente não tínhamos nenhuma ideia de quantas proteínas haviam. Se alguém chutasse que há somente 10 ou 100 proteínas em média poderiamos pensar que era uma estimativa boa. Com o modelo sabemos que esta estimativa não é boa, que devem haver bem mais proteínas que isto!

Além da quantidade de proteína, com este simples modelo poderiamos estimar o tempo que demora para que a quantidade de proteína sature, ou seja, atinja o ponto de equilibrio. Estas são estimativas que podem ser muito úteis na hora de definir um protocolo experimental e pode economizar uma razoável quantidade de tempo e reagentes durante os experimentos.  Portanto, não é necessário de ser ateu em modelagem, mas, tampouco, é recomendado acreditar religiosamente no modelo!!

Clube de Biologia Sintética 2012

Começaremos novamente nesta quarta feira (15 de agosto) as reuniões do Clube de Biologia Sintética!

Não importa a área: se você se interessar por biotecnologia, pesquisa interdisciplinar, gosta de aprender coisas novas e de resolver desafios, está mais que convidado!

Você de Exatas

No Clube você pode descobrir um novo mundo para “programar”, modelar e resolver problemas utilizando conceitos de engenharia para se fazer o design de sistemas biológicos.
NOTA: Nesse ano colocamos um Físico em um laboratório de Biologia Molecular; foi mais ou menos assim:
[youtube_sc url=”http://www.youtube.com/watch?v=3drspKkfIyE”]

Você de Biológicas

Nas reuniões você pode descobrir que a Biologia pode ser muito mais exata do que você conhece, e a diferença é só de abordagem.

E qual o Objetivo de Tudo Isso!?

Usar criatividade, interdisciplinariedade e empreendedorismo para esboçar um projeto para a competição internacional de máquinas geneticamente modificadas de 2013! E se divertir no processo, é claro!

A ideia é gerar propostas para serem apresentadas nas reuniões à partir de brainstormmings e referências indicadas por qualquer participante do grupo. É uma oportunidade de se aprender a como se iniciar um projeto do zero, planejar experimentos, verificar viabilidades, procurar materiais, custos, buscar financiamento, organizar pessoas, tempo e recursos; ou seja: tudo o que você precisa para se dar bem em qualquer empreendimento.

Já temos um pequeno cronograma ainda com detalhes a definir, mas com temas já escolhidos. Depois disso quem fará as reuniões serão os próprios participantes, convidados a apresentar suas ideias, assuntos interessantes e relevantes de synbio e qualquer outra coisa que se encaixe na reunião.

Nosso projeto para o iGEM 2012 ainda não acabou, mas vamos trazer toda a experiência que estamos acumulando para melhorar ainda mais ano que vem!

Horário: Das 18:30 às 20:00 hrs

Local: Sala “Fava Netto”, do ICB II – USP.

Vamos transmitir a reunião por Livestream. Colocaremos o link no facebook, twitter e aqui no blog quando iniciarmos a transmissão. Fiquem ligados!

Polimerase Por Segundo

ResearchBlogging.orgA Biologia é imprecisa por natureza, e vice versa. Isso é uma grande dificuldade ao se fazer design de sistemas biológicos sintéticos; aquilo que é muito bonito no papel às vezes nunca pode ser feito por motivos obscuros e por excesso de ruído dos sinais do sistema. Não dá pra prever. Na tentativa de deixar dispositivos sintéticos mais previsíveis, a Biologia Sintética tenta padronizar não somente partes biológicas, mas também os sinais que a compõem a dinâmica de seu sistema. Esses sinais são justamente a passagem de informação entre DNA e o fenótipo desejado, mas… como diabos deixar isso mais preciso e medir a velocidade dessa passagem de informação? Como medir “Polimerases Por Segundo”?

Padronização da Transmissão de Informação

Independente do que um aparelho elétrico faça, existem sinais “universais” que pertencem a todos eles: variações na diferença de potencial, na corrente, no campo elétrico e etc. A transmissão de informação entre os dispositivos eletrônicos que compõem esse aparelho são dadas justamente através desses sinais, fazendo todo o sistema elétrico funcionar. Em circuitos genéticos, sinais análogos à corrente elétrica são as taxas de transcrição e tradução, ou mais especificamente, a velocidade com que – respectivamente – uma polimerase e um ribossomo “leêm” seus nucleotídeos. O problema é que esses sinais (as taxas de transcrição e tradução) não são bons como transmissores de sinais. Entenda o porquê:

PoPS e RiPS: Qual é o sentido disso!?

Para que um transmissor de sinal seja bom, ele precisa facilitar com que dispositivos possam ser facilmente combinados em um sistema – além de ser algo “universal”, como foi dito anteriormente. Foi aí então que, usando experiências da engenharia, os biólogos sintéticos cunharam o termo “PoPS” (Polimerase Per Second – Polimerase Por Segundo) e “RiPS” (Ribossome Per Second – Ribossomo Por Segundo). Muitos pesquisadores acham que a criação desses novos termos é como “reinventar a roda”: qual seria a grande diferença entre isso e as clássicas taxas de transcrição e tradução? A diferença é a abrangência da nova medida. Quando se trata de um sítio operador, um RBS, um RNAm e o próprio gene sendo “lido”, não há diferença alguma em se medir uma taxa de transcrição e o “PoPS” ou uma taxa de tradução e o “RiPS”. Mas faz sentido se medir a taxa de transcrição de um sítio terminador por exemplo!? Esse elemento de DNA, que teoricamente não é transcrito (é ele quem justamente para a transcrição), ainda pode eventualmente ter um “leak” e permitir a passagem de uma polimerase. Usar a expressão “… a taxa de transcrição de um sítio terminador …” não faz sentido nenhum, mas acontece. Se usarmos PoPS, que por definição é o número de vezes que uma RNA polimerase passa por um ponto específico de uma molécula de DNA por unidade de tempo, ainda há sentido, pois nessa definição não importa qual a região do DNA a Polimerase passa. É esse tipo de generalidade que permite o fácil uso e novas combinações de dispositivos sintéticos.

Hierarquia de Abstração

Com a criação de sistemas fáceis de se integrar, os engenheiros biológicos podem se beneficiar de métodos largamente praticados em qualquer campo da engenharia, como a hierarquia de abstração. Com isso é mais simples se lidar com a complexidade de sistemas biológicos quando se omite informações desnecessárias. Desse modo (ver imagem abaixo), alguém trabalhando no nível de abstração das partes biológicas não precisa se preocupar com o design e síntese do DNA que usará, do mesmo modo, alguém trabalhando no nível sistêmico precisa pensar em apenas quais dispositivos incluir e como conectá-los para realizar uma função desejada, sem precisar se preocupar com os outros níveis de abstração.

Imagem retirada de: D. Baker, G. Church, J. Collins, D. Endy, J. Jacobson, J. Keasling, P. Modrich, C. Smolke, and R. Weiss. ENGINEERING LIFE: Building a FAB for biology. Scientific American, pages 44–51, June 2006.

Como medir PoPS?

A maioria dos sistemas criados e estudados hoje em dia em Biologia Sintética envolve controle transcricional da atividade genética, o que faz do PoPS a variável mais difundida na área, principalmente pelas pesquisas envolvendo lógica booleana em sistemas genéticos (portanto não é muito comum encontrar “RiPS” em artigos por aí).
Não existe um método direto para se medir PoPS, mas é possível chegar em seu valor indiretamente através de medições de fluorescência de genes reporter. É possível – se você puder encontrar os parâmetros na literatura ou medí-los – encontrar o PoPS de um dispositivo em cinco passos:

Cinco Passos Para o PoPS

1. Ligação de um Gene Repórter como Output

Antes de mais nada, será preciso de um fluorímetro (é claro) e demum espectofotômetro para medir densidade celular. Como exemplo, vamos observar a parte BBa_F2620:

Esse BioBrick tem como “entrada” a substância de quorum sensing 3-oxohexanoil-homoserina lactona e tem como “saída” PoPS. Em presença de 3OC6HSL, o gene que produz o fator de transcrição luxR promove a transcrição de genes após o Lux pR, na parte final do BioBrick BBa_F2620. Para mensurar o quão ativo o luxpR fica, liga-se outro BioBrick no final do dispositivo para mudar o output do sistema colocando-se o BBa_E0240 – a ORF (Open Reading Frame) do GFP (Green Fluorescent Protein):

Assim tem-se uma nova parte, o BioBrick BBa_T9002:

2. Medição da Fluorescência e Absorbância e Subtração do Background

Para medir a fluorescência do GFP e a absorbância da amostra de células, é preciso criar dois controles: um da absorbância (A) e outro da fluorescência (G). O controle da fluorescência será o próprio BBa_T9002 sem ser induzido pela substância de quorum sensing (G_não-induzido), enquanto o controle da absorbância é feita da maneira trivial, verificando somente a absorbância do meio de cultura (A_background). Para se obter os reais valores de Fluorescência induzida por 3OC6HSL e da densidade celular, basta então subtrair esses valores de background com os valores medidos durante a indução pela substância de quorum sensing:

3. Correlação com a Curva Padrão

Com as correções em mãos, outro procedimento trivial a ser feito é encontrar a curva padrão de fluorescência versus GFP e de absorbância versus número de células. Por exemplo, experimentos feitos em laboratório chegaram a essas retas de correlação de valores:

Em que UFC é “Unidade Formadora de Colônia” – o número de células na amostra. E “GFP” seria o número de moléculas de GFP medidas.

4. Interpolar a Curva de GFP versus Tempo Obtida na Medição

A síntese total de GFP por célula (S_célula) é dada pela taxa de produção de GFP total (S_total) dividida pelo número de células (UFC):

Para encontrar a derivada de [GFP] por tempo, basta plotar os dados de GFP obtidos por tempo e interpolar com uma função logística (provavelmente) para obter a equação que melhor descreve a variação de GFP no tempo.

5. Colocar os Valores Nessa Equação Aqui

Depois de determinada a função Scélula, basta colocá-la nessa fórmula e encontrar o PoPS:

Em que:
a = Taxa de maturação do GFP – 1/s
GammaM = Constante de degradação do RNA – 1/s
GammaI = Constante de degradação do GFP imaturo – 1/s
Rô = Constante de síntese proteica por RNAm (RiPS) – [Proteína]/[RNAm].s
PoPS = Polimerase por segundo – [mRNA]/[DNA].s

CUIDADO: Conteúdo Matemático – Prossiga com Cuidado (Ou não…)

Chega-se nessa expressão através de um pequeno sistema de equações diferenciais:

As equações expressam uma dinâmica simplificada de um sistema de transcrição e tradução de uma informação genética. Para chegar na expressão de PoPS, basta substituir a última equação na segunda e isolar M. Com a expressão resultante, basta substituir a variável M na primeira equação e sua derivada em dM/dt.

ATENÇÃO: Aqui acaba o conteúdo matemático. Está tudo bem agora.

E essa é a história de como você pode encontrar o PoPS – essa variável estranha! – no seu próprio laboratório (ou ao menos entender do que se trata). Assim como um circuito elétrico, que pode ser montado da melhor maneira possível e mesmo assim não funcionar por razões obscuras, sistemas biológicos têm muito mais esse problemático costume de não se comportar como esperado. Contudo essa abordagem mais generalista da atividade transcricional de uma célula é uma boa maneira de se tentar enfrentar o grande desafio de se deixar a biologia mais “engenheirável” e mais “precisa”. Não que essa seja a coisa mais fácil do mundo, mas ela nunca será se ninguém tentar. E estamos aos poucos conseguindo.

Referências:

Computadores bacterianos

De acordo com o verbete da wikipedia, um computador é uma máquina programável desenhada para, automaticamente, realizar um sequência de operações aritiméticas ou lógicas. Um computador pode prover-se de inúmeros atributos, dentre eles armazenamento de dados, processamento de dados, cálculo em grande escala, desenho industrial, tratamento de imagens gráficas, realidade virtual, entretenimento e cultura. Os primeiros computadores analógicos surgiram no século XVII e eram capazes de realizar as funções básicas de somar, subtrair, multiplicar e dividir. Mas foi na II Guerra Mundial, em meados do século XX, que realmente nasceram os computadores atuais. A Marinha dos Estados Unidos, em conjunto com a Universidade de Harvard, desenvolveu o computador Harvard Mark I, projetado pelo professor Howard Aiken, com base no calculador analítico de Babbage. O Mark I ocupava 167m2 e pesada cerca de 30 tonelada aproximadamente, conseguindo multiplicar dois números de dez dígitos em três segundos.Seu funcionamente era parecido com uma calculadora simples de hoje em dia. Nem é preciso falar o quanto esta tecnologia se desenolveu até hoje, em que hoje se discuti processadores quânticos e se faz computação em nuvem. Uma plataforma diferente das “baseadas no silício”, que estamos acostumados, são os biocomputadores. Em 1994, em um experimento muito elegante, Leonard Adleman desenvolveu o primeiro experimento envolvendo um computador de DNA para resolver o problema do Caminho Hamiltoniano: um problema que envolve caminhos hamiltonianos é o problema do caixeiro viajante, em que um caixeiro deseja visitar um conjunto de N cidades (vértices), passando por cada cidade exatamente uma vez, fazendo o caminho de menor tamanho possível (Figura 1).

 

Figura 1. O grafo em vermelho é hamiltoniano.

Cada bola é um nó e cada flecha é uma aresta. Existem multiplas possibilidades de construir um computador baseado em DNA, em que cada um possui suas vantagens e desvantagens. A maioria deles funciona utilizando as portas lógicas (AND, OR, NOT) associadas a lógica digital utilizando como base o DNA, como por exemplo, o contador bacteriano . Porém os primeiros computadores moleculares baseados em DNA, são reações in vitro utilizando, por exemplo, enzimas de restrição, ligases, e DNA (Benenson et al. 2001). Através da mistura desse componentes e reações em cascada de digestão, ligação e hibridização, o output final é uma molécula detectável que representa o resultado computacional. Em 1994, Leonard Aldleman foi capaz desenvolver um computador in vitro baseado em DNA para solucionar o problema do Caminho Hamiltoniano (Figura 1), porém apenas em 2009, Baumgardner e colaboradores conseguiram resolver um problema complexo in vivo, em E. coli. Porém, para entender, é necessário uma série de abstrações para tornar sequências de DNA em vértices e arestas de um caminho hamiltoniano (ver Figura 2). A primeira abstração trata segmentos de DNA como as arestas de um determinado grafo. As arestas de DNA são flanqueados por sítios hixC que podem ser embaralhados por um recombinase Hin, criando diversas ordens e orientações randômicas para as arestas do grafo. A segunda abstração está relacionada com os nós, com exceção do nó terminal, em que um nó é um gene divido ao meio por uma sequência hixC. Os autores conseguiram construir enzimas funcionais portando essas sequências codificadas no DNA. Dessa maneira, a primeira metade (5´) de um nó é encontrada na aresta de DNA que termina em um nó, enquanto a segunda metade (3´) do gene é encontrado em uma aresta de DNA que se origina no nó. Calma, realmente não é fácil entender, é preciso pensar e abstrair, veja a figura 2.


Figura 2. Construção de DNA que codificam um problema do Caminho Hamiltoniano com três nós. a. O grafo contendo o caminho Hamiltoniando começa no nó RFP, procedendo para o nó GFP e terminando no nó TT. b. Construção ABC representam a solução para o problema dos três nós. Os três fragmentos de DNA flanqueado por hixC estão na ordem e orientação corretas, de maneira que os genes GFP e RFP estão intactos. ACB possui o gene RFP intacto, porém o gene GFP está errado, por fim, a construção BAC não possue nenhum gene intacto.

A Figura 2a mostra o grafo com os 3 nós e as 3 arestas que foram escolhidas para serem codificados no computador bacteriano. O gráfico contêm um único caminho hamiltoniano que começa no nó RFP, viajando pela aresta A até o nó GFP, e utilizando a aresta B até alcançar o nó final TT. A aresta C, the RFP até TT é um detrator. A Figura 2b ilustra como as construções de DNA foram utilizadas para solucionar o problema do Caminho Hamiltoniano com um controle positivo e duas configurações sem soluções. Já que as soluções precisam originar no nó RFP e terminar no nó GFP, a aresta A de DNA contêm na extremidade 3´a metade de RFP seguida por a extremidade 5´de GFP. A aresta B de DNA se origina em GFP e termina em TT, dessa maneira, esse fragmento de DNA possui 3´GFP seguido de um terminado de transcrição duplo. A aresta C se origina em uma metade 3´ de RFP e termina em TT. Finalmente, com os genes codificadores para RFP e GFP estão intactos, com promotores e RBS, e seguintes de um terminador de transcripção, colônias ABC expressam fluorescência vermelha e verde, dessa maneira, possuem aparência amarela.

Para concluir a abstração eu gosto de imaginar que a recombinase Hin é o caxeiro viajante que faz o seu caminho pelo DNA e a sequência de DNA contem o mapa do caminho realixado.

A programação de bacteria para computar soluções de problemas complexos podem oferecer as mesmas vantagens dos computadores atuais que estamos acostumados, porém, com as seguintes características adicionais: (i) sistemas bacterianos são autônomos, eliminando a necessidade de intervenção humana, (ii) computadores bacterianos podem se adaptar a condições flutuantes, evoluindo para resolver desafios de determinados problemas e (iii) o crescimento exponencial de bactérias continuamente aumente o número de processadores trabalhando em um problema (Baumgardner et al., 2009). Sem contar que eles ainda poderiam fazer fotossíntese…

Adleman LM: Molecular computation of solutions to combinatorial problems. Science 1994, 266:1021-1024.

Benenson Y, Paz-Elizur T, Adar R, Keinan E, Livneh Z, Shapiro E: Programmable and autonomous computing machine made of biomolecules. Nature 2001, 414:430-434.

Baumgardner , J et al. Solving a Hamiltonian Path Problem with a bacterial computer. J. Biol. Eng. 2009, 24;3:11.

Synbio: uma revolução da… Informação?

Revolução, já!?

Nossos tempos andam bem corridos. Com certeza a pessoa mais atabalhoada da década de 80 diria o mesmo se pudesse se comparar com uma pessoa “normal” desse mundo entupido com mais de 7 bilhões de pessoas.  Não que hoje em dia o tempo tenha sofrido uma alteração devido a uma curvatura do espaço-tempo causada pelo enorme número de pessoas acumuladas nas cidades  – o que aliás seria bem forçado; a não ser que uma enorme massa vinda do espaço venha para cá, mas aí não haveriam mais pessoas para perceber o tempo -, o mesmo 1 minuto da década de oitenta ainda é o mesmo do nosso tempo – mesmo que hipotéticamente os indivíduos das diferentes épocas percebessem o tempo de maneiras relativamente diferentes por algum motivo desconhecido, cada um em sua época ainda contaria os mesmos 60 segundos para contabilizar 1 minuto -, o que muda mesmo é como percebemos esse tempo passando. Quando muitas coisas acontecem temos muitos referenciais para distinguir um momento diferente de outro, e em um mundo com muitas informações sendo captadas (ou pelo menos emitidas) de uma maneira muito rápida, a nossa sensação de passagem de tempo é bem maior. Temos muitas coisas para distinguir como referenciais a todo momento e de uma maneira muito rápida. Essa é a cara do nosso tempo que deixa o homem mais “sem tempo” dos anos 80 no chinelo: Informação.

Informação por Um, Informação por Todos

?

Isso mesmo. Uns europeus sissudos do CERN, ripongas do vale do silício, e um bando de asiáticos espertos conseguiram mudar o mundo de uma maneira irreparável criando a internet, popularizando o computador (tornando-o pessoal) e deixando-os muito menores e mais baratos. Um grande fato é que a maioria dessas coisas já existiam antes do grande povo (nós!) botar as mãos nessas tecnologias. Em grande centros de pesquisa, é claro. Exatamente por isso que a palavra revolução se encaixa muito bem quando dizemos que o mundo passou por uma revolução da informação: em sua maioria, revoluções políticas – como a francesa, a bolivariana, a russa e etc – um poder passa de um lugar limitado para uma enorme massa de pessoas. O mesmo acontece com a informação: ela é o poder e está completamente esparramada por aí. Não é à tôa que muitas questões políticas foram incendiadas e até mesmo criadas com tudo isso, é só observar melhor a revolução árabe, as mobilizações sociais estudantis em toda américa e, sem precisar observar tanto assim, a resposta da poderosa massa virtual “anonyma” à famigerada PIPA que não voa e à SOPA que não é de comer.

Informação Biológica sem Fronteiras

A biologia sintética, depois de vários anos de gestação em centros de pesquisas por aí afora, nasce justamente como filha desse mundo informacional. É por isso “a cara” da mãe, e aproveita de uma maneira diferente os recursos de nosso admirável mundo novo (admirável mesmo!) em relação às ciências mais velhas, que se anabolizaram com a proliferação de bancos de dados online, colaborações sem fronteiras e acesso rápido e fácil à dados que antigamente você só conseguiria encontrar em missões desafiadoras em bibliotecas enormes pelo mundo. Em vez de ser apenas um ótimo recurso de desenvolvimento e pesquisa, o enorme fluxo de informações dos tempos atuais moldou a característica mais importante da biologia sintética que a torna inegavelmente original: a padronização, o que a diferencia de outras disciplinas como engenharia metabólica, genética, biologia de sistemas, molecular… e por aí vai. Com partes biológicas padronizadas, tanto a troca de informações genéticas em pesquisas como o redesign dessas informações tona-se muitíssimo mais rápido e fácil. A informação flui, torna-se mais útil, cria enormes possibilidades. Assim como a internet deu poder à nós, simples usuários, de sabermos de tudo (ou quase tudo) com apenas uns cliques, a biologia sintética facilitou a troca de informações de tal forma que qualquer um, tendo os equipamentos certos, pode criar “máquinas geneticamente modificadas” em seu quintal. Imagine então com centros de pesquisa!? O limite é a criatividade: basta juntar as partes certas do jeito certo e você tem uma nova aplicabilidade.

Quem mexeu na minha vida!?

"Growth Assembly Project": um esboço de como no futuro as indústrias poderão seus produtos pré-projetados no cultivo daquilo que hoje chamaríamos de "matéria prima" (clique na imagem para ir ao site do projeto).

Mas onde então os sinais da biologia sintética no nosso dia a dia!? Vai demorar um pouco para que todo o modo de produção de produtos industriais, até mesmo commodities, mude (veja imagem acima). A grande mídia vislumbrou com grande alarde pouco tempo atrás a bactéria “chassi perfeito” sintetizada em laboratório pelo grupo de Craig Venter, que seria capaz de ser transformada, de uma maneira super otimizada, em que você quiser, dispensando por exemplo as pesquisas que custam em fazer uma espécie de microrganismo servir adequadamente para produção de uma determinada coisa ou em se comportar de uma determinada maneira. Esse foi um grande avanço que contribuirá ainda mais no futuro quando a Mycoplasma Laboratorium for mais acessível. Não diria portanto que synbio é uma grande mudança do mundo em que vivemos agora, mas é pelo menos uma grande revolução premeditada. Quem sabe no futuro todos os grandes problemas da vida (fome, pobreza) sejam resolvidos com a própria vida, só que um pouco mais sintética.

“O que é Biologia Sintética?”: Reloaded

Como já foi postado aqui, “o que é biologia sintética?” é uma pergunta pouco difícil de definir. Synbio é uma área de intersecção entre Biologia de Sistemas, Engenharia Genética, Biofísica, Biocomputação, Engenharia Metabólica, Biologia Molecular e áreas relacionadas afins. Portanto, não é nada fácil dizer  que “aquilo” ou “isto” é biologia sintética porque apontar para algo em Synbio é também apontar para outras áreas mais veteranas no mundo da ciência.

Mas então que diabos é isso tudo!? Uma grande “mistureba generalizada de todas as coisas”? Sim, mas não só isso.

Antes de falar do grande aspecto original que a Biologia Sintética tem – que é o detalhe “revolucionário” da coisa toda – deve-se fazer reconhecer algo que ela faz bem melhor do que a engenharia genética: o Design. O conceito de Design na engenharia de um novo sistema sintético é bem amplo, indo desde um design de proteínas (como proteínas quimera, como light switches), passando pelo próprio design do código genético (similar à escrita de um código de programação de computador mesmo), até ao design de todo o sistema biológico baseado na construção gênica feita (um exemplo bem visível disso é do projeto do iGEM com objetivos de criar uma bactéria resolvedora de Sudoku).

A reinvenção das capacidades do design de um sistema biológico foram possíveis não somente devido à novas tecnologias, mas sobretudo devido a uma nova abordagem com a cara dos nossos tempos super-informacionais: construção (biológicas, claro) automatizada e padronização das construções (os biobricks, por exemplo). Isso facilita enormemente o desenvolvimento de diversos dispositivos sintéticos e designs. Além disso, outra fundamentação da biologia sintética seria a abstração, a capacidade de abstrair problemas biológicos em uma visão mais simples, com base em toda a teoria já existente em outras áreas, como computação e a engenharia elétrica (não é à toa que Tom Knight e Randy Rettberg, dois engenheiros elétricos, fizeram parte da criação do iGEM).

Fica muito mais fácil entender tudo isso nas palavras do próprio Drew Andy – um dos pesquisadores que ajudou a fazer o parto da Biologia Sintética – nesse vídeo bem informal filmado em sua própria sala no MIT. Vale a pena conferir! 🙂

(OBS: é bem informal mesmo!)

Lâmpada verde da Philips produz luz com bactérias

A Philips lançou uma lâmpada que utiliza bactéria bioluminescentes. Mais interessante é que esses microrganismos se alimentam de metano produzido pela compostagem de restos de alimentos realizado em pequena escala na própria casa. Para a Philips esse é o primeiro passo para a utilização de microrganismos em sistemas de iluminação.

Veja a matéria na íntegra.

Switch de Luz Vermelha

ResearchBlogging.org

Os mecanismos de ativação da expressão gênica majoritariamente utilizados em biologia sintética hoje, que utilizam pulsos de algum tipo de metabólito para a indução de uma resposta gênica, possuem diversas desvantagens, indo desde uma cinética de ativação ineficiente a até possivelmente efeitos tóxicos dependendo do metabólito utilizado.

A indução de uma atividade gênica baseada em uma transmissão de
informação na velocidade de fóton é muito mais precisa, rápida e prática que qualquer outro metabólito que exista pelos simples fatos de que um fóton não precisa ser “dissolvido” no citosol, não precisa colidir com o seu alvo de alguma maneira particular para iniciar uma resposta enzimática, e talvez o mais importante: um fóton não causa efeitos pleiotrópicos (i.e. ativação de um gene não desejado) e não antecipados como um metabólito (Bem, isso se você tiver certeza de que não há mais nenhum receptor de luz além daquele que você vai usar na sua bactéria) Somado à isso, a luz é um indutor de resposta gênica barato, universalmente disponível, simples de usar, não-invasivo, atóxico, de alta inducibilidade e reversibilidade, e que pode ser facilmente utilizado em vários sistemas.

Provavelmente no futuro a grande maioria dos mecanismos indutores de máquinas geneticamente modificadas deverão ser induzidos por luz, ou quem sabe por quaisquer outros tipos de indutores de expressão com características equiparáveis.

Para se ter uma noção do funcionamento de um switch de luz, mais particularmente de luz vermelha, vamos dar uma olhada no mecanismo molecular por trás dessa idéia.

Mecanismo Molecular

O mecanismo molecular de ativação por luz provém, como era de se esperar, de proteínas vegetais encontradas no cloroplasto. Elas estão envolvidas no fotoperiodismo das plantas, germinação de sementes, e síntese de clorofila, além de outras coisas. Essas proteínas são os fitocromos.

Os fitocromos não possuem atividade sensível à luz por si só: é
necessário estar covalentemente ligado à um cromóforo, que nas plantas é a fitocromobilina (PφB), e em cianobactérias é a ficocianobilina (PCB), que é o mais usado devido à sua fácil purificação. Na ausência desses cromóforos não há mudanças conformacionais devido à luz nos fitocromos, é ele que capta a energia do fóton e traduz em uma mudança conformacional na proteína, culminando na mudança de sua funcionalidade.

O funcionamento deste biossensor sintético se dá através da construção de proteínas quiméricas a partir de receptores de luz e fatores de transcrição. Para receptores de luz vermelha (660 nm) há pelo menos dois tipos de mecanismos celulares construídos, que são os que vamos falar aqui, ambos utilizando uma idéia muito interessante: a fusão de partes de proteínas, as chamadas proteínas quimeras. Essa fusão vai além do aspecto estrutural e junta características funcionais de cada parte em uma proteína só. Não é demais!?

Um desses mecanismos, utilizando um híbrido entre fitocromo
(podendo ser A ou B) e o domínio quinase da proteína de E.Coli EnvZ. Essa quimera possui um mecanismo de inibição através da exposição à luz vermelha: quando o domínio quinase está fosforilado, há a expressão gênica (no caso, de lacZ, que induz a formação de um pigmento branco por ação da expressão de β-Galactosidase), já na presença de luz vermelha, o domínio torna-se desfosforilado e inibe a expressão (veja a imagem 1). Esse mecanismo molecular para a construção de um light switch foi o utilizado pelo time da universidade do Texas na competição de biologia sintética realizada no verão, no período de atividades independentes do MIT de 2004, o qual impulsionou a criação do iGEM.

O outro mecanismo molecular atua através de duas quimeras: uma
resultante da fusão entre o fitocromo (A ou B) e o domínio de ligação ao DNA (GBD) da proteína GAL4, e a outra um híbrido de PIF3 (phytochrome interaction factor 3) e o domínio de ativação de transcrição (GAD), também do fator de transcrição GAL4. Quando não exposto à luz ou exposto à luz infra-vermelha (far-red light, FR), o fitocromo na conformação Pr (forma inativa) somente fica ligado ao DNA através do domínio do domínio GBD, porém quando exposto à luz vermelha, a proteína quimérica do fitocromo ganha a conformação Pfr (forma ativa) que se liga à PIF3-GAD com alta afinidade, o que induz a transcrição do gene alvo (veja a imagem 2).

Outras proteínas podem ser usadas substituindo PIF3, como FHY1
(far-red elongated hypocotyl 1) ou FHL (FHY1 like), fundidas à GAD também (imagem 3).

O grande diferencial deste último mecanismo de switch é a rapidez
de resposta gênica e fácil modulação. A conversão das formas Pr para Pfr ocorrem em milissegundos, e a transcrição em segundos. A indução reversa é igualmente rápida, exigindo apenas uma dissociação entre a quimera com GBD e a com GAD. Isso permite alto sincronismo e uma indução da expressão uniformizada na população celular.

Agora imagine a aplicabilidade disso, por exemplo, em uma indústria que precise produzir um biomedicamento que necessite ser constituído de proporções de dois diferentes compostos. Ela teria que criar dois processos independentes de produção, dois biorreatores, uma unidade de mistura, teria que dosar as quantidades sendo misturadas e etc: iria ter que sustentar dois processos paralelos. Com um simples mecanismo molecular de light switch o
remédio ficaria muito mais barato e rápido de se produzir com apenas um apagar
e acender de lâmpadas. Os dois constituintes do medicamento poderiam ser produzidos no mesmo biorreator e em proporções que seguiriam apenas o tempo de exposição à determinada luz, no caso deste post, luz vermelha e infravermelha. Bacana não é? E isso é só um exemplo.

Para maiores e mais específicas informações, vale dar uma olhada
nos papers aqui embaixo (a referência 3 traz um modelo matemático bem legal ).

1) Levskaya A, Chevalier AA, Tabor JJ, Simpson ZB, Lavery LA, Levy M, Davidson EA, Scouras A, Ellington AD, Marcotte EM, & Voigt CA (2005). Synthetic biology: engineering Escherichia coli to see light. Nature, 438 (7067), 441-2 PMID: 16306980

2)Shimizu-Sato S, Huq U, Tepperman JM, Quail PH (2002). A light-switchtable gene promoter system Nature Biotechnology, 1041-1044 DOI:10.1038

3) Sorokina O, Kapus A, Terecskei K, Dixon LE, Kozma-Bognar L, Nagy F, & Millar AJ (2009). A switchable light-input, light-output system modelled and constructed in yeast. Journal of biological engineering, 3 PMID: 19761615

Bio-Fiction videos – Please rate your favourite videos!

Vejam os vídeos do Synthetic Biology Science, Art and Film Festival que ocorreu em Viena nos dias  14 a 16 de maio!

Votem nos melhores vídeos numa escala de 1 a 5:

http://bio-fiction.com/videos/

Produção de biodiesel por bactérias

ResearchBlogging.org

Imagine uma plantação enorme de soja no interior do Mato Grosso e uma instalação para a extração do óleo de soja, que é composto por vários ácidos graxos. Agora imagine no interior de São Paulo, uma grande usina de etanol cercada por dezenas de quilômetros por cana-de-açúcar. Imagine o etanol e óleo de soja sendo transportados até uma usina de biodiesel para, utilizando um catalisador (normalmente hidróxido de sódio), serem esterificados em um éster (biodiesel) e em glicerina. Muito trabalho e muito recurso para produzir um biocombustível não acham?

Recentemente, um trabalho muito interessante foi publicado pelo Jbei Instute demonstrando a possibilidade de se utilizar uma bactéria para produzir biodiesel em apenas uma etapa, e ainda por cima, utilizando resíduos agroindustriais, como por exemplo, o bagaço de cana-de-açúcar. Essa bactéria modificada geneticamente é capaz de produzir ácidos graxos e etanol e enzimaticamente realizar a esterificação desses produtos em biodiesel. Bacana não é? Os detalhes da pesquisa serão descritos a seguir.

Ácidos graxos têm sido utilizados há séculos para a produção de combustíveis e produtos químicos, incluindo o biodiesel, surfactantes, solventes e lubrificantes. Porém a demanda crescente e a produção limitada de óleos vegetais têm causado questionamentos sobre o aumento dos preços dos alimentos, sobre a prática de utilização dos solos e os aspectos socioambientais relacionados com a sua produção. Uma alternativa é a produção desses derivados de ácidos graxos via conversão biológica utilizando microrganismos como levedura e bactérias. Dentro desses produtos, os etil-ésteres de ácidos graxos (o famoso biodiesel) têm despertado muito interesse. Só para ilustrar, a demanda mundial de diesel vem crescendo três vezes mais que a de gasolina.

Ácidos graxos são produzidos naturalmente por microrganismos, eles compõem, entre outras coisas, a membrana celular. Porém, Jay Keasling e seu grupo construíram uma E. coli geneticamente modificada capaz de produzir ácidos graxos livres (através da expressão de uma tioesterase citoplasmática e da deleção de genes responsáveis pela degradação de ácidos graxos) e etanol (expressando os genes de Zymomonas mobilis). Além disso, foi clonada uma enzima (Acr1) capaz de realizar a transesterificação em bioedisel, sendo que que a glicerina produzida é reabsorvida pela bactéria para a produção de mais biodiesel.

O tamanho e a saturação do ácido graxo influenciam diretamente nas propriedades químicas do biodiesel, como temperatura de fusão. Alguns trabalhos têm demonstrado que,
através da expressão de tioesterases de plantas, é possível produzir ácidos graxos sob medida para diferentes aplicações. Essa ferramenta genética possibilita a produção de biodiesel com composições definidas, dessa maneira, com performance e características desenvolvidas sob medida.

Por fim, essas bactérias foram modificadas para utilizar matérias-primas de baixo custo, como a hemicelulose presente no bagaço de cana-de-açúcar. É uma pesquisa pioneira que mostra bem o tipo de engenharia sistêmica de metabolismo microbiano que vem sido feita. Através de várias modificações genéticas foi possível aumentar a produção de 40 mg/l para quase 700 mg/l de biodiesel. Resultado este ainda baixo para se cogitar uma aplicação a curto-prazo, mas, sem sombra de dúvida, as perspectivas são muito animadoras.

Steen EJ, Kang Y, Bokinsky G, Hu Z, Schirmer A, McClure A, Del Cardayre SB, & Keasling JD (2010). Microbial production of fatty-acid-derived fuels and chemicals from plant biomass. Nature, 463 (7280), 559-62 PMID: 20111002