Arquivo da categoria: Paleógeno

Cetáceos e seus “modos à mesa”: um guia de como filtrar sua comida

Nas últimas postagens você teve a oportunidade de conhecer alguns grandes cetáceos fósseis predadores, como Basilosaurus isis e Ankylorhiza tiedemani. Mas não só de caçadas sanguinolentas vivem esses animais. Bom, isso se você não for um cardume de lulas, peixes ou crustáceos...

Na postagem de hoje, vamos contar sobre como as baleias foram por um caminho um pouco diferente e se tornaram alguns dos maiores seres viventes do planeta, alimentando-se por filtração. Caso você seja parte do cardápio, é bom por sebo nas canelas, ou melhor, nas nadadeiras, porque a fome aqui é gigantesca.

Um balaio de baleia

Antes de qualquer coisa, é importante entender quem são as baleias filtradoras:

Em inglês, o termo whale (baleia) pode ser usado popularmente para se referir a qualquer espécie de cetáceo, seja este pequeno ou grande, com dentes ou não. Porém, também existe uma palavra para se referir especificamente às baleias filtradoras : baleen (algo como “barbas” ou “barbatanas”, em português).

Baleen” refere-se particularmente aos Mysticeti ou “misticetos“, no bom português. Misticetos são os cetáceos dos grupos Balaenopteridae, Balaenidae, Eschrichtiidae, Neobalaeninae e alguns outros grupos fósseis. Estes grupos possuem barbatanas (ou barbas) no lugar dos dentes, que servem para filtração, e é por isso, que esses cetáceos são chamados de “baleias filtradoras” ou “baleias de barbatana” aqui no Brasil.

Também há nomes populares específicos para diferenciar certos grupos. Rorqual, por exemplo, refere-se somente às baleias da família Balaenopteridae, que incluem baleias-azuis, baleias-fin, baleias-sei, baleias-de-bryde, baleias-de-rice, baleias-minke e baleias-jubarte. Baleias verdadeiras, por sua vez, é o nome usado para denominar as Balaenidae, representas pelas baleias-francas-austrais, baleias-francas-do-atlântico-norte, baleias-francas-do-pacífico, e as baleias-da-groenlândia.

As outras duas famílias, Eschrichtiidae e Neobalaeninae, não ocorrem no Brasil, e normalmente são chamadas pelos nomes das espécies que as representam: baleia-cinzenta (Eschrichtiidae) e a rara baleia-franca-pigméia (Neobalaeninae).

Algumas espécies de baleias filtradoras (CASTRO & HUBER, 2012).

Modos à mesa 

Cada grupo de baleia filtradora possui características anatômicas diferentes que refletem modos únicos de filtrar a água para se alimentar. Porém, pelo menos uma coisa é comum entre elas: as barbatanas, estruturas compridas e enfileiradas, feitas de queratina (mesmo material que forma nossos cabelos e unhas), presentes na boca desses animais. Tais barbatanas acabaram por substituir os dentes dos misticetos ao longo de sua evolução.

File:Humpback whale baleen.jpg
Barbatanas. Imagem de Randall Wade (Rand) Grant, sob licença CC BY 2.0.

As barbatanas funcionam como uma escumadeira ou peneira, que permite que a água abocanhada durante a alimentação seja expulsa da boca, com a ajuda da língua, e que o alimento fique preso enquanto a água sai.

As rorquais possuem pregas na região ventral, que se expandem como o papo de um pelicano, permitindo com que elas possam abocanhar (engolfar) grandes quantidades de água com cardumes inteiros de pequenos peixes ou krill (um tipo de camarãozinho). Já as baleias-verdadeiras, são mais corpulentas, não possuem pregas ventrais e a sua boca é em forma de arco. Elas basicamente se alimentam filtrando a água enquanto nadam com a boca aberta.

As barbatanas das baleias-verdadeiras podem ter entre 2 metros de altura, até 5,2 metros de altura!

As baleias-cinzentas, por sua vez, abocanham a areia do fundo marinho filtrando-a em busca de crustáceos enterrados. Elas possuem sulcos na garganta em vez de pregas ventrais. As baleias-franca-pigméia, por fim, possuem uma mistura de características: boca em forma de arco como a das baleias verdadeiras, sulcos ventrais na garganta como as baleias-cinzentas e estilo de alimentação como as rorquais.

Diferenças entre as formas de filtração das rorquais (baleia-azul) e das baleias verdadeiras (baleia-franca). A água entra na boca e depois é expulsa com a ajuda da língua ao pressionar o céu da boca, fazendo a água passar pelas barbatanas (CASTRO & HUBER, 2012).

Mas sempre foi assim? Como será que as barbatanas surgiram? As formas de alimentação sempre foram as mesmas desde o começo da evolução dos misticetos? Como as espécies transicionais se alimentavam? Essas são perguntas que o registro fossilífero pode ajudar a responder…

Comendo com hashi, os “palitinhos japoneses

Os basilossaurídeos foram os primeiros cetáceos totalmente aquáticos. Eles eram grandes caçadores, inclusive de outros cetáceos, e tinham a boca cheia de dentes diferentões, como já citamos AQUI. A pergunta inevitável é: como essas “baleias primitivas” foram de caçadoras dentadas para as banguelas filtradoras que temos na atualidade? Bom, alguns achados fósseis das últimas décadas possibilitaram entender parte desse processo: 

Em 2016, Felix G. Marx junto com outros colegas, analisaram estranhas ranhuras encontradas em dentes fósseis de um grupo de baleias “primitivas” chamadas de Aetiocetidae, comuns no Oligoceno.

Crânio de aetiocetídeo (MARX et al., 2016).

Eles analisaram um fóssil específico, encontrado em rochas da região de Washington, EUA. O espécime, datado do Oligoceno Superior demonstrou afinidade aos misticetos, mas possuía um padrão de desgaste nos dentes muito diferente, não compatível com a presença de barbatanas. Felix e colegas, depois de muitas análises, associaram os desgastes horizontais nos dentes a uma alimentação por sucção, sugerindo que as barbatanas dos misticetos teriam surgido mais tarde, próximo à origem das baleias filtradoras modernas. O que isso significa? Que antes de filtrar, os misticetos provavelmente teriam se alimentado sugando o alimento, como se faz quando comemos macarrão com hashi!

Figura 5. Padrões de desgaste em dentes, sugerindo alimentação por sucção em um aetiocetídeo (MARX et al., 2016).

As ranhuras horizontais observadas nos dentes foram comparadas com outros animais que também se alimentam por sucção na atualidade, como belugas, algumas baleias-bicudas, morsas e certas espécies de focas. Pelo padrão de desgaste, a língua deveria funcionar como um pistão, fazendo pressão para que a água e a(s) presa(s) fossem sugados rapidamente para dentro da boca, o que deveria causar estes desgastes.

Etapas de sucção mostrando a língua de um Aetiocetidae funcionando como um pistão. Ilustração por David Hocking.

Também foram observadas marcas em alguns dentes, relacionadas com a expulsão da água e sedimentos que eventualmente eram sugados junto com o alimento. Os Aetiocetidae deveriam ficar com a boca meio aberta enquanto expulsavam tudo aquilo que não era alimento. Essas marcas são semelhantes às encontradas em certas espécies de mamíferos marinhos citados anteriormente, que também se alimentam por sucção.

Mas e agora? Onde as barbatanas aparecem nessa história, se os primeiros misticetos ainda tinham dentes e sugavam a comida, ao invés de morder tudo que passava pela frente? Mais uma vez, o registro fossilífero pode nos ajudar a entender essa história, mas agora vamos contar com a ajuda de análises em animais atuais para entender outra parte dessa saga evolutiva única.

Comendo com garfo e colher

Alguns autores sustentam que as barbatanas teriam aparecido em alguns misticetos extintos que ainda possuíam dentes. Eles descrevem que essa teria sido uma “fase de transição” evolutiva, em que esses cetáceos teriam exibido uma alimentação mista: de predadores ativo por sucção, que também seriam capazes de realizar filtragem. Achados fósseis do Oligoceno Superior, publicados em 2008, por Thomas A. Deméré e colegas, permitiram o reconhecimento de marcas no céu da boca de espécies fósseis de Aetiocetidae, que indicariam uma alimentação por filtração.

Aetiocetus weltoni, um Aetiocetidae mostrando a hipótese de ocorrência simultânea de dentes e barbatanas (Ilustração de Carl Buell) (DEMÉRÉ et al., 2008).

O material descrito por Thomas pertence a uma espécie denominada Aetiocetus weltoni. Nos fósseis foram encontradas ranhuras de inervação no palato (céu da boca) semelhantes àquelas observadas nas baleias filtradoras atuais. As inervações saem da região dos alvéolos dentários (local onde se encaixam os dentes) exatamente como nos misticetos atuais. Segundo os autores, isso seria uma evidência de que a espécie fóssil teria tido barbatanas.

Palato de baleia atual sem dentes, mostrando os sulcos de inervações (a-b) e palato de Aetiocetus weltoni mostrando os sulcos de inervações junto com a dentição (MARX et al., 2016).

Inicialmente achava-se que as barbatanas poderiam ter surgido a partir de estruturas rígidas no céu da boca dos misticetos basais, chamadas de “cristas córneas palatinas”, também presentes nos artiodáctilos (cabras, bois, camelos, hipopótamos, etc.), grupo no qual os cetáceos são aparentados. Porém, as inervações encontradas nos fósseis observados por Thomas e colegas reforçaria outra hipótese.

Thomas e colegas observaram fetos de baleias filtradoras atuais e notaram que, apesar de “banguelas” quando adultas, a sua sequência de dentes se desenvolve em sua fase fetal. O seu crescimento é que é interrompido pela ação de alguns genes. Quando tais genes se ativam, os dentes são reabsorvidos pelo organismo, mantendo somente as inervações no palato geradas durante o seu crescimento inicial.

Vista lateral de um feto baleia-fin (Balaenoptera physalus) com corte mostrando botões de dente na mandíbula superior (MARX et al., 2016).

Durante a reabsorção dentária, queratina é secretada e é isso que forma as placas de barbatana no lugar dos dentes reabsorvidos. Essas placas crescem constantemente enquanto o filhote se desenvolve e, ao longo da vida, são desgastadas e desfiadas, ficando com a aparência que conhecemos.

A ordem dos talheres

Alguns autores, todavia, alertam: assim como a origem das penas em dinossauros não-avianos não marca a origem do vôo, o aparecimento dos canais de inervação no palaro dos misticetos não necessariamente indicaria a presença de barbatanas. Em vez disso, esses sulcos inervados em alguns aetiocetídeos fóssei poderiam, por exemplo, ter fornecido condições anatômicas e fisiológicas iniciais para o aparecimento posterior das barbatanas. 

Felix G. Marx e colegas, em seu trabalho de 2016, apontam que a presença de dentes alternados, como os observados no fóssil descrito por Thomas e colaboradores em 2008, acabariam danificando as barbatanas, se essas estivessem presentes. Os mesmos autores também observam que a mandíbula das baleias filtradoras atuais é mais larga, o que permite com que as barbatanas não sejam danificadas durante o fechamento da boca do animal. Além disso, misticetos atuais também possuem uma adaptação muscular especial que permite com que a mandíbula rotacione levemente durante a oclusão, o que também dificulta o dano às barbatanas.  Em aetiocetídeos, por sua vez, o tamanho da mandíbula e sua forma de abertura indicam que, qualquer barbatana, se presente, seria danificada durante o fechamento da boca.

Esquema de fechamento da boca e a acomodação das barbatanas nas baleias verdadeiras (Balaenidae) e nas rorquais (Balaenopteridae) em comparação com o fechamento da boca dos Aetiocetidae possivelmente sem barbatanas (MARX et al., 2016).

Felix e demais colegas até tentam dar uma chance ao modelo de barbatanas+dentes. Eles sugerem um cenário em que as barbatanas poderiam estar entre os dentes do animal e que, com o fechamento da boca, elas se dobrariam para dentro, similar ao que ocorre com as baleias-da-groenlândia. Todavia, ainda sim, a presença dos dentes alternados atrapalharia o dobramento e danificaria significativamente as estruturas. Os autores concluem, que as barbatanas não teriam surgido dessa forma. Talvez elas tenham surgido em outros grupos que tivessem uma mandíbula mais larga e/ou uma dentição reduzida ou inexistente.

Um jeito alternativo de comer

A capacidade de gerar sucção é fundamental para a maioria dos vertebrados aquáticos e é amplamente observada entre os mamíferos marinhos atuais. No entanto, até o trabalho de Felix e colegas, ela raramente havia sido associada à evolução dos misticetos. A sucção é muito útil na alimentação subaquática, pois facilita o transporte do alimento até o fundo da boca, onde ele será deglutido. Essa forma de adquirir alimentos provavelmente já estava presente em cetáceos basais, muito antes dos misticetos, mas esse é um comportamento relativamente difícil de se interpretar por meio de fósseis.

O uso de sucção na alimentação e provável ausência de barbatanas nos misticetos basais sugeriria um modelo diferente de evolução da alimentação por filtragem em baleias:

(1) Misticetos basais, incluindo aetiocetídeos, tinham tanto a dentição funcional, quanto a habilidade de usar sucção, herdada de cetáceos anteriores;

(2) A água ingerida por eles, como resultado da sucção, era expelida fundamentalmente com auxílio dos dentes;

(3) algum grupo de misticeto ancestral aprimorou suas capacidades de sucção ao longo do tempo, com o desenvolvimento de mandíbulas mais largas e tecidos moles associados (“calos” ou dobras na gengiva, lábios expandidos, etc.). O aperfeiçoamento desta capacidade teria favorecido a perda da dentição com o tempo;

(4) Com a perda da dentição, as barbatanas teriam evoluído e, gradualmente, sido selecionadas.

Esquema evolutivo das baleias filtradoras. (MARX et al., 2016).

Este cenário seria mais plausível, pois exclui problemas potenciais de interferência entre uma dentição ativa e barbatanas. Ele explica também como os dentes poderiam ter sido perdidos, sem afetar o sucesso da alimentação. Além disso, ele está de acordo com a evidência observada no desenvolvimento de fetos de misticetos atuais, que mostra que o crescimento das barbatanas só se dá quando os dentes são reabsorvidos.

A sucção seguida de filtragem é uma forma de alimentação que pode limitar bastante o tamanho máximo da presa a ser capturada. O aperfeiçoamento dos tecidos moles associados à dentição, em especial a gengiva, é uma forma de lidar com este problema. Primeiro, um mecanismo para prensar a presa deve ter surgido nos misticetos basais e, depois disso, um aparato apropriado de filtragem – isto é, as barbatanas.

Uma adaptação observada nos botos-de-dall (Phocoenoides dalli), espécie vivente de cetáceo, pode ajudar a imaginar como o processo teria acontecido. Esses cetáceos odontocetos (não diretamente aparentados às baleias filtradoras) têm dentes rudimentares e possuem em sua boca, também, pequenos “dentes na gengiva”, semelhantes aos brotos iniciais das barbatanas dos misticetos. Essas estruturas ajudam os botos-de-dall a capturarem suas presas. Pode ser que essa adaptação seja uma pista de como se deu a perda gradual da dentição em misticetos e posterior surgimento das barbatanas.

A origem das barbatanas, adaptação chave das baleias filtradoras modernas (Mysticeti), marca uma transição profunda e única na história evolutiva dos vertebrados. Hoje, ela é um pouco melhor compreendida, porém, como vocês viram, ainda restam detalhes a serem desvendados sobre como esta belíssima crônica evolutiva se desenrolou. A compreensão da evolução dos “modos à mesa” das baleias pode estar, não só nos fósseis, mas em uma combinação entre estudos paleontológicos, genéticos e do desenvolvimento.

Referências:

CASTRO, Peter; HUBER, Michael E. Biologia marinha. AMGH Editora, 2012.

DEMÉRÉ, Thomas A.; MCGOWEN, Michael R.; BERTA, Annalisa; GATESY, John. Morphological and molecular evidence for a stepwise evolutionary transition from teeth to baleen in mysticete whales. Systematic biology, v. 57, n. 1, p. 15-37, 2008.

MARX, Felix G.; HOCKING, David P.; PARK, Travis; ZIEGLER, Tim; EVANS, Alistair R.; FITZGERALD, Erich M. G. Suction feeding preceded filtering in baleen whale evolution. Memoirs of Museum Victoria, v. 75, 2016.

O devorador de baleias ancestrais

Anteriormente falamos aqui sobre um incrível golfinho caçador que dominou as águas do Oligoceno no sul da Califórnia (E.U.A) e suas contribuições para a evolução dos cetáceos (grupo que inclui as baleias e golfinhos). Citamos algumas diferenças entre ele e um grupo de cetáceos muito mais antigo, que incluía também caçadores tão excepcionais quanto, os gigantescos basilossaurídeos. Mas afinal, quem são esses cetáceos com nome de dinossauro?

Basilossaurídeos. Ilustração por Artbyjrc.

Os fósseis mais antigos de basilossaurídeos são encontrados em rochas datadas do final do Eoceno Médio. Eles são encontrados em todo o mundo, incluindo África, Ásia, Europa, América do Norte e do Sul, Nova Zelândia e até mesmo na Antártica. De maneira geral, basilossaurídeos eram cetáceos com o corpo extremamente alongado, algumas espécies chegando a mais de 18 metros de comprimento. Foi por meio de fósseis desses cetáceos “arcaicos” que paleontólogos tiveram as primeiras pistas de que os golfinhos e baleias se originaram de mamíferos inicialmente terrestres.

O entendimento da ancestralidade terrestre só foi possível graças à preservação de ossos vestigiais das patas traseiras. Estas, eram pequenas e provavelmente semelhantes às nadadeiras peitorais dos golfinhos atuais, ou seja, não se conectavam/articulavam mais diretamente com a coluna. Isso demonstra que basilossaurídeos não conseguiriam mais sustentar o seu próprio corpo em terra e, portanto, seriam os primeiros cetáceos completamente adaptados à vida marinha. Também foram os cetáceos mais antigos a mostrar a migração das narinas da ponta do focinho para o topo da cabeça, como vemos hoje nas baleias e golfinhos modernos.

Esqueleto de Dorudon atrox evidenciando as patas traseiras rudimentares e desconexas da coluna vertebral. Foto do Repertório online de fósseis do Museu de Paleontologia da Universidade de Michigan.

Grandes répteis?

A primeira espécie de basilossaurídeo foi descrita em 1834 por Richard Harlan, que batizou-a de Basilosaurus, “Lagarto Rei” em grego antigo. Porém, Harlan havia interpretado aqueles fósseis erroneamente como sendo de um grande réptil marinho. Percebendo esse erro, Richard Owen, em 1839, reavaliou os fósseis do Basilosaurus associando-o aos cetáceos, e dando-lhe um novo nome, Zeuglodon, que significa “Dentes de Jugo”, também derivado do grego antigo.

Apesar dessa nova avaliação, o nome original dado por Harlan permaneceu devido às regras internacionais da nomenclatura zoológica, que definem que o primeiro nome dado a uma nova espécie é o que deve ser considerado válido.

Evidências de um grande caçador

Nos últimos anos, descobertas de novos fósseis de basilossaurídeos na região do Egito, no continente africano, revelaram relações nada amigáveis entre algumas espécies do grupo. Alguns fósseis indicam que o gigantesco Basilosaurus isis, um animal que atingia até 18 metros de comprimento, seria predador de uma espécie menor de basilosaurídeo conhecida como Dorudon atrox. Essa descoberta deu pistas sobre como os grandes basilossauros do Eoceno Médio e Final eram efetivamente os “reis” dos mares. 

Esqueletos de (A) Basilosaurus isis e (B) Dorudon atrox (VOSS et al., 2019).

Julia M. Fahlke relata em um trabalho publicado em 2012, que fósseis das duas espécies de basilossaurídeos foram encontrados no mesmo sítio fossilífero. Porém, havia algo estranho ali: na localidade eram encontrados fósseis tanto de juvenis quanto de adultos de Dorudon atrox e somente fósseis de adultos de Basilosaurus isis. No mesmo trabalho, Fahlke relata também, que alguns dos crânios de D. atrox possuíam grandes marcas de mordida, que depois de análise detalhada, puderam ser interpretadas como ferimentos letais, ou seja, elas eram a provável causa de morte desses organismos. Quem seriam os responsáveis pelas mordidas?

Isso levou a pesquisadora a propor a hipótese de que adultos de B. isis poderiam, no passado, ter invadido as áreas de parto de D. atrox para atacar seus filhotes. Não havia, no entanto, nenhuma evidência direta para apoiar essa hipótese. Fahlke, então, decidiu digitalizar os fósseis para testar a sua ideia. Ela aplicou técnicas de tomografia computadorizada e obteve modelos tridimensionais (3D) dos crânios fossilizados. Os modelos 3D dos espécimes juvenis de D. atrox foram colocados digitalmente na boca de um B. isis adulto e as marcas de mordidas comparadas com o tamanho e posicionamento dos dentes. Bingo! As marcas de mordida no crânio dos juvenis de D. atrox correspondiam exatamente à dentição de B. isis.

Modelo digital 3D do espécime juvenil de Dorudon atrox (azul) na boca de um Basilosaurus isis adulto (cinza) (FAHLKE, 2012).

O perfil do culpado

A pesquisadora também produziu modelos de argila dos dentes de B. isis e observou que as marcas nos crânios dos juvenis de D. atrox também se encaixavam com as características específicas dos dentes da espécie maior de basilossaurídeo. As marcas variavam ainda de acordo com qual dente fincou no crânio do animal, a posição do ataque, a força aplicada durante a mordida e o estado de desgaste natural dos dentes de B. isis

Foi proposto também, que algumas marcas poderiam ter sido causadas por outros animais como Crocodilus megarhinus, grandes crocodilos marinhos do final do Eoceno do Egito, ou Carcharocles sokolowi, um grande tubarão encontrado mesmo depósito, com dentes de até 9,5 cm. Porém, as marcas analisadas não se encaixavam com as características da arcada e dos dentes dessas espécies. O culpado realmente só poderia ser Basilosaurus isis.

Acreditava-se, até então, que a alimentação dos cetáceos primitivos era limitada a peixes, entretanto, com esse estudo, as primeiras evidências de uma predação mais ampla foram sugeridas. 

Um mundo onde baleia comia baleia (e também tubarão!)

Apesar do excelente trabalho feito por Fahlke, evidências diretas eram necessárias para comprovar definitivamente a relação de predação proposta pela autora. A preservação do conteúdo estomacal desses enormes predadores seria o ideal. 

Eis que, em 2019, Manja Voss e colegas publicaram um trabalho justamente com a peça faltante para a compreensão dessa relação entre presa e predador: o conteúdo estomacal de um B. isis foi encontrado e nele, partes de D. atrox. Voss e colegas relataram evidências de três espécies de vertebrados encontrados no conteúdo estomacal de B. isis. Haviam partes de dois juvenis de D. atrox, dentes de um pequeno peixe ósseo (Pycnodus mokattamensis) e dentes de um grande tubarão (Carcharocles sokolowi).

Fotomosaico de Basilosaurus isis encontrado com conteúdo estomacal preservado (VOSS et al., 2019).

Os autores sugeriram ainda que, devido ao grande tamanho de algumas presas encontradas, B. isis  não deveriam ser capazes de engoli-las inteiras. Considerando o comportamento de cetáceos atuais, eles também não deveriam consumir a carne de carcaças. Eles eram devidamente capazes de atacar animais de grande porte e abatê-los, além de terem dentes apropriados para cortá-los em pedaços. A cena deveria ser terrível.

Muito se comparou B. isis com as grandes orcas (Orcinus orca) da atualidade, pois estas também são de caçadores de topo de cadeia, que consomem animais, incluindo outros mamíferos marinhos e tubarões, às vezes muito maiores do que elas mesmas. A descoberta elucidou um pouco mais sobre a dinâmica dos predadores de topo dos oceanos do início da Era Cenozóica. 

As orcas também caçam filhotes de grandes baleias, assim como consomem parte das presas maiores, dando uma perspectiva sobre como B. isis faziam em sua época. Porém, as orcas caçam em grupo e esse tipo de interação não é possível de ser verificada no registro fossilífero de  B. isis. Pelo menos até o momento…

Restos cranianos de juvenil de Dorudon atrox (VOSS et al., 2019).

Pelas informações adquiridas a partir desses trabalhos, entende-se que B. Isis foram possivelmente os primeiros cetáceos a se alimentarem de outros cetáceos de sua época. Os trabalhos citados aqui também ampliam o conhecimento sobre a evolução da dieta desse grupo de animais, antes interpretados como consumidores exclusivos de peixes. Ainda há muito a se descobrir sobre a  paleoecologia dos cetáceos extintos. O registro fossilífero sempre guarda surpresas e é preciso uma atenção especial e, às vezes, até mesmo criatividade para se desvendar os mistérios guardados nos fósseis.

Referências:

FAHLKE, Julia M. Bite marks revisited — evidence for middle-to-late Eocene Basilosaurus isis predation on Dorudon atrox (both Cetacea, Basilosauridae). Palaeontologia Electronica, v. 15, n. 3, p. 32A, 2012.

MARX, Felix G.; LAMBERT, Olivier; UHEN, Mark D. Cetacean paleobiology. John Wiley & Sons, 2016.

VOSS, Manja., ANTAR, Mohammed Sameh., ZALMOUT, Iyad S., & GINGERICH, Philip D. Stomach contents of the archaeocete Basilosaurus isis: Apex predator in oceans of the late Eocene. PloS one, v. 14, n. 1, p. e0209021, 2019.

Um grande golfinho predador e a evolução dos cetáceos modernos

Golfinhos e baleias atuais, junto com os peixes-boi e dugongos (Sirênios), são mamíferos completamente adaptados ao ambiente aquático. Suas atividades como alimentação, locomoção, descanso e reprodução dependem inteiramente desse ambiente. Eles não precisam, por exemplo, retornar à terra para executarem essas ações, diferentemente do que ocorre em outros grupos de mamíferos aquáticos, como leões marinhos, focas ou lontras. Mas você já pensou em como esse processo aconteceu?

A origem dos primeiros cetáceos (grupo que inclui golfinhos e baleias) se deu a partir de animais completamente terrestres. Formas extintas aparentadas aos artiodáctilos (grande grupo que inclui cabras, bois, camelos, hipopótamos, etc.) começaram essa jornada há cerca de 50 milhões de anos atrás. Eles se adaptaram, com o passar do tempo, às diversas peculiaridades do ambiente aquático, como a maior viscosidade, densidade, empuxo e pressão hidrostática. Entre as principais adaptações desenvolvidas pelos cetáceos, modificações anatômicas associadas à natação foram algumas das mais fundamentais para sua sobrevivência nesse “novo” ambiente.

Indohyus major, um animal extinto do Eoceno, terrestre e herbívoro, relacionado aos primeiros cetáceos. Arte de Nobu Tamura CC BY 3.0.

Nos cetáceos modernos, diversas características anatômicas e comportamentais permitem manobras na água e facilitam o deslocamento desses animais nos oceano, mares e rios. A evolução de algumas características pode ser rastreada nos fósseis. Porém, há uma falta considerável de informações sobre uma parte delas. Uma relação ainda pouco compreendida, por exemplo, é como se deu a divergência entre os golfinhos (odontocetos) e as baleias (misticetos).

Cynthiacetus (esquerda), um cetáceo completamente aquático, e Ambulocetus natans, uma forma semi-aquática de cetáceo do Eoceno. Foto de Jean-Pierre Dalbéra.
Cynthiacetus (esquerda), um cetáceo extinto completamente aquático do fim do Eoceno, e Ambulocetus natans, uma forma semi-aquática de cetáceo do início do Eoceno. Foto de Jean-Pierre Dalbéra, CC BY 2.0.

Abundantes esqueletos de cetáceos do Eoceno ilustram a transição da vida semiaquática para a completamente aquática, incluindo o desenvolvimento de um corpo alongado, cilíndrico e com extremidades afiladas (corpo fusiforme). Fósseis do Eoceno também demonstram o gradual processo de redução das patas traseiras e a migração das narinas em direção ao topo da cabeça. Entretanto, há uma raridade excepcional de esqueletos de cetáceos em rochas do Oligoceno, o período geológico seguinte ao Eoceno, e isso tem dificultado muito os esforços para compreender a evolução da força de natação dos cetáceos. No Eoceno, a natação ainda era controlada parcialmente pelas patas traseiras, mas com o tempo ela passa a ser exercida exclusivamente pela cauda robusta.

Em 2020 o pesquisador Robert W. Boessenecker, junto com outros colegas, publicaram a descrição de uma nova espécie de um raro golfinho fóssil de grande porte, encontrado em estratos do Oligoceno do sul da Califórnia (E.U.A). Materiais deste animal já eram conhecidos desde o século 19, mas eram muito fragmentados, o que impedia que pesquisadores conhecessem melhor a espécie. Boessenecker e colegas descobriram, na década de 1990, um espécime surpreendentemente bem preservado, ainda que parcial, que permitiu não só batizarem adequadamente o animal (Ankylorhiza tiedemani), como também estudarem a evolução de algumas características transicionais pouco conhecidas dos cetáceos.

Ankylorhiza tiedemani possuía diversas características compartilhadas entre as baleias e golfinhos, o que deu aos cientistas pistas preciosas sobre a evolução destes grupos. O tamanho e outras características do corpo animal indicam que ele era um predador ativo, de natação rápida, que dominou as águas do seu tempo, ocupando um nicho semelhante aos das grandes orcas atuais.

Esqueleto de Ankylorhiza tiedemani (BOESSENECKER et al., 2020).

O primeiro material descrito para essa espécie foi um crânio muito incompleto recuperado por volta de 1880, que, na época, foi atribuído ao gênero Squalodon. Com a descoberta do esqueleto mais completo, descrito por Boessenecker e colegas em 2020, novas análises foram feitas e descobriu-se que, na verdade, o material pertencia a um novo gênero, batizado de Ankylorhiza. A. tiedemani é considerado, até o momento, o maior Odontoceto do Oligoceno, com aproximadamente 4,8m de comprimento, tamanho não superado até o Mioceno, quando aparecem no registro fossilífero os primeiros grandes cachalotes.

A. tiedemani possui o crânio e mandíbula robustos, com uma dentição simplificada quando comparada com os basilossaurídeos, grupo de cetáceos mais antigos, que tinham os dentes cheios de cristas e pequenas pontas acessórias. As características dentárias de A. tiedemani indicavam que ele se tratava de um caçador com elevada força de mordida, semelhante às encontradas nos primeiros cachalotes. Seus dentes da parte frontal são um mistério, pois possuem um ângulo estranho de inserção no crânio. Eles apontam para frente, o que indica que podem ter sido utilizados para competição entre indivíduos do mesmo sexo, como fazem as baleias-bicudas atuais, ou empregados na captura e abate de presas.

Baleia-bicuda (Ziphius cavirostris). Nos machos adultos podem ver-se dois dentes na ponta do maxilar inferior que estão orientados para a frente. Foto de Eveha CC BY 3.0.

As nadadeiras peitorais de A. tiedemani possuem várias características derivadas, incluindo ossos longos (úmero, rádio e ulna) mais curtos quando comparados com os basilossaurídeos, porém, mais alongados quando comparados com os Odontocetos atuais. Suas nadadeiras e coluna vertebral também possuem características intermediárias, a maioria mais próxima de outros odontocetos basais, mas com algumas correlações com os misticetos. Isso coloca a espécie próxima à base da árvore evolutiva dos odontocetos. 

Relações filogenéticas de Ankylorhiza tiedemani (BOESSENECKER et al., 2020).

A mobilidade de A. tiedemani seria semelhante à das falsas-orcas e orcas atuais, indicando uma natação reforçada, mais poderosa do que a dos basilossaurídeos (formas mais basais) de porte semelhante. Isso sugere que a espécie tinha velocidade suficiente para perseguir outros cetáceos, sirênios, tartarugas, aves marinhas, tubarões e outros peixes contemporâneos, incluindo esses organismos em sua dieta potencial.

A. tiedemani, finalmente, trouxe um pouco de luz sobre como diversas adaptações convergentes estavam presentes em odontocetos e misticetos basais, principalmente no que diz respeito a sua mobilidade. Futuras descobertas de espécimes mais completos ou ainda de novas espécies provenientes dos mesmos estratos geológicos podem ser chave na compreensão da evolução de mais aspectos da locomoção dos cetáceos modernos. Essas descobertas também podem auxiliar na elucidação de mais detalhes sobre como se deu a divergência entre baleias e golfinhos, um evento evolutivo fascinante e ainda pouco compreendido, que se deu nos mares do final do Eoceno e do início do Oligoceno.

Referência:

BOESSENECKER, Robert W. et al. Convergent evolution of swimming adaptations in modern whales revealed by a large macrophagous dolphin from the Oligocene of South Carolina. Current Biology, v. 30, n. 16, p. 3267-3273. e2, 2020.

O mundo depois do Apocalipse

Como o planeta Terra recuperou-se após o famoso K-Pg (o grande evento de extinção dos dinossauros)? No Brasil, um importante depósito fossilífero nos dá uma ideia de como o mundo se parecia pouco depois dessa catástrofe. Conheça a Bacia de São José de Itaboraí! O único depósito brasileiro que registra a radiação dos mamíferos após a extinção dos dinossauros. 

A Bacia de Itaboraí no início do século XXI

Sem sombra de dúvida os dinossauros sempre foram a grande vedete da paleontologia. A fama deles chega por vezes a ofuscar outros personagens do nosso passado geológico. Todavia, não há momento mais importante para nós, mamíferos, do que o período logo após a extinção desses gigantes. São as criaturas dessa “época pós-apocalíptica”, que revolucionariam o mundo para que ele, um dia, viesse a se tornar o que é hoje.

O Paleoceno é a primeira época do Período Paleógeno, dentro da Era Cenozóica. Ele sucede diretamente o Cretáceo, o último período da Era Mesozóica. O Paleoceno está compreendido entre 66 e 55 milhões de anos atrás, aproximadamente, e é seguido pelo Eoceno, o Oligoceno, o Mioceno, o Plioceno, o Pleistoceno e o Holoceno (época atual), respectivamente (veja imagem abaixo).

Escala do tempo geológico enfatizando a Era Cenozóica

Com relação ao clima e a geografia, durante o Paleoceno o mundo era muito semelhante àquele cretácico. O clima era relativamente mais quente que o atual – tendo atingido um pico térmico no final do dessa época, leia mais sobre isso em “Terra Febril” – e os continentes continuavam a sua lenta marcha para a posição atual. Biologicamente, no entanto, o planeta estava radicalmente mudado. As criaturas nos mares não eram mais as mesmas e os ecossistemas terrestres também não. Os arcossauros, vertebrados que haviam dominado o planeta Terra até o final do Cretáceo, encontravam-se baqueados. Tinha início a grande revolução mamaliana.

Os espaços ecológicos deixados vagos pelos grandes dinossauros com a extinção do K-Pg seriam paulatinamente ocupados por outros grupos de organismos. Entre eles, os mamíferos, que começam a assumir algumas posições chaves nos ecossistemas a partir do Paleoceno. A origem evolutiva das grandes famílias mamalianas parece ter raiz no Cretáceo, mas é a partir do Paleoceno que ocorre uma grande diversificação de formas desse grande grupo.

Os depósitos do Paleoceno são relativamente raros no mundo e os mais estudados estão na América do Norte, como Crazy Montain field, por exemplo, nos Estados Unidos. A raridade desses depósitos é apenas o primeiro fator que torna a Bacia de São José de Itaboraí , no Brasil, tão importante. O segundo é, sem dúvida, a qualidade dos seus fósseis. O depósito brasileiro, que contêm fósseis com preservação excepcional, está localizado no estado do Rio de Janeiro, no município que lhe dá o nome: Itaboraí, mais especificamente, no distrito de São José. A bacia é pequena, uma das menores do Brasil, mas isso é inversamente proporcional a sua relevância científica. Ela é reconhecida internacionalmente e já recebeu a visita de diversos pesquisadores do mundo todo.

A surpreendente Bacia de São José do Itaboraí nos dá uma idéia de como teria sido o mundo pouco tempo depois da extinção que marcou o fim do Cretáceo. Se você nunca ouviu falar sobre este patrimônio geo-paleontológico brasileiro, aqui vai uma oportunidade de conhecê-lo:

Convidamos a Dra. Lilian P. Bergqvist e sua aluna Stella Barbara S. Prestes, da Universidade Federal do Rio de Janeiro (UFRJ), para nos contar parte da história desse importante depósito sedimentar, que tem revelado fragmentos importantes do início da história da fauna neotropical moderna.
Dra. Lilian P. Bergqvist atualmente é professora do Departamento de Geologia da UFRJ, ela estuda os mamíferos fósseis da Bacia de Itaboraí desde o início de sua carreira acadêmica e, melhor do que ninguém, pode nos introduzir à história e a importância deste lugar.

Stella Barbara S. Prestes é graduanda em Ciências Biológicas pela UFRJ e participa ativamente dos trabalhos realizados na região, além de atualmente desenvolver um projeto educacional e de divulgação em relação ao Parque Paleontológico de São José de Itaboraí.

 

A BACIA DE SÃO JOSÉ DE ITABORAÍ
 Por Stella Barbara S. Prestes e Lilian P. Bergqvist

A Bacia de São José de Itaboraí está localizada no estado do Rio de Janeiro. Trata-se de uma das menores bacias sedimentares brasileiras (cerca de 1.000 metros de comprimento por 500 m de largura), contendo o mais antigo registro continental Cenozóico do Brasil.

Localização da Bacia de Itaboraí

Possui registros de rochas que variam de cerca de 70-65 milhões de anos até depósitos recentes relacionados ao homem pré-histórico (8.100 anos). Esta bacia sedimentar é preenchida principalmente por deposição química de calcários em uma depressão associada aos fenômenos tectônicos que originaram a Serra do Mar. Também são encontrados depósitos detríticos. Alguns autores associam a origem do calcário à dissolução dos mármores do embasamento cristalino por ação de fenômenos de vulcanismo. O fato é que, em suas bordas, são encontradas lavas vulcânicas (rocha denominada ankaramito), cuja idade foi datada como de 52 milhões de anos. Esta lava “fritou” os sedimentos da base da bacia, carbonizando pedaços de vegetais, evidenciados pela presença de galhos e troncos fósseis.

 Desde 1928 a Bacia de Itaboraí vinha sendo explorada como mina de calcário pela Companhia Mauá de Cimento, o terreno foi doado ao município em 1984, quando a empresa encerrou suas atividades na região. O cimento produzido neste local foi utilizado para a construção do estádio Maracanã e da ponte Rio-Niterói. Ao encerrar atividades, a empresa deixou uma cava de 70 metros de profundidade que foi preenchida por água subterrânea e das chuvas, criando um lago artificial que atualmente abastece os moradores do bairro São José.

Bacia de Itaboraí em 1957

Cimento Mauá, produzido por meio do calcário da região de Itaboraí

Bacia de Itaboraí em 2010 – Fonte: Prefeitura de Itaboraí

Dentro das fendas que cortavam os calcários foram encontrados fósseis da época Paleoceno do período Paleogeno de Itaboraí, relacionados aos existentes na Patagônia e sem outros representantes nas Américas. Eles são responsáveis pela definição, reconhecida na coluna internacional de tempo geológico, como andar Itaboraiense.

Esta Bacia é ricamente fossilífera, tendo sido coletados milhares de fósseis de animais (gastrópodes, mamíferos, aves, répteis e anfíbios) e vegetais. Os gastrópodes e os mamíferos são os fósseis mais abundantes. Os primeiros são comuns no calcário argiloso cinzento que formava o assoalho da bacia, enquanto os mamíferos são predominantes nos sedimentos que preenchiam as fendas que cortavam verticalmente os calcários. Restos de preguiça gigante, mastodonte e tartaruga foram encontrados em pequeno depósito de cascalho ao sul da bacia.

Reconstituição artística de como a região da Bacia de Itaboraí seria durante o Paleoceno – por Wagner Bromerschenkel, 2005

Reconstituição de Protodidelphis, uma das espécies de mamíferos fósseis encontrados na Bacia de Itaboraí – Por Maurílio de Oliveira

Reconstituição esqueletal de Carodnia vierai, um dos mais ilustres mamíferos fósseis paleocênicos da Bacia de São José de Itaboraí, foto por Paul Jürgens. Este animal teria 2,20m de comprimento e chegaria a 400kg.

No ano de 1990, a prefeitura municipal de Itaboraí declarou a área antes explorada pela companhia de cimento como utilidade pública, e em 1995, finalmente foi criado o Parque Paleontológico de Itaboraí.

———————-

Bom, quanto ao Parque Paleontológico de Itaboraí, aí já é outra história sobre a qual também se tem muito para contar! Profa. Lilian e Stella já estão convidadas a voltar e escrever mais para os “Colecionadores de Ossos”.

Nos resta exaltar mais uma vez a importância dessa área sedimentar brasileira e lembrar que além do registro paleocênico,  a região do distrito de São José, em Itaboraí (RJ), também guarda a inestimável evidência da presença de megafauna pleistocênica no Rio de Janeiro e a ocorrência de artefatos arqueológicos. Estes últimos, de idades bem mais recentes…

Voltando um pouquinho para essa história de “mundo pós-apocalíptico”, o que Itaboraí nos mostra é que, mesmo pouco tempo depois da grande extinção que pôs fim à “Era dos Dinossauros”, o mundo já transbordava de vida. Os mamíferos se diversificavam nas ruínas de outros grandes grupos do passado, e avançavam em um planeta quente e úmido: uma nova era. O Paleoceno foi um período importante de recolonização e reconquista de espaço para os sinápsidos, que estavam no “banco de reservas” biológico desde o Permiano-Triássico. Mesmo que praticamente toda fauna paleocênica tenha sido extinta até o meio do Eoceno, este período de tempo foi estratégico, e funcionou como o gatilho para a franca expansão mamaliana e a sua soberania no que diz respeito a ocupação de nichos terrestres e aquáticos atuais. A recuperação foi  rápida.

A nossa lição para 2012 e toda essa história maluca de “fim do mundo” é: a vida sempre volta a florescer, mesmo depois de grandes catástrofes. Geralmente o que acontece é uma troca de personagens principais. Se ocorresse alguma grande catástrofe global agora, que levasse a extinção da humanidade, rapidamente algum outro grupo de organismos tomaria a frente, assim como os mamíferos fizeram logo após a queda dos dinossauros. Fica a dica do Ian Malcom (personagem criado por Michael Crichton em Jurassic Park): “Life always finds a way”.

Referências

Bergqvist, l.P.; Moreira, a.L. & Pinto, d.R. 2006. Bacia de São José de Itaboraí-75 anos de história e ciência. Rio de Janeiro, CPRM- MMe, p. 81.

Veja mais informações e detalhes sobre a Bacia de Itaboraí no SIGEP – clique AQUI – Bacia de São José do Itaboraí, berço dos mamíferos no Brasil

 

Terra Febril

O Máximo Térmico do Paleoceno-Eoceno (MTPE) e as suas lições para a atualidade – Conhecer o passado é a chave para revelar o futuro:

Há 56 milhões de anos, no final do período conhecido como Paleoceno, um grande aumento no nível de carbono atmosférico mudaria o rumo da vida no planeta para sempre. A Terra tornou-se tão quente, que não havia sequer sinal de gelo nos pólos. Florestas tropicais e pântanos se estendiam até as latitudes mais elevadas e o nível do mar era 70 metros mais alto do que é hoje, cobrindo extensas áreas continentais. As zonas climáticas modificaram-se de tal forma, que obrigaram animais e plantas a se deslocarem ou adaptarem-se as novas condições. Os grupos que não o fizeram, extinguiram-se ainda no início do período Eoceno.
Os cientistas conhecem esse evento como o Máximo Térmico do Paleoceno-Eoceno (MTPE): Num espaço de alguns milhares de anos – um instante no tempo geológico – as temperaturas globais subiram cerca de 5 graus Celsius. A causa? Uma massiva liberação de gases estufa na atmosfera terrestre. Semelhante às mudanças climáticas provocadas pelo homem na atualidade, o MTPE serve como modelo para compreender o que ocorrerá com a biosfera em um futuro próximo.  O conhecimento exato do que se passou poderia nos ajudar a planejar ações preventivas contra os efeitos catastróficos de erros seculares de emissões de dióxido de carbono pela queima dos combustíveis fósseis. O problema, contudo, é pior do que poderíamos imaginar: a intensa liberação de gases estufa do Paleoceno-Eoceno corresponderia a apenas 10% da proporção em que os gases estufa se acumulam hoje… as conseqüências podem ser terríveis.

Localizando-se temporalmente: Dentro da Era Cenozóica (na qual se deu o reinado dos mamíferos, após a extinção dos dinossauros não-avianos), do Período Paleógeno, a primeira época é o Paleocenoque se inicia a 65 milhões de anos atrás, seguida pelo Eoceno, há aproximadamente 56 milhões de anos.  O MTPE teria se dado na transição Paleoceno-Eoceno – verifique o lado inferior direito da tabela. **O termo “Terciário”, de acordo com a mais recente tabela oficial da GSA, é considerado somente informalmente** 

O MTPE durou mais de 150 mil anos, até que todo carbono “extra” fosse reabsorvido da atmosfera. Durante este tempo, grandes secas assolaram o planeta, enquanto vastas áreas foram castigadas por chuvas e inundações massivas. Apesar de um grande número de extinções, várias espécies prosperaram e mudaram o cenário global para sempre. As conseqüências evolucionárias desse evento podem ser vistas hoje e incluem o sucesso primata, que culminou posteriormente na evolução humana.
 
Atualmente os cientistas acreditam que o gatilho deste grande evento tenha sido a ruptura final das massas de terra que antes formavam o supercontinente Pangea – especificamente a separação da Europa e a Groenlândia para a formação do Atlântico Norte. Enormes volumes de rocha derretida foram cuspidos para a superfície terrestre e queimaram sedimentos ricos em carbono  –  talvez até carvão e petróleo – próximos a superfície. Os sedimentos queimados teriam emitido colossais quantidades de dióxido de carbono e metano. A julgar pelo volume das erupções, elas teriam sido responsáveis pelo acúmulo inicial de gases estufa, algo na ordem de centenas de pentagramas (105 gramas) de carbono, o suficiente para aumentar a temperatura global em alguns graus. Todavia, algo mais seria necessário para impulsionar o MTPE à sua temperatura máxima.
 
Erupções vulcânicas deram início ao primeiro pulso de aquecimento
Uma segunda fase de aquecimento intenso foi desencadeada pelo primeiro pulso de emissões. A agitação natural dos oceanos conduziu o calor da superfície para o fundo do mar, liberando uma enorme quantidade de hidratos de metano antes congelados e aprisionados no sedimento marinho (Leia mais sobre Clatratos de Metano AQUI). Conforme os hidratos descongelaram, o gás borbulhou até a superfície. Mais potente que o dióxido de carbono na retenção de calor, o metano induziu o pico mais extremo de aquecimento.
 
Liberação de hidratos de metano do fundo marinho
 
O primeiro pulso de aquecimento, portanto, disparou um sistema de retroalimentação positiva. A partir daí, o mundo já quente, só esquentaria ainda mais. Uma montanha-russa. O carbono aprisionado em outros reservatórios começou a ser liberado com o aquecimento progressivo do planeta e a crise se agravou.
 
A secagem, o cozimento e a queima de material vivo liberam gases estufa. Em alguns lugares, grandes secas teriam ocorrido, além de incêndios generalizados, o que liberou toneladas de CO2. Isso manteve a descarga intensa por um longo período. Além disso, o derretimento do permafrost contribuiu com a situação. Esse tipo de solo congelado aprisiona uma enorme quantidade de material em decomposição, que chega a ter milhares de anos. Ao descongelar, libera metano em profusão. O resultado é dramático.
 
Atualidade: Incêndios florestais na Europa e Estados Unidos
 
Atualidade: Enchentes na América do Sul
 
Atualidade: o derretimento do Permafrost no Alaska, EUA.
 
No início da crise, o oceano serve como um tampão. Ele absorve parte do carbono liberado. É um processo natural de regulação, porém, depois de um tempo, o acúmulo excessivo deste gás pode escoar para o oceano profundo e gerar um processo de acidificação bastante nocivo. O acúmulo de ácido carbônico é desastroso para a vida oceânica. Ao mesmo tempo em que o fundo oceânico esquenta e se acidifica, o teor de oxigênio dissolvido diminui bruscamente com o aumento da temperatura da água. Foraminíferos e outros organismos microscópicos do leito oceânico são exterminados. A cadeia da vida começa a se romper pela base. O registro fóssil do Paleoceno-Eoceno demonstra que entre 30-50% desses organismos (em número de espécies) se extinguiram nesse período. A acidificação dos oceanos dissolve também o carbonato de cálcio das conchas de invertebrados marinhos. Uma miríade de formas de vida foi levada a extinção.
Temperatura do oceano circum-polar ao longo do tempo. Atenção para o pico durante o MTPE ou PETM (sigla em inglês).
 
Uma espécie de Foraminifera que sofreu baixas durante o MTPE
 
Registro de isótopos de oxigênio e carbono de foraminíferos bentônicos de sítios no Atlântico Sul e Oeste do Pacífico para o MTPE – Zachos et al. (2010) modificado por Archer(2007).
O surto de carbono também afetou a vida na terra. Análises de isotopia em paleosolos e esmalte dentário de mamíferos indicam uma assinatura isotópica peculiar. O MTPE pode, então, ser rastreado em rochas e fósseis do mundo todo, tanto marinhas, quanto continentais.
 
Em 1990 uma dupla de cientistas norte-americanos identificou o registro progressivo de liberação de gases estufa do MTPE em um núcleo de sedimento extraído do fundo do mar perto da Antártida. Nos anos seguintes a essa descoberta, detalhes como ‘a quantidade exata de gás liberado’, ‘qual gás predominava na atmosfera em determinado período’ e ‘quanto tempo a liberação durou’ começaram a ser buscados. Os sedimentos oceânicos passaram a ser analisados camada por camada. Pelo fato de serem depositados lentamente, eles retêm minerais e fósseis que guardam a assinatura química exata da composição dos oceanos e da atmosfera circundante ao longo do tempo geológico. Isótopos de oxigênio em restos de esqueletos revelam a temperatura da água, por exemplo. Porém, muitos dos núcleos de sedimento marinho estavam temporalmente incompletos – algumas partes foram degradadas ao longo do tempo. O sedimento marinho geralmente é rico em carbonato de cálcio, porém durante o MTPE, a acidificação dos oceanos dissolveu a maioria do carbonato nos sedimentos exatamente nas camadas em que as condições mais evidentes dessa era deveriam estar representadas.
 
Testemunho oceânico demonstrando o limite Paleoceno-Eoceno e os sedimentos depositados durante o MTPE ou PETM (sigla em inglês).
Os cientistas não se deram por vencido. Um grupo multidisciplinar se uniu para estudar sedimentos argilosos de uma bacia marinha soerguida em uma região do ártico europeu. Depois de anos de trabalho, obtiveram resultados muito especiais. Com auxílio de modelagens computacionais somadas aos dados obtidos dos testemunhos, revelaram que a liberação de gases estufa do MTPE deve ter durado por volta de 20 mil anos, um período muito mais lento do que se imaginava. Comparando-se com a taxa atual de aumento desses gases na atmosfera, as concentrações vêm aumentando cerca de dez vezes mais rápido que durante o MTPE. As implicações dessa descoberta são dramáticas para a vida no planeta. A mudança climática provoca maior ou menor impacto nas formas de vida e ecossistemas dependendo da sua velocidade. A vida responde de maneira menos dramática a mudanças lentas, pois tem mais tempo para se adaptar.
 
Durante o Cretáceo, por exemplo, houve um efeito estufa semelhante ao MTPE, porém muito mais lento. O episódio durou milhões de anos e não ocorreram extinções tão notáveis. Já o MTPE é um exemplo de uma mudança moderada. Muitos organismos se extinguiram e outros ‘encolheram’ de tamanho, em especial os mamíferos. Os mamíferos do limite Paleoceno-Eoceno são menores que seus antecessores e descendentes. O mesmo é observado em insetos e vermes. Acredita-se que seja devido ao fato de que corpos menores dissipam o calor melhor do que os maiores. Outros animais sobreviveram porque migraram para os pólos. Todavia, alguns grupos foram muito favorecidos. Ungulados, tartarugas e algumas espécies de microorganismos aquáticos, por exemplo, expandiram seus territórios. Para os mamíferos, essa expansão abriu novas oportunidades de evolução e preenchimento de nicho:  A diversificação do período inclui a origem dos primatas.
 
Reconstituição da fauna e flora do Eoceno da Alemanha
 
Dispersão primata durante o Máximo Térmico do Paleoceno-Eoceno. O aproveitamento dos corredores florestais.
 
Reconstituição do cenário do Paleoceno Final colombiano. Enquanto muitos mamíferos encolheram, alguns répteis “aproveitaram as temperaturas mais altas” e foram selecionados para o aumento de tamanho (i.e. Titanoboa, a maior cobra constritora que já teria existido).
 
Quando se realiza a comparação com a mudança climática em curso, o resultado é assustador.  Estamos bombeando pentagramas de carbono na atmosfera todos os anos. A velocidade de acúmulo de gases estufa é exorbitante.
 
Liberação de gases estufa na atualidade
 
As projeções indicam que o crescimento populacional e econômico dos países em desenvolvimento levará a liberação de 25 pentagramas anuais de carbono para a atmosfera antes que as reservas de combustíveis fósseis comecem a ficar escassas. O que fazer?
A extração de combustíveis fósseis
 
O estudo do MTPE é um modelo. Quanto tempo os habitantes da Terra precisarão para se adaptar? Será possível se adaptar? É difícil prever o futuro, mas já temos algumas respostas. Há evidências de acidificação nas águas marinhas e a taxa de extinção de espécies está aumentando. O início do deslocamento das zonas climáticas já colocou plantas e animais em risco, com vetores de doenças e espécies invasoras conquistando novos territórios. Cidades, estradas, ferrovias e plantações isolam plantas e animais, bloqueando caminhos migratórios. Animais de grande porte estão condenados pela perda de habitat e sua perspectiva de sobrevivência diminui. Geleiras estão derretendo e elevando o nível do mar. Recifes estão sob estresse e sujeitos ao desaparecimento. Os padrões de precipitação estão alterados e a ocorrência de secas e inundações é muito mais comum. As linhas costeiras se alteram e as migrações humanas já começaram.
 
No fim, o sistema acabará por reabsorver o dióxido de carbono para rochas. Isso pode levar centenas de milhares de anos, mas é certo. Sob esta perspectiva, o planeta não está em risco. Nós e o mundo como conhecemos estamos. Se continuarmos no caminho atual, sem dúvida vamos acabar experimentando algo que já aconteceu antes, no Eoceno. Já sabemos como vai ser. Será numa escala maior. O MTPE fornece um contexto para nossas escolhas. Seja qual for o destino da humanidade, o padrão da vida na Terra será radicalmente diferente do que poderia ter sido. Tudo depende de que atitudes vamos tomar. Qual é a sua?
 
Francesca A. McInerney & Scott L. Wing, 2011. The Paleocene-Eocene thermal maximum: a perturbation of the carbon cycle, climate, and biosphere with implications for the future. Annual Review of Earth and Planetary Sciences, 39: 489-516.
 
Ying Cui et al., in press. Slow release of fossil carbon during the Paleocene-Eocene thermal maximum. Nature Geoscience.
 
Lee R. Kump, 2011. O Último grande aquecimento global. Scientific American Brasil, agosto.
 
Robert Kunzig, 2011. Ponto de Ebulição. National Geographic Brasil, edição especial, outubro.
 
Archer, D., 2007. Methane hydrate stability and anthropogenic climate change. biogeosciences, 4, 521-544.