Arquivo da tag: Evolução

O que os olhos nas asas de um inseto fóssil podem nos dizer?

Por Matheus P. dos Santos da Rocha & Cledston Matheus A. Macário

Quando falamos em Paleontologia, muitos a resumem como uma ciência meramente de descrição de aspectos morfológicos, como o simples trabalho de encontrar um osso, descreve-lo e, por sorte, dar nome a uma nova espécie. Porém, a Paleontologia vai muito além disso. Por meio dela, podemos especular sobre diversos aspectos da vida no passado. Até mesmo alguns cujas evidências, muitas vezes, são escassas no registro fossilífero. Um exemplo disso, seria encontrar uma resposta para a pergunta: como eram os olhos dos dinossauros não-avianos?

Como toda ciência, a paleontologia trabalha, inicialmente, com hipóteses, e essas, podem nos levar para linhas de raciocínio beeeem inusitadas, uma hora podemos estar debatendo sobre buracos negros e a extinção dos dinossauros e isso, mais à frente, pode terminar numa deliciosa (ou não) receita de macarrão com biscoito. A história de hoje começa com uma linhas de raciocínio inusitadas: ela parte de um grupo de insetos fósseis, os Kalligrammatidae…

O que são os Kalligrammatidae?

Chrysoperla carnea – Foto de Julia Stoess

Você já viu em algum jardim por aí pequenas bolinhas sustentadas por um fio bem fino, presas nas folhas das plantas? Se sim, com quase toda certeza você viu ovos de bicho-lixeiro. Pertencentes a uma ordem de insetos chamada Neuroptera, esses inofensivos (para os humanos) insetos são predadores vorazes de ovos de aranhas e outros invertebrados. Essa ordem inclui desde a formiga-leão, até coisas estranhas como os mantispídeos (que parecem uma mistura bizarra entre um marimbondo e um louva-a-deus).

Apesar de não serem um grupo muito comum nos dias de hoje, a representação fóssil deles é abundante. No Brasil, dados de um trabalho de revisão de 2018, dão conta que das 379 espécies de insetos descritos para a Formação Crato, da Bacia do Araripe, 76 são neurópteros, ou seja, 20% da diversidade de insetos da formação está em uma única ordem, que atualmente representa 0,6% das espécies de insetos viventes. 

No meio de toda essa diversidade, os fósseis mais enigmáticos de Neuroptera são os da família Kalligrammatidae. O primeiro de Kalligrammatidae foi descrito por Johannes Walther, em 1904, com base num material quase completo, encontrado no calcário jurássico de Solnhofen (Alemanha) – aquele mesmo do Archaeopteryx. Desde então, diversas espécies de Kalligrammatidae foram encontradas em várias localidades, com destaque para os achados na China e nos âmbares birmaneses, ao norte de Mianmar. 

Diversidade dos kalligrammatidae. a. & b. da Formação Crato (Brasil); c., d., e., f., g., h. & p. das Formações Jiulongshan ou Haifanggou (China); i., j., k., l., m. & n. da Formação Yixian (China); o. da Formação Karabastau (Cazaquistão).” – Imagem original por Julian Kiely (Editado).

Em 1997, o lendário paleontólogo Rafael G. Martins-Neto, descreveu, pela primeira vez, um Kalligrammatidae na Formação Crato, batizado de Makarkinia adamsi. De lá pra cá, outros trabalhos confirmaram a presença dessa família no Nordeste Brasileiro e, inclusive, descreveram novas espécies, sendo este, até hoje, o único lugar fora da Europa e Ásia a ter esses registros.

É uma sorte que esses animais ocorram em vários afloramentos do tipo lagerstätten (sítios com preservação excepcional) pelo mundo afora. A boa preservação dos fósseis permitiu notar rapidamente a semelhança dos kalligrammatídeos fósseis com as atuais borboletas e mariposas. Essa comparação não fica só por conta do formato, padrões de coloração e desenhos das asas, mas alguns espécimes bem preservados, principalmente em âmbar, mostram também a presença de uma “boca” modificada em um fino e comprido tubo chamado de probóscide, característica marcante das mariposas e borboletas (ambas pertencentes à ordem Lepidoptera). Mas isso aconteceu nos kalligrammatídeos num momento do tempo geológico em que as borboletas não existiam e as mariposas não eram tão abundantes e diversificadas como são hoje.

Fora do Brasil, alguns Kalligrammatidae chegam a ser apelidados de “giant lacewings” (crisopídeos gigantes) e isso chegou ao extremo em algumas espécies fósseis. Comparativamente, algumas espécies fósseis são enormes em relação aos seus irmãos ainda viventes. Estima-se que as espécies encontradas no Araripe, por exemplo, alcançavam entre 24 a 32 centímetros de envergadura! 

A história dos “olhos” nas asas

Insetos grandes e chamativos podem virar comida facilmente, por isso, precisam ter alguma forma de se proteger da predação. Os kalligrammatídeos que viveram entre o Eojurássico ao Neocretáceo estavam dividindo espaço com lagartos, dinossauros avianos e não-avianos, pterossauros, entre outros predadores . Logo, teria que haver alguma forma deles não sucumbirem a seus colegas de habitat!

As mariposas e borboletas de hoje em dia têm algumas estratégias para evitar a predação. Desde projeções nas asas para desviar a atenção do predador, como as mariposas do gênero Actias, até mimetizar (imitar) folhas secas, tal qual Zaretis itys faz. Outra forma é ter “olhos”, ou melhor, ocelos em suas asas. Os ocelos são desenhos circulares que aparecem em diversos animais, especialmente nos lepidópteros. Esses círculos podem aparecer com 2 estratégias diferentes de uso:

Mycalesis patnia – Foto por L. Shyamal
  • A primeira é ter eles próximos às margens da asa, fazendo com que a atenção de um provável predador seja focada na ponta da asa e não no centro do corpo do organismo.
  • A outra é simplesmente aterrorizar! As mariposas da família Saturniidae e as borboletas-olho-de-coruja do gênero Caligo, por exemplo, fazem isso muito bem. Elas têm ocelos enormes no centro das asas, que imitam – algumas vezes de forma assustadora – os olhos de uma coruja, afastando assim qualquer predador que ouse atacá-las.
Caligo beltrao – Foto por Quartl

E é nesse ponto que queríamos chegar. Justamente essa segunda estratégia é atribuída a várias espécies fósseis de kalligramatídeos. Desde o primeiro espécime descrito, os ocelos gigantes estão presentes nas asas, e há trabalhos que descrevem e comparam os diversos formatos encontrados.

Makarkinia irmae – Imagem de Machado et al. (2021).

O que isso tem a ver com dinossauros?

Agora, chegou a hora que, ou vocês sairão desse blog nos chamando de loucos, ou terão o famoso “Mind Blow”. Vamos ao ponto principal: você já parou para pensar sobre o formato dos olhos dos dinossauros não-avianos? Essa é uma discussão complicada, pois o número de olhos de dinossauro preservados no registro fossilífero é: zero! Mas é uma curiosidade legítima querer saber essa informação, tanto que pode ser encontrado por aí, em fóruns pela internet, pessoas debatendo sobre essa questão.

Como esse tipo de material fóssil para dinossauros é inexistente, parte-se para a comparação com animais recentes, tanto seus parentes mais próximos ainda vivos, quanto possíveis análogos ecológicos. Mas existe ainda outra linha de raciocínio para se debater: não olhar para os dinossauros em si, mas para seus colegas de habitat e, no nosso caso especifico, os kalligramatídeos da Formação Crato.

A reação dos leitores daqui a alguns instantes, pelo menos, na expectativa dos autores…

Como já foi mencionado anteriormente, os “Giant Lacewings” poderiam ter se utilizado da segunda estratégia de uso dos ocelos: para assustar prováveis predadores, imitando os olhos de animais com os quais conviveram. Aí está o “pulo do gato”. Para um predador se assustar com os olhos desenhados nas asas das borboletas-olho-de-coruja é preciso que tenha um animal no mesmo habitat, que vá servir de gatilho (o “modelo” dos ocelos de Caligo, uma coruja, por exemplo: um predador assustador, que assuste o predador da Caligo). Mas há 120 milhões de anos não existiam corujas no Ceará, então…quem eram os modelos dos Kalligrammatidae do Crato?

Pantano do Crato – Arte de Olmagon.

Existem dois principais suspeitos: pterossauros e dinossauros, mas vamos por partes. Pterossauros na Bacia do Araripe, segundo Mendes et al. (2020), eram majoritariamente piscívoros (comedores de peixes), com algumas exceções como Lacusovagus magnificens, que provavelmente vagava pelos pântanos da região para caçar anfíbios e outras pequenas presas. O trabalho de Mendes, inclusive, coloca os pterossauros como animais no topo da teia trófica da região na época. 

“Teia trófica da fauna Cretácea do Araripe” – Mendel et al. (2020)

Mas se os pterossauros cearenses comiam peixes, majoritariamente, os possíveis predadores dos kalligramatídeos (outros insetos, anfíbios, pássaros, pequenos dinossauros, etc.) não estavam no cardápio deles, a priori. Por esse fator, seria compreensível a exclusão desses animais como possíveis modelos para os ocelos.

Escultura do Santanaraptor placidus do Museu Plácido Cidade Nuvens, de Santana do Cariri, CE.

Já os dinossauros, por outro lado, são os candidatos perfeitos para esse quebra-cabeças ecológico. Animais como Aratasaurus museunacionali, Mirischia asymetrica (que, assim como “Ubirajara“, foi traficado para Alemanha #MirischiaBelongtoBR) e Santanaraptor placidus, ocupavam o nicho de predadores de médio a pequeno porte da região do Cariri. Como apontado por Julian Kiely, em seu artigo para o blog “Paleoflora,  a forma da asa dianteira na maioria das espécies de kalligramatídeos, e o grande tamanho dessas asas,  correspondiam, aproximadamente, ao tamanho e a forma das cabeças de muitos pequenos dinossauros predadores que conviviam com esses insetos (como as espécies mencionadas acima). Desta forma, poderíamos inferir que as pupilas dos dinossauros de médio a pequeno porte do Jurássico Superior e do Cretáceo Inferior, como os maniraptores (pelo menos), deveriam ser arredondadas, já que os ocelos de todos os kalligramatídeos conhecidos até então, possuem esse mesmo formato. O que se soma à evidência indireta parelela, que considera como base comparativa o formato da pupila dos dinossauros viventes, que são as aves.

Mimetismo de Kalligrammatidae a um Maniraptora  – Imagem de Julian Kiely, 2022.

O poder da especulação

Alguns podem estar se perguntando: qual a importância de especular aspectos biológicos e evolutivos tão difíceis de se comprovar por meio do registro fossilífero? Muito da ciência começa com especulação. As descobertas científicas, em geral, nascem de hipótese de alguém. Um exemplo clássico foi a detecção das ondas gravitacionais em 2015, que haviam sido previstas por Albert Einstein em 1916.

Focando na área da Paleontologia, um exemplo muito interessante, e, à época, considerado extremamente especulativo, foi o da existência de um radiodonte (grupo que inclui o Anomalocaris) filtrador, batizado de “Ceticaris”. Nada mais que uma especulação concebida pelo artista John Meszaros, publicada no livro All Your Yesterdays, de 2013. Porém, para surpresa de muitos, em 2014 foi realmente descrito um radiodonte cambriano com hábito filtrador, Tamisiocaris borealis.

Ceticaris” – Arte de John Meszaros

Em homenagem à previsão de Meszaros, Tamisiocaris foi incluído em um novo clado denominado Cetiocaridae. Infelizmente, o nome deste clado não é mais considerado válido, de acordo com o Código Internacional de Nomenclatura Zoológica, por não existir nenhum gênero real chamado “Cetiocaris“, então foi formalmente substituído pelo nome Tamisiocarididae.

Reconstrução de Tamisiocaris – Arte de Rob Nicholls

Finalmentes

Com base em todos os argumentos supracitados (Alô, professores de redação!), podemos inferir que a hipótese levantada pode levar a especulações e trabalhos futuros que respondam às nossas dúvidas (isso claro, se esse post, neste humilde blog, chegar nas pessoas certas, e para isso seu compartilhamento é fundamental). Gostaríamos de agradecer a Julian Kiely do excelente blog “Paleoflora” pelo artigo que inspirou este, e que isso inspire a todos os nossos leitores a imaginar e especular dentro da ciência, lançar ideias, compartilhá-las, pois só assim a ciência cresce e prospera, com união e partilha. 

Referências:

Martins-Neto, R. G. 1997. Neurópteros (Insecta, Planipennia) da Formação Santana (Cretáceo IInferior) Bacia do Araripe, Nordeste do Brasil. X – descrição de novos taxa (Chrysopidae, Babinskaiidae, Myrmeleontidae, Ascalaphidae e Psychopsidae). Revista Universidade Guarulhos , São Paulo, v. 2, n.4,. p. 68-83.

Frazer, J. 2016. Butterflies in the Time of Dinosaurs, with Nary a Flower in Sight. Scientific American.

Labandeira, C. et al. 2016. The evolutionary convergence of mid-Mesozoic lacewings and Cenozoic butterflies. Proceedings of the Royal Society B: Biological Sciences. 283. 

Vinther, J., Stein, M., Longrich, N. et al. 2014. A suspension-feeding anomalocarid from the Early Cambrian. Nature 507, 496–499.

Moura-Júnior, D.A. et al. 2018. The Brazilian Fossil Insects: current scenario. Anuário do Instituto de Geociência – Ufrj, v. 41, n. 1, p. 142-166. Instituto de Geociências – UFRJ.

Mendes, M. et al. 2020. Ecosystem Structure and Trophic Network in the Late Early Cretaceous Crato Biome. Brazilian Paleofloras. Springer, Cham. 

Machado, R.J.P. et al.2021. A new giant species of the remarkable extinct family Kalligrammatidae (Insecta: Neuroptera) from the Lower Cretaceous Crato Formation of Brazil. Cretaceous Research. Volume 120.

Kiely, J. 2022. Restoring the Kalligrammatids: The not-butterflies of the mesozoic. Paleoflora.

Sacos aéreos evoluíram múltiplas vezes!?

A espécie humana está na Terra há apenas 300 mil anos. Somos jovens nesse pequena planeta azul e dinâmico. Os dinossauros, por sua vez, estão por aqui há pelo menos 233 milhões de anos, desde o Período Triássico e, não custa lembrar, permanecem vivos até hoje na forma das aves. Esse grupo de animais tolerou e se adaptou a uma grande variedade de climas e mudanças dramáticas na configuração dos continentes ao longo do tempo. Por isso são um modelo excelente para estudarmos evolução biológica. Eles têm muito a nos ensinar sobre os segredos da sobrevivência.

Durante o auge do reinado dos dinossauros, na Era Mesozoica, o clima do nosso planeta era muito mais quente do que hoje. Uma das características que favoreceu este grupo de animais foi a evolução de sacos aéreos, um tipo de upgrade do sistema respiratório. Os sacos aéreos são estruturas conectadas aos pulmões, que se espalham por toda cavidade toráxica e abdominal desses animais, penetrando inclusive os ossos. Estão presentes nas aves atuais e não apenas tornam sua respiração mais eficiente, mas também ajudam a deixar os seus esqueletos mais leves, o que favorece, por exemplo, o voo. Apesar de muito característicos das aves, os sacos aéreos não são uma exclusividade dos delas. Eles também estavam presentes nos dinossauros não-avianos (todos os outros dinossauros, que não as aves) muito antes da evolução do voo.

Esquema mostrando os sacos aéreos em aves atuais. Fonte: https://pt.wikipedia.org/wiki/Sacos_a%C3%A9reos

Imagina-se que os sacos aéreos originalmente favoreceram os dinossauros por funcionarem como um sistema eficiente de captação de oxigênio e também por serem um sistema de refrigeração natural. Se você, hoje, fica ofegante fazendo exercícios no verão quente, saiba que os dinossauros eram (e são!) muito mais eficientes que você em captar oxigênio e se refrigerar. Não é à toa que eles saíram na frente na corrida evolutiva (enquanto nosso grupo, o dos mamíferos, ficou por quase 150 milhões de anos no banquinho de reservas evolutivo).

Já é bem sabido que dinossauros do Período Cretáceo, como o T. rex e alguns pescoçudos, como o Ibirania, tinham um extenso sistema de sacos aéreos pelo corpo. Inclusive, bem parecido com os das aves atuais. Só que a origem e evolução deste sistema tem sido um enigma por várias décadas. Será que os primeiros dinossauros, lá do período Triássico, já tinham sacos aéreos?

O que sabíamos era que a pneumaticidade do esqueleto relacionada a um sistema de sacos aéreos estava presente tanto em dinossauros derivados, ou seja, aqueles que viveram durante o Período Cretáceo, quanto em pterossauros, répteis voadores parentes próximos dos dinossauros. Ambos os grupos seguiram um caminho evolutivo independente a partir do Período Triássico. Uma explicação para a presença de sacos aéreos tanto em dinossauros quanto em pterossauros seria que a origem dessas estruturas se deu bem antes deles terem seguido seu caminho evolutivo independente, isto é, ainda em seus ancestrais.

Porém, a questão permaneceu em aberto. Faltavam estudos avaliando a presença dessas estruturas tanto em dinossauros mais antigos quanto em ancestrais dos pterossauros e dinossauros…

Para nossa sorte, o Brasil têm os fósseis dos mais antigos dinossauros e é aí que entra o estudo publicado agora em Dezembro de 2022 pelo nosso grupo de pesquisa, na revista Scientific Reports:

Para tentar solucionar este enigma, um grupo de pesquisadores brasileiros da Unicamp, UFRN, UFSCar e UFSM e um colaborador da Western University of Health Sciences, dos E.U.A., analisaram três fósseis de alguns dos mais antigos dinossauros do mundo, Buriolestes, Pampadromaeus e Gnathovorax, do Período Triássico do Rio Grande do Sul. Estes são alguns dos dinossauros mais antigos conhecidos até o momento, com 233 milhões de anos de idade!

Reconstrução do dinossauro herrerassaurídeo Gnathovorax. Arte por Márcio L. Castro.

Foi possível notar que os ossos da coluna vertebral (vértebras) desses animais apresentavam pequenos orifícios nas laterais. Sabemos que os sacos aéreos ingressam no esqueleto através de estruturas semelhantes a isso. Porém, os orifícios encontrados eram muito pequenos, o que talvez indicasse uma outra função.

Realizamos, então, tomografias de alta resolução (micro-tomografias) para investigar a estrutura interna dos fósseis. A análise revelou uma arquitetura bastante densa nas vértebras desses animais, bem diferente do que conhecemos em esqueletos permeados por sacos aéreos de dinossauros que viveram no Cretáceo ou mesmo as Aves. Porém, Buriolestes e Pampadromaeus mostraram uma vascularidade mais complexa no interior das vértebras, do que Gnathovorax. Uma vascularidade mais desenvolvida pode ter servido de alicerce para o surgimento das estruturas pneumáticas conhecidas como câmaras e camelas, típicas da invasão das vértebras por sacos aéreos.

Reconstrução do dinossauro Pampadromaeus. Arte por Márcio L. Castro.

A ausência de pneumaticidade no esqueleto pós-craniano desses dinossauros mais antigos contradiz a hipótese de que os sacos aéreos invasivos presentes em dinossauros e pterossauros são homólogos, ou seja, de que teriam surgido no ancestral comum desses animais. Isso indica que a pneumaticidade óssea associada à sacos aéreos evoluiu pelo menos três vezes independentemente em Avemetatarsalia, grupo que inclui dinossauros, pterossauros e seus parentes. Ou seja, evoluiu de forma independente em pterossauros, dinossauros terópodes (grupo dos dinossauros carnívoros) e sauropodomorfos (grupo dos dinossauros pescoçudos).

Uma árvore simplificada dos dinossauros e seus parentes mostrando a evolução independente dos sacos aéreos em pterossauros, dinossauros terópodes e sauropodomorfos.

Essa descoberta muda a forma como compreendíamos os dinossauros e seus parentes. Passo a passo estamos entendendo melhor a sua evolução e o segredo do seu sucesso. É possível que algum fator ambiental tenha sido o gatilho para a evolução desse sistema sacos aéreos em diferentes grupos de avemetatarsalianos, mas isso são cenas para os próximos capítulos!

Gostaríamos de agradecer as agências de fomento que tornaram possível esta pesquisa: o CNPq, a FAPESP e a FAPERGS.

Acesse o artigo completo: Aureliano et al. 2022. The absence of an invasive air sac system in the earliest dinosaurs suggests multiple origins of vertebral pneumaticity. Scientific Reports. https://www.nature.com/articles/s41598-022-25067-8

E assista o vídeo de divulgação: https://youtu.be/8XenPxROthY

Cetáceos e seus “modos à mesa”: um guia de como filtrar sua comida

Nas últimas postagens você teve a oportunidade de conhecer alguns grandes cetáceos fósseis predadores, como Basilosaurus isis e Ankylorhiza tiedemani. Mas não só de caçadas sanguinolentas vivem esses animais. Bom, isso se você não for um cardume de lulas, peixes ou crustáceos...

Na postagem de hoje, vamos contar sobre como as baleias foram por um caminho um pouco diferente e se tornaram alguns dos maiores seres viventes do planeta, alimentando-se por filtração. Caso você seja parte do cardápio, é bom por sebo nas canelas, ou melhor, nas nadadeiras, porque a fome aqui é gigantesca.

Um balaio de baleia

Antes de qualquer coisa, é importante entender quem são as baleias filtradoras:

Em inglês, o termo whale (baleia) pode ser usado popularmente para se referir a qualquer espécie de cetáceo, seja este pequeno ou grande, com dentes ou não. Porém, também existe uma palavra para se referir especificamente às baleias filtradoras : baleen (algo como “barbas” ou “barbatanas”, em português).

Baleen” refere-se particularmente aos Mysticeti ou “misticetos“, no bom português. Misticetos são os cetáceos dos grupos Balaenopteridae, Balaenidae, Eschrichtiidae, Neobalaeninae e alguns outros grupos fósseis. Estes grupos possuem barbatanas (ou barbas) no lugar dos dentes, que servem para filtração, e é por isso, que esses cetáceos são chamados de “baleias filtradoras” ou “baleias de barbatana” aqui no Brasil.

Também há nomes populares específicos para diferenciar certos grupos. Rorqual, por exemplo, refere-se somente às baleias da família Balaenopteridae, que incluem baleias-azuis, baleias-fin, baleias-sei, baleias-de-bryde, baleias-de-rice, baleias-minke e baleias-jubarte. Baleias verdadeiras, por sua vez, é o nome usado para denominar as Balaenidae, representas pelas baleias-francas-austrais, baleias-francas-do-atlântico-norte, baleias-francas-do-pacífico, e as baleias-da-groenlândia.

As outras duas famílias, Eschrichtiidae e Neobalaeninae, não ocorrem no Brasil, e normalmente são chamadas pelos nomes das espécies que as representam: baleia-cinzenta (Eschrichtiidae) e a rara baleia-franca-pigméia (Neobalaeninae).

Algumas espécies de baleias filtradoras (CASTRO & HUBER, 2012).

Modos à mesa 

Cada grupo de baleia filtradora possui características anatômicas diferentes que refletem modos únicos de filtrar a água para se alimentar. Porém, pelo menos uma coisa é comum entre elas: as barbatanas, estruturas compridas e enfileiradas, feitas de queratina (mesmo material que forma nossos cabelos e unhas), presentes na boca desses animais. Tais barbatanas acabaram por substituir os dentes dos misticetos ao longo de sua evolução.

File:Humpback whale baleen.jpg
Barbatanas. Imagem de Randall Wade (Rand) Grant, sob licença CC BY 2.0.

As barbatanas funcionam como uma escumadeira ou peneira, que permite que a água abocanhada durante a alimentação seja expulsa da boca, com a ajuda da língua, e que o alimento fique preso enquanto a água sai.

As rorquais possuem pregas na região ventral, que se expandem como o papo de um pelicano, permitindo com que elas possam abocanhar (engolfar) grandes quantidades de água com cardumes inteiros de pequenos peixes ou krill (um tipo de camarãozinho). Já as baleias-verdadeiras, são mais corpulentas, não possuem pregas ventrais e a sua boca é em forma de arco. Elas basicamente se alimentam filtrando a água enquanto nadam com a boca aberta.

As barbatanas das baleias-verdadeiras podem ter entre 2 metros de altura, até 5,2 metros de altura!

As baleias-cinzentas, por sua vez, abocanham a areia do fundo marinho filtrando-a em busca de crustáceos enterrados. Elas possuem sulcos na garganta em vez de pregas ventrais. As baleias-franca-pigméia, por fim, possuem uma mistura de características: boca em forma de arco como a das baleias verdadeiras, sulcos ventrais na garganta como as baleias-cinzentas e estilo de alimentação como as rorquais.

Diferenças entre as formas de filtração das rorquais (baleia-azul) e das baleias verdadeiras (baleia-franca). A água entra na boca e depois é expulsa com a ajuda da língua ao pressionar o céu da boca, fazendo a água passar pelas barbatanas (CASTRO & HUBER, 2012).

Mas sempre foi assim? Como será que as barbatanas surgiram? As formas de alimentação sempre foram as mesmas desde o começo da evolução dos misticetos? Como as espécies transicionais se alimentavam? Essas são perguntas que o registro fossilífero pode ajudar a responder…

Comendo com hashi, os “palitinhos japoneses

Os basilossaurídeos foram os primeiros cetáceos totalmente aquáticos. Eles eram grandes caçadores, inclusive de outros cetáceos, e tinham a boca cheia de dentes diferentões, como já citamos AQUI. A pergunta inevitável é: como essas “baleias primitivas” foram de caçadoras dentadas para as banguelas filtradoras que temos na atualidade? Bom, alguns achados fósseis das últimas décadas possibilitaram entender parte desse processo: 

Em 2016, Felix G. Marx junto com outros colegas, analisaram estranhas ranhuras encontradas em dentes fósseis de um grupo de baleias “primitivas” chamadas de Aetiocetidae, comuns no Oligoceno.

Crânio de aetiocetídeo (MARX et al., 2016).

Eles analisaram um fóssil específico, encontrado em rochas da região de Washington, EUA. O espécime, datado do Oligoceno Superior demonstrou afinidade aos misticetos, mas possuía um padrão de desgaste nos dentes muito diferente, não compatível com a presença de barbatanas. Felix e colegas, depois de muitas análises, associaram os desgastes horizontais nos dentes a uma alimentação por sucção, sugerindo que as barbatanas dos misticetos teriam surgido mais tarde, próximo à origem das baleias filtradoras modernas. O que isso significa? Que antes de filtrar, os misticetos provavelmente teriam se alimentado sugando o alimento, como se faz quando comemos macarrão com hashi!

Figura 5. Padrões de desgaste em dentes, sugerindo alimentação por sucção em um aetiocetídeo (MARX et al., 2016).

As ranhuras horizontais observadas nos dentes foram comparadas com outros animais que também se alimentam por sucção na atualidade, como belugas, algumas baleias-bicudas, morsas e certas espécies de focas. Pelo padrão de desgaste, a língua deveria funcionar como um pistão, fazendo pressão para que a água e a(s) presa(s) fossem sugados rapidamente para dentro da boca, o que deveria causar estes desgastes.

Etapas de sucção mostrando a língua de um Aetiocetidae funcionando como um pistão. Ilustração por David Hocking.

Também foram observadas marcas em alguns dentes, relacionadas com a expulsão da água e sedimentos que eventualmente eram sugados junto com o alimento. Os Aetiocetidae deveriam ficar com a boca meio aberta enquanto expulsavam tudo aquilo que não era alimento. Essas marcas são semelhantes às encontradas em certas espécies de mamíferos marinhos citados anteriormente, que também se alimentam por sucção.

Mas e agora? Onde as barbatanas aparecem nessa história, se os primeiros misticetos ainda tinham dentes e sugavam a comida, ao invés de morder tudo que passava pela frente? Mais uma vez, o registro fossilífero pode nos ajudar a entender essa história, mas agora vamos contar com a ajuda de análises em animais atuais para entender outra parte dessa saga evolutiva única.

Comendo com garfo e colher

Alguns autores sustentam que as barbatanas teriam aparecido em alguns misticetos extintos que ainda possuíam dentes. Eles descrevem que essa teria sido uma “fase de transição” evolutiva, em que esses cetáceos teriam exibido uma alimentação mista: de predadores ativo por sucção, que também seriam capazes de realizar filtragem. Achados fósseis do Oligoceno Superior, publicados em 2008, por Thomas A. Deméré e colegas, permitiram o reconhecimento de marcas no céu da boca de espécies fósseis de Aetiocetidae, que indicariam uma alimentação por filtração.

Aetiocetus weltoni, um Aetiocetidae mostrando a hipótese de ocorrência simultânea de dentes e barbatanas (Ilustração de Carl Buell) (DEMÉRÉ et al., 2008).

O material descrito por Thomas pertence a uma espécie denominada Aetiocetus weltoni. Nos fósseis foram encontradas ranhuras de inervação no palato (céu da boca) semelhantes àquelas observadas nas baleias filtradoras atuais. As inervações saem da região dos alvéolos dentários (local onde se encaixam os dentes) exatamente como nos misticetos atuais. Segundo os autores, isso seria uma evidência de que a espécie fóssil teria tido barbatanas.

Palato de baleia atual sem dentes, mostrando os sulcos de inervações (a-b) e palato de Aetiocetus weltoni mostrando os sulcos de inervações junto com a dentição (MARX et al., 2016).

Inicialmente achava-se que as barbatanas poderiam ter surgido a partir de estruturas rígidas no céu da boca dos misticetos basais, chamadas de “cristas córneas palatinas”, também presentes nos artiodáctilos (cabras, bois, camelos, hipopótamos, etc.), grupo no qual os cetáceos são aparentados. Porém, as inervações encontradas nos fósseis observados por Thomas e colegas reforçaria outra hipótese.

Thomas e colegas observaram fetos de baleias filtradoras atuais e notaram que, apesar de “banguelas” quando adultas, a sua sequência de dentes se desenvolve em sua fase fetal. O seu crescimento é que é interrompido pela ação de alguns genes. Quando tais genes se ativam, os dentes são reabsorvidos pelo organismo, mantendo somente as inervações no palato geradas durante o seu crescimento inicial.

Vista lateral de um feto baleia-fin (Balaenoptera physalus) com corte mostrando botões de dente na mandíbula superior (MARX et al., 2016).

Durante a reabsorção dentária, queratina é secretada e é isso que forma as placas de barbatana no lugar dos dentes reabsorvidos. Essas placas crescem constantemente enquanto o filhote se desenvolve e, ao longo da vida, são desgastadas e desfiadas, ficando com a aparência que conhecemos.

A ordem dos talheres

Alguns autores, todavia, alertam: assim como a origem das penas em dinossauros não-avianos não marca a origem do vôo, o aparecimento dos canais de inervação no palaro dos misticetos não necessariamente indicaria a presença de barbatanas. Em vez disso, esses sulcos inervados em alguns aetiocetídeos fóssei poderiam, por exemplo, ter fornecido condições anatômicas e fisiológicas iniciais para o aparecimento posterior das barbatanas. 

Felix G. Marx e colegas, em seu trabalho de 2016, apontam que a presença de dentes alternados, como os observados no fóssil descrito por Thomas e colaboradores em 2008, acabariam danificando as barbatanas, se essas estivessem presentes. Os mesmos autores também observam que a mandíbula das baleias filtradoras atuais é mais larga, o que permite com que as barbatanas não sejam danificadas durante o fechamento da boca do animal. Além disso, misticetos atuais também possuem uma adaptação muscular especial que permite com que a mandíbula rotacione levemente durante a oclusão, o que também dificulta o dano às barbatanas.  Em aetiocetídeos, por sua vez, o tamanho da mandíbula e sua forma de abertura indicam que, qualquer barbatana, se presente, seria danificada durante o fechamento da boca.

Esquema de fechamento da boca e a acomodação das barbatanas nas baleias verdadeiras (Balaenidae) e nas rorquais (Balaenopteridae) em comparação com o fechamento da boca dos Aetiocetidae possivelmente sem barbatanas (MARX et al., 2016).

Felix e demais colegas até tentam dar uma chance ao modelo de barbatanas+dentes. Eles sugerem um cenário em que as barbatanas poderiam estar entre os dentes do animal e que, com o fechamento da boca, elas se dobrariam para dentro, similar ao que ocorre com as baleias-da-groenlândia. Todavia, ainda sim, a presença dos dentes alternados atrapalharia o dobramento e danificaria significativamente as estruturas. Os autores concluem, que as barbatanas não teriam surgido dessa forma. Talvez elas tenham surgido em outros grupos que tivessem uma mandíbula mais larga e/ou uma dentição reduzida ou inexistente.

Um jeito alternativo de comer

A capacidade de gerar sucção é fundamental para a maioria dos vertebrados aquáticos e é amplamente observada entre os mamíferos marinhos atuais. No entanto, até o trabalho de Felix e colegas, ela raramente havia sido associada à evolução dos misticetos. A sucção é muito útil na alimentação subaquática, pois facilita o transporte do alimento até o fundo da boca, onde ele será deglutido. Essa forma de adquirir alimentos provavelmente já estava presente em cetáceos basais, muito antes dos misticetos, mas esse é um comportamento relativamente difícil de se interpretar por meio de fósseis.

O uso de sucção na alimentação e provável ausência de barbatanas nos misticetos basais sugeriria um modelo diferente de evolução da alimentação por filtragem em baleias:

(1) Misticetos basais, incluindo aetiocetídeos, tinham tanto a dentição funcional, quanto a habilidade de usar sucção, herdada de cetáceos anteriores;

(2) A água ingerida por eles, como resultado da sucção, era expelida fundamentalmente com auxílio dos dentes;

(3) algum grupo de misticeto ancestral aprimorou suas capacidades de sucção ao longo do tempo, com o desenvolvimento de mandíbulas mais largas e tecidos moles associados (“calos” ou dobras na gengiva, lábios expandidos, etc.). O aperfeiçoamento desta capacidade teria favorecido a perda da dentição com o tempo;

(4) Com a perda da dentição, as barbatanas teriam evoluído e, gradualmente, sido selecionadas.

Esquema evolutivo das baleias filtradoras. (MARX et al., 2016).

Este cenário seria mais plausível, pois exclui problemas potenciais de interferência entre uma dentição ativa e barbatanas. Ele explica também como os dentes poderiam ter sido perdidos, sem afetar o sucesso da alimentação. Além disso, ele está de acordo com a evidência observada no desenvolvimento de fetos de misticetos atuais, que mostra que o crescimento das barbatanas só se dá quando os dentes são reabsorvidos.

A sucção seguida de filtragem é uma forma de alimentação que pode limitar bastante o tamanho máximo da presa a ser capturada. O aperfeiçoamento dos tecidos moles associados à dentição, em especial a gengiva, é uma forma de lidar com este problema. Primeiro, um mecanismo para prensar a presa deve ter surgido nos misticetos basais e, depois disso, um aparato apropriado de filtragem – isto é, as barbatanas.

Uma adaptação observada nos botos-de-dall (Phocoenoides dalli), espécie vivente de cetáceo, pode ajudar a imaginar como o processo teria acontecido. Esses cetáceos odontocetos (não diretamente aparentados às baleias filtradoras) têm dentes rudimentares e possuem em sua boca, também, pequenos “dentes na gengiva”, semelhantes aos brotos iniciais das barbatanas dos misticetos. Essas estruturas ajudam os botos-de-dall a capturarem suas presas. Pode ser que essa adaptação seja uma pista de como se deu a perda gradual da dentição em misticetos e posterior surgimento das barbatanas.

A origem das barbatanas, adaptação chave das baleias filtradoras modernas (Mysticeti), marca uma transição profunda e única na história evolutiva dos vertebrados. Hoje, ela é um pouco melhor compreendida, porém, como vocês viram, ainda restam detalhes a serem desvendados sobre como esta belíssima crônica evolutiva se desenrolou. A compreensão da evolução dos “modos à mesa” das baleias pode estar, não só nos fósseis, mas em uma combinação entre estudos paleontológicos, genéticos e do desenvolvimento.

Referências:

CASTRO, Peter; HUBER, Michael E. Biologia marinha. AMGH Editora, 2012.

DEMÉRÉ, Thomas A.; MCGOWEN, Michael R.; BERTA, Annalisa; GATESY, John. Morphological and molecular evidence for a stepwise evolutionary transition from teeth to baleen in mysticete whales. Systematic biology, v. 57, n. 1, p. 15-37, 2008.

MARX, Felix G.; HOCKING, David P.; PARK, Travis; ZIEGLER, Tim; EVANS, Alistair R.; FITZGERALD, Erich M. G. Suction feeding preceded filtering in baleen whale evolution. Memoirs of Museum Victoria, v. 75, 2016.

Um grande golfinho predador e a evolução dos cetáceos modernos

Golfinhos e baleias atuais, junto com os peixes-boi e dugongos (Sirênios), são mamíferos completamente adaptados ao ambiente aquático. Suas atividades como alimentação, locomoção, descanso e reprodução dependem inteiramente desse ambiente. Eles não precisam, por exemplo, retornar à terra para executarem essas ações, diferentemente do que ocorre em outros grupos de mamíferos aquáticos, como leões marinhos, focas ou lontras. Mas você já pensou em como esse processo aconteceu?

A origem dos primeiros cetáceos (grupo que inclui golfinhos e baleias) se deu a partir de animais completamente terrestres. Formas extintas aparentadas aos artiodáctilos (grande grupo que inclui cabras, bois, camelos, hipopótamos, etc.) começaram essa jornada há cerca de 50 milhões de anos atrás. Eles se adaptaram, com o passar do tempo, às diversas peculiaridades do ambiente aquático, como a maior viscosidade, densidade, empuxo e pressão hidrostática. Entre as principais adaptações desenvolvidas pelos cetáceos, modificações anatômicas associadas à natação foram algumas das mais fundamentais para sua sobrevivência nesse “novo” ambiente.

Indohyus major, um animal extinto do Eoceno, terrestre e herbívoro, relacionado aos primeiros cetáceos. Arte de Nobu Tamura CC BY 3.0.

Nos cetáceos modernos, diversas características anatômicas e comportamentais permitem manobras na água e facilitam o deslocamento desses animais nos oceano, mares e rios. A evolução de algumas características pode ser rastreada nos fósseis. Porém, há uma falta considerável de informações sobre uma parte delas. Uma relação ainda pouco compreendida, por exemplo, é como se deu a divergência entre os golfinhos (odontocetos) e as baleias (misticetos).

Cynthiacetus (esquerda), um cetáceo completamente aquático, e Ambulocetus natans, uma forma semi-aquática de cetáceo do Eoceno. Foto de Jean-Pierre Dalbéra.
Cynthiacetus (esquerda), um cetáceo extinto completamente aquático do fim do Eoceno, e Ambulocetus natans, uma forma semi-aquática de cetáceo do início do Eoceno. Foto de Jean-Pierre Dalbéra, CC BY 2.0.

Abundantes esqueletos de cetáceos do Eoceno ilustram a transição da vida semiaquática para a completamente aquática, incluindo o desenvolvimento de um corpo alongado, cilíndrico e com extremidades afiladas (corpo fusiforme). Fósseis do Eoceno também demonstram o gradual processo de redução das patas traseiras e a migração das narinas em direção ao topo da cabeça. Entretanto, há uma raridade excepcional de esqueletos de cetáceos em rochas do Oligoceno, o período geológico seguinte ao Eoceno, e isso tem dificultado muito os esforços para compreender a evolução da força de natação dos cetáceos. No Eoceno, a natação ainda era controlada parcialmente pelas patas traseiras, mas com o tempo ela passa a ser exercida exclusivamente pela cauda robusta.

Em 2020 o pesquisador Robert W. Boessenecker, junto com outros colegas, publicaram a descrição de uma nova espécie de um raro golfinho fóssil de grande porte, encontrado em estratos do Oligoceno do sul da Califórnia (E.U.A). Materiais deste animal já eram conhecidos desde o século 19, mas eram muito fragmentados, o que impedia que pesquisadores conhecessem melhor a espécie. Boessenecker e colegas descobriram, na década de 1990, um espécime surpreendentemente bem preservado, ainda que parcial, que permitiu não só batizarem adequadamente o animal (Ankylorhiza tiedemani), como também estudarem a evolução de algumas características transicionais pouco conhecidas dos cetáceos.

Ankylorhiza tiedemani possuía diversas características compartilhadas entre as baleias e golfinhos, o que deu aos cientistas pistas preciosas sobre a evolução destes grupos. O tamanho e outras características do corpo animal indicam que ele era um predador ativo, de natação rápida, que dominou as águas do seu tempo, ocupando um nicho semelhante aos das grandes orcas atuais.

Esqueleto de Ankylorhiza tiedemani (BOESSENECKER et al., 2020).

O primeiro material descrito para essa espécie foi um crânio muito incompleto recuperado por volta de 1880, que, na época, foi atribuído ao gênero Squalodon. Com a descoberta do esqueleto mais completo, descrito por Boessenecker e colegas em 2020, novas análises foram feitas e descobriu-se que, na verdade, o material pertencia a um novo gênero, batizado de Ankylorhiza. A. tiedemani é considerado, até o momento, o maior Odontoceto do Oligoceno, com aproximadamente 4,8m de comprimento, tamanho não superado até o Mioceno, quando aparecem no registro fossilífero os primeiros grandes cachalotes.

A. tiedemani possui o crânio e mandíbula robustos, com uma dentição simplificada quando comparada com os basilossaurídeos, grupo de cetáceos mais antigos, que tinham os dentes cheios de cristas e pequenas pontas acessórias. As características dentárias de A. tiedemani indicavam que ele se tratava de um caçador com elevada força de mordida, semelhante às encontradas nos primeiros cachalotes. Seus dentes da parte frontal são um mistério, pois possuem um ângulo estranho de inserção no crânio. Eles apontam para frente, o que indica que podem ter sido utilizados para competição entre indivíduos do mesmo sexo, como fazem as baleias-bicudas atuais, ou empregados na captura e abate de presas.

Baleia-bicuda (Ziphius cavirostris). Nos machos adultos podem ver-se dois dentes na ponta do maxilar inferior que estão orientados para a frente. Foto de Eveha CC BY 3.0.

As nadadeiras peitorais de A. tiedemani possuem várias características derivadas, incluindo ossos longos (úmero, rádio e ulna) mais curtos quando comparados com os basilossaurídeos, porém, mais alongados quando comparados com os Odontocetos atuais. Suas nadadeiras e coluna vertebral também possuem características intermediárias, a maioria mais próxima de outros odontocetos basais, mas com algumas correlações com os misticetos. Isso coloca a espécie próxima à base da árvore evolutiva dos odontocetos. 

Relações filogenéticas de Ankylorhiza tiedemani (BOESSENECKER et al., 2020).

A mobilidade de A. tiedemani seria semelhante à das falsas-orcas e orcas atuais, indicando uma natação reforçada, mais poderosa do que a dos basilossaurídeos (formas mais basais) de porte semelhante. Isso sugere que a espécie tinha velocidade suficiente para perseguir outros cetáceos, sirênios, tartarugas, aves marinhas, tubarões e outros peixes contemporâneos, incluindo esses organismos em sua dieta potencial.

A. tiedemani, finalmente, trouxe um pouco de luz sobre como diversas adaptações convergentes estavam presentes em odontocetos e misticetos basais, principalmente no que diz respeito a sua mobilidade. Futuras descobertas de espécimes mais completos ou ainda de novas espécies provenientes dos mesmos estratos geológicos podem ser chave na compreensão da evolução de mais aspectos da locomoção dos cetáceos modernos. Essas descobertas também podem auxiliar na elucidação de mais detalhes sobre como se deu a divergência entre baleias e golfinhos, um evento evolutivo fascinante e ainda pouco compreendido, que se deu nos mares do final do Eoceno e do início do Oligoceno.

Referência:

BOESSENECKER, Robert W. et al. Convergent evolution of swimming adaptations in modern whales revealed by a large macrophagous dolphin from the Oligocene of South Carolina. Current Biology, v. 30, n. 16, p. 3267-3273. e2, 2020.

A origem dos pterossauros

Hoje (quarta-feira 9/12/2020), acaba de ser publicado um trabalho que traz informações importantes para a compreensão de um grande enigma da paleontologia: a origem dos pterossauros, répteis voadores que dominaram os céus durante a Era Mesozoica.

O trabalho foi publicado na revista Nature e conta com a participação de alguns cientistas brasileiros, que ajudaram a investigar em detalhes um grupo de pequenos répteis que viveu durante o Período Triássico, os lagerpetídeos.

A origem dos pterossauros sempre foi um daqueles problemas cabeludos da Paleontologia. Os pterossauros, para quem não conhece ou não se recorda, são aqueles répteis voadores com asas membranosas, que viveram durante a chamada “Era dos Dinossauros”, intervalo do tempo que se estende de 251 à 66 milhões de anos atrás.

O problema com os pterossauros é que seus fósseis mais antigos (que tem cerca de 208 milhões de anos), já apresentam características tão diferenciadas, que é difícil traçar a origem evolutiva do grupo. Eles já apresentam, por exemplo, dedos das mãos hiper-alongados, crânio super modificado e diversas outras características derivadas muito bem adaptadas para o voo. A comparação com outros grupos de répteis que viveram no mesmo período é bastante difícil, pois não temos registros de fósseis de organismos com características intermediárias. Logo, descobrir onde o grupo se encaixa na árvore da vida tornou-se um desafio.

Diversos grupos independentes de cientistas têm se debruçado sobre a questão ao longo do tempo. Os resultados específicos são bastante contrastantes, mas em uma coisa, pelo menos, temos concordado, eles pertencem a um grupo chamado de Archosauromorpha, que inclui, por exemplo, os dinossauros e os crocodilos atuais. É um grupo muito amplo. Isso serve para você entender a gravidade da questão.

Há muita discordância sobre em que ponto exato dentro dos Archosauromorpha se encaixam os pterossauros. Alguns pesquisadores sugerem que eles teriam derivado de Archosauromorpha basais. Outros, que eles são parentes bem mais próximos dos dinossauros, derivados de avemetatarsálios basais próximo aos lagerpetídeos. Aí entra o estudo publicado hoje.

Arte de Rodolfo Nogueira.

O estudo publicado hoje na revista Nature é assinado por 18 autores, entre eles os brasileiros Mário Bronzati, Sergio F. Cabreira, Lúcio Roberto da Silva e Max Langer. O que os 18 pesquisadores fizeram foi investigar mais a fundo um grupo específico de pequenos répteis arcossauromorfos do Período Triássico (cerca de 237 a 210 milhões de anos atrás), conhecidos como lagerpetídeos. A equipe analisou não apenas detalhes da aparência externa do esqueleto desses organismos, como utilizou também a tecnologia de tomografia computadorizada para observar dentro de seus ossos. Mais especificamente, dentro do crânio.

Os lagerpetídeos viveram onde hoje é a América do Sul, América do Norte, África e Madagascar. Durante o Triássico, estas massas de terra estavam unidas, formando o supercontinente Pangea. Aqui no Brasil, fósseis de lagerpetídeos são encontrados apenas no Rio Grande do Sul, em rochas da Bacia do Paraná.

Um exemplo de lagerpetídeo brasileiro é Ixalerpeton polesinensis, um animal com cerca de 40 cm de comprimento e 15 centímetros de altura, descrito em 2016. Seu fóssil foi encontrado no município de São João do Polêsine, RS. Ixalerpeton é uma das espécies de lagerpetídeos incluída no estudo. Ele tem preservado parte de sua caixa craniana, o que permitiu aos pesquisadores reconstruir o cérebro e ouvido interno do animal.

Fóssil de Ixalerpeton polesinensis (Foto fornecida pelos autores do estudo)

Outras espécies de lagerpetídeos foram analizadas, como Lagerpeton chanarensis, da Argentina, Dromomeron romeri e Dromomeron gregorii, dos E.U.A. e Kongonaphon kely, de Madagascar. Até pouco tempo atrás, lagerpetídeos eram conhecidos apenas com base em ossos das pernas e do quadril (que se preservam mais facilmente nesse grupo), mas descobertas mais recentes têm revelado mais detalhes sobre a anatomia desses animais, como a aparência do crânio, coluna e membros anteriores.

Os pesquisadores reuniram, então, esses fósseis e fizeram um estudo anatômico comparativo, avaliando diversas características destes animais e comparando-as com de outros Arcosauromorpha. A análise filogenética resultante do estudo (uma forma matemática de análise de parentesco) revelou grandes semelhanças anatômicas entre os lagerpetídeos e os primeiros pterossauros. Apontou, inclusive, a existência de um grupo independente, que incluiria ambas as linhagens, chamado de Pterosauromorpha.

Filogenia calibrada no tempo para Archosauria (Ezcurra et al. 2020).

No trabalho são destacadas várias características únicas compartilhadas apenas por pterossauros e lagerpetídeos, incluindo, por exemplo, alongamento dos ossos do antebraço e das mãos. O parentesco muito próximo surpreendeu bastante, pois anteriormente pensava-se que lagerpetídeos deveriam ser mais aparentados aos silesaurídeos e dinossauros. Assim, o atual estudo estabelece um marco importante para o entendimento da origem dos pterossauros.

Outro resultado fascinante do estudo publicado hoje, envolve a biologia dos lagerpetídeos. Algumas características anatômicas indicam adaptações a um estilo de vida bastante ágil. As análises com tomografia computadorizada e reconstrução do cérebro e ouvido interno desses animais, por exemplo, demonstraram que eles tinham sistemas sensoriais típicos de organismos capazes de movimentos rápidos da cabeça e bom controle do movimento dos olhos e do pescoço. Adaptações como essa são observadas em organismos voadores e/ou arborícolas da atualidade. Talvez os lagerpetídeos utilizassem essa sua característica para a captura de presas ágeis, como insetos. O que é reforçado pela anatomia dos seus dentes.

Dentário (osso anterior da mandíbula) direito do lagerpetídeo Ixalerpeton polesinensis do Triássico do Brasil. Foto fornecida pelos autores do estudo.

Se comparado ao sistema sensorial dos pterossauros, lagerpetídeos tinham basicamente as mesmas adaptações no cérebro e ouvido interno. Isso pode sugerir que características sensoriais vantajosas para o voo evoluíram antes mesmo do voo em si nos Pterosauromorpha (uma pré-adaptação).

Outro ponto interessante é o formato das garras das mãos dos lagerpetídeos, bastante curvadas, o que indica uma função diferenciada dos membros anteriores. Os autores sugerem que elas podem ter sido selecionadas devido a um estilo de vida arborícola (para ajudar a escalar) e/ou utilizadas para a aquisição de presas. O que é interessante , pois pode sugerir um cenário em que o voo nos pterossauros teria evoluído como uma vantagem para se mover de uma árvore para a outra.

Reconstituição em vida do lagerpetídeo Ixalerpeton polesinensis, do Triássico do Rio Grande do Sul, com estilo de vida arborícola. Arte de Rodolfo Nogueira.

Embora este estudo tenha demonstrado um parentesco entre lagerpetídeos e pterossauros, muitas questões ainda permanecem. Entre elas, talvez a mais perturbadora ainda seja como a principal característica dos pterossauros, as asas, evoluíram. Pode parecer frustrante não ter todas as respostas de uma vez, eu sei. Mas estamos chegando cada vez mais perto. Este estudo nos aproxima um pouco mais da “solução” do grande enigma. Pense pelo lado bom: pelo menos, agora sabemos melhor onde procurar respostas!

Nesta sexta-feira, dia 11/12, às 19h, vamos bater um papo ao vivo no nosso canal do Youtube com um dos autores do estudo. Ative o lembrete para não perder:

Veja o vídeo de divulgação do artigo:

Referência:

Ezcurra, M. D. et al. 2020. Enigmatic dinosaur precursors bridge the gap to the origin of Pterosauria. Nature. https://www.nature.com/articles/s41586-020-3011-4

Leia também:

Padian, K. 2020. Closest relatives found for pterosaurs, the first flying vertebrates. Nature https://www.nature.com/articles/d41586-020-03420-z