>Xixi de Dinossauro? – O Paleo-deserto Botucatu Parte IV

>

Dando continuidade a série de posts sobre os icnofósseis da Formação Botucatu (Veja as outras publicações AQUI), hoje vamos apresentar a última parte da história: A verdade sobre o URÓLITO, o vulgo “xixi fóssil”.

Figura 1. Laje de arenito com preservação de extrusão líquida: Urólito. Foto por Marcelo Adorna Fernandes.

A descoberta foi feita em Araraquara, interior de São Paulo. Trata-se da primeira evidência de que os dinossauros pudessem urinar.

Marcelo Adorna Fernandes (paleontólogo e professor do Departamento de Ecologia e Biologia Evolutiva da UFSCar) e sua esposa, Dra. Luciana Bueno dos Reis Fernandes, descobriram no ano de 2001, em uma pedreira local de Araraquara, nos arenitos da Formação Botucatu, uma marca fossilizada supostamente deixada pela urina de um dinossauro. Essa estrutura preservada, com cerca de 140 milhões de anos (Período Jurássico), foi analisada pelo paleontólogo especialista em Coprólitos (fezes fossilizadas), Dr. Paulo Roberto de Figueiredo Souto, da UFRJ, Rio de Janeiro, que confirmou a identificação inusitada.
A descoberta de Marcelo e Luciana foi apresentada pelos pesquisadores à comunidade científica em congressos nacionais e internacionais, até que em 2004, eles e o Dr. Paulo Souto finalmente publicaram o achado na Revista Brasileira de Paleontologia (acesse o artigo AQUI).

Até então a única evidência da ocorrência urina associada a dinossauros havia sido apresentada à comunidade científica no ano de 2002, durante o 62o Congresso da Sociedade Norte Americana de Paleontologia de Vertebrados em Oklahoma, nos Estados Unidos, por um casal de geólogos, McCarville & Bishop. Nenhum trabalho científico foi publicado desde então e nem tão pouco sugerida uma terminologia específica para classificar essa estrutura de escavação produzida por fluxo de líquido dessa natureza.

Figura 2. Imagem retirada do site “Ciência Hoje”.

O termo urólito, composto por duas palavras de origem grega, “uro” que significa urina e “lithos” que significa pedra, foi sugerido para nomear a estrutura com 34 cm de comprimento; trata-se de uma pequena cratera elíptica de escavação provocada pelo impacto de líquido em queda, com um escorrimento de sedimento depositado gravitacionalmente em um plano inclinado (Figura 1, 3 e 7).

Figura 3. Urólito – Por Marcelo Adorna Fernandes.


As pegadas deixadas por dinossauros ornitópodes e terópodes que caminharam através das dunas do paleodeserto são bem diferentes da estrutura correspondente ao urólito. Ao caminhar, os animais compactavam a areia onde pisavam, deixando preservadas, além da depressão da pegada, uma elevação em forma de meia-lua nas bordas de maior esforço.

Figura 4. Pegada de dinossauro terópode da Fm. Botucatu. Foto por Marcelo Adorna Fernandes.

Simulando-se as condições pretéritas, um simples teste experimental foi realizado, onde certa quantidade de água foi derramada em um plano inclinado, o que produziu uma estrutura de escavação e escorrimento muito semelhante ao urólito (Foto abaixo).

Figura 5. Ao derramar-se certa quanti
dade de líquido em um plano inclinado, a estrutura formada é semelhante a do urólito. Foto por Marcelo Adorna Fernandes.
Os estudos referentes a paleofauna da região atestam a presença de pequenos mamíferos e de dinossauros, porém o urólito só poderia ter sido produzido por animal de médio à grande porte, neste caso só poderia ser um dinossauro.

Comparando e analisando o comportamento de aves ratitas atuais, como o Struthio camelus (avetruz), foi possível verificar um forte fluxo de extrusão líquida (urina) produzida por estes animais antes da excreção da parte sólida. Nos avestruzes, antes da eliminação, a urina fica armazenada no urodeum, que tem uma função semelhante à bexiga urinária dos mamíferos. A parte sólida fica armazenada no coprodeum e são eliminadas posteriormente à eliminação da urina. Assumindo que certos grupos de dinossauros tivessem uma fisiologia parecida a do avestruz, eles poderiam provocar uma erosão na superfície do sedimento inconsolidado quando eliminassem certas quantidades de líquido na forma de urina.

Figura 6. Extrusão líquida em avestruzes. Foto por Marcelo Adorna Fernandes.
Uma bexiga urinária nos tetrápodes é muito importante na conservação de água sendo que em alguns grupos de animas como sapos, rãs, pererecas, jabutis e em alguns lagartos, admite-se que a reabsorção de água pela bexiga seja essencial para impedir a dessecação quando em ambiente terrestre de pouca umidade. A eliminação de urina da bexiga desses animais ocorre através de um orifício cloacal comum.
O fato desse urólito estar associado à fauna dinossauriana da Formação Botucatu, que corresponde a um antigo ambiente desértico, sugere que a presença de uma estrutura responsável pelo armazenamento e reabsorção de água seja aceitável e possível, corroborando com a idéia de que haveriam grupos de dinossauros que pudessem urinar.

Este urólito é o primeiro registro deste tipo de vestígio fóssil no Brasil, sendo também uma das primeiras evidências do modo de extrusão líquida atribuída a dinossauros no mundo.
– Para a Formação Botucatu são conhecidas pelo menos duas ocorrências de urólitos.
Figura 7. Detalhe do Urólito (Esquerda)

Entre em contato com o Paleontólogo Dr. Marcelo Adorna Fernandes:
Laboratório de Paleoecologia e Paleoicnologia – Departamento de Ecologia e Biologia Evolutiva – Universidade Federal de São Carlos, UFSCar
Contatos pelo telefone: +55 (16) 3351-8322
E-mail: mafernandes@ufscar.br

>"Sea Dragons"

>

“Sea Dragons:
predators of the prehistoric oceans”
(Richard Ellis, 2003)


Meses atrás estava procurando literatura científica para enriquecer o conhecimento sobre os grandes grupos de répteis marinhos do Mesozóico – Ictiossauros, Plesiossauros e Mosassauros. Descobri o livro “Sea Dragons – predators of the ancient oceans”, de autoria de Richard Ellis: uma verdadeira bíblia para interessados no assunto, a qual recomendo para qualquer paleontólogo de vertebrados ou entusiasta na área.

O livro descreve detalhes sobre fauna Mesozóica dos três maiores grupos de répteis marinhos, incluindo peculiaridades sobre cada espécie encontrada e seus respectivos paleoambientes. Ele tem um panorâma mundial, não se limitando-se a regiões geográficas específicas como outros livros encontrados na literatura sobre o assunto.

Figura acima: Plesiossauro – elasmossaurídeo predador. Richard Ellis.

Ellis realizou suas próprias ilustrações em nanquim, tanto para os materiais fósseis apresentados, quanto para as reconstruções dos animais. Para quem aprecia Paleoarte, portanto, esse livro torna-se ainda mais interessante.

O mais fantástico é o fato de o autor ser um artista plástico e não um ‘cientista/paleontólogo’ propriamente dito. Apaixonado pelo tema, Ellis fez um ótimo trabalho, tendo recebido consultoria e auxílio de várias sumidades no assunto. O resultado final foi amplamente aprovado! Isso é prova de que não é necessário ser um ‘Doutor na área’ para produzir literatura científica de qualidade – basta o esforço, muita dedicação e profissionalismo.

O livro possui um rico levantamento de dados e bibliografia para quem deseja buscar informações mais aprofundadas e mantém uma linguagem, que apesar de técnica, é acessível para o público geral.

Observação: “Sea Dragons” foi escrito em 2003, portanto o leitor deve ter em mente que algumas poucas teorias citadas no livro já foram derrubadas. Alguns animais descritos mais recentemente também faltam nas listagens. Entretanto, o livro é um must com todo o conhecimento adquirido até a data que foi publicado.



Eu Aprovei!

Figura acima: Mosassauro. Richard Ellis.

Onde comprar?
Eu comprei esse no site da AMAZON. Você encontra por US$ 6,90!
Confira no link abaixo:



>Paleovulcanologia

>

Uma vertente da Vulcanologia, a Paleovulcanologia é a ciência que estuda vulcões extintos. Sua nomenclatura é considerada controversa por alguns vulcanólogos, que consideram inapropriado a utilização do prefixo ‘Paleo’. Independente da nomenclatura, no entanto, o estudo desses vulcões é muito importante para se elucidar como os gigantes de fogo influenciaram o ambiente no passado e até mesmo como dirigiram o curso da vida. 

 Por Juliana Freitas da Rosa

A vulcanologia é uma especialidade da Geologia altamente ligada a Geofísica. Foi criada na década 1980 para estudar os vulcões e os produtos vulcânicos. 


O nome Vulcão foi dado em homenagem ao deus do fogo da mitologia greco-romana, Vulcano. 


Até alguns anos atrás, a importância dessa ciência era voltada para reduzir os riscos das populações situadas em regiões adjacentes a estes gigantes (previsão de erupções, preparação de planos de emergência locais, etc). Hoje em dia, essa importância se estende a um nível o mundial, pois direta ou indiretamente, todos  sofremos os efeitos desastrosos desencadeados por esses “deuses de fogo”.


Apesar de erupções vulcânicas existirem desde os primórdios de nosso planeta, o primeiro registro histórico escrito que se tem notícia é de 79 d.C., quando duas cidades romanas – Pompéia e Herculano – foram devastadas por uma imensa erupção, varridas pelos produtos vulcânicos do monte Vesúvio. Essa erupção foi nomeada de Vesuviana ou Pliniana. ‘Pliniana’ em homenagem ao Plínio “o velho”. Plínio o velho foi ao encontro do Titã no meio do caos para entender melhor o que estava acontecendo. Seu sobrinho, Plínio “o jovem”, descreveu em duas cartas esse dia fatídico, sendo estas, as cartas mais importantes para a história da Vulcanologia.

Reconstituição do que teria sido a erupção vesuviana de Pompéia.
Vítimas do vulcão Vesúvio congeladas no tempo. Corpos petrificados pelas cinzas e lama mostram cenas da tragédia e a impotência da população diante da catástrofe.
 Também tem-se notícias de erupções na Grécia antiga, descritas em trechos dos contos de Homero, aonde o caos vulcânico era relacionado a brigas dos três deuses gregos irmãos: Zeus, Hades e Poseidon. Por não terem registros acurados, detalhes dessas erupções pereceram, porém, registros históricos não são o único modo de se rastrear a ocorrência de eventos vulcânicos…. Como, então, sabemos se houve uma erupção no passado? Como saber se foram suficientes para mudar o ambiente de sua época, ou até mesmo influenciar o planeta ainda hoje com seus produtos?

Ilustração por Guilherme M. Alayão – A briga dos deuses. A mitologia e os vulcões.


A Geologia, como uma ciência
que abriga a Vulcanologia, estuda – entre outras coisas – o interior do planeta (o interior da crosta, seus movimentos, etc.). Esse estudo nos ajuda a explicar a origem das atividades vulcânicas e até mesmo prever os locais preferenciais de ocorrência.
Já a Petrologia Ígnea – uma vertente específica da Geologia que estuda rochas que se originam de magma solidificado – auxilia a Vulcanologia por meio do estudo aplicado das rochas vulcânicas (Rocha extrusivas, ou seja, que se resfriaram na superfície terrestre).
Vulcões produzem dois principais tipos de produtos que originarão rochas: lavas e piroclastos (cinzas, bombas vulcânicas, etc.). A presença de rochas vulcânicas indica a existência pretérita de vulcões e derramamentos de lava fissurais (sem formação de cones vulcânicos). Mesmo sem registros da história escrita, portanto, podemos rastrear a ocorrência de atividades vulcânicas.

Lava sendo expelida e resfriando rapidamente para a formação de rocha.

Diferentes tipos de Piroclastos
O tipo de rocha produzida denuncia detalhes das erupções e acompanhando a sucessão estratigráfica podemos elucidar detalhes do ambiente antes e depois do evento vulcânico.

 Existem distintos tipos de lava, que formam diferentes tipos de rochas extrusivas, assim como existem diferentes tipos de rochas piroclásticas, que denunciam detalhes violentos de eventos vulcânicos.

Assim como a Paleontologia estuda os fósseis – Paleo=antigo; Onto=ser e Logia=estudo -, o estudo de vulcões extintos seria chamado de Paleovulcanologia. 

Vulcões extintos deixaram suas marcas em formas de rochas, camadas de cinzas, alterações no relevo e até mesmo sinais na atmosfera. Rochas vulcânicas são grandes indícios de que um ou mais vulcões estiveram ativos em uma determinada região, logo é esse o ponto de partida para obter registros de um paleovulcão.

Um paleovulcão é considerado como aquele que cessou completamente a sua atividade. Aqui portanto é necessário distinguir vulcões dormentes de extintos. O que em alguns casos nem sempre é fácil, até mesmo para especialistas. Vulcões podem permanecer inativos por longos períodos, o que nem sempre significa que ele cessou sua atividade. Alguns tem intervalos de dormência que podem durar centenas de milhares de anos… como aquele de Yellowstone por exemplo. 

E. F. Cook, em 1966, descreveu a importância da Paleovulcanologia como ciência. Ele relata o porquê de estudiosos serem tão conservadores ao adotarem o termo ‘Paleo’ para definí-la: O fazem, principalmente a fim de evitar conflitos com os estudos da própria Vulcanologia atual. 

A explicação é a seguinte: Existem vulcões extintos mais recentes do que aqueles que ainda estão ativos. Mas será que isto é motivo suficiente? Acho que independente do nome, é importante estudar vulcões que não estão mais em atividade… sejam de milhares, milhões ou centenas de milhões de anos.  

No Brasil, há evidências de muitos vulcões extintos, sendo um dos mais conhecidos, o de Poços de Caldas (MG-SP) com rochas vulcânicas que variam de 53 a 87 milhões de anos. Ele foi descrito em diversos trabalhos, estes reunidos durante um Congresso de Geologia em 1992 pelos professores Dr. Horstpeter H. Ulbrich e Dra. Mabel N. C. Ulbrich. Os estudos detalham todo o Maciço Alcalino de Poços de Caldas, desde o embasamento cristalino até os sedimentos piroclásticos. A base do vulcão adentra-se na Bacia do Paraná, o que o tornaria um dos maiores vulcões alcalinos do mundo, com pouco mais de 800km² de afloramentos. Ele possivelm
ente estava ativo quando houve a grande extinção em massa do Cretáceo-Paleógeno, há 65 milhões de anos. As manifestações mais recentes datam de 53 milhões de anos atrás. 

A paleovulcanologia estuda, neste caso, a influência deste vulcão no paleoambiente da região durante o período caótico de transição de eras. Como apararentemente há uma pausa na formação de rochas a partir de 72 Ma atrás, sendo retomada a atividade somente no limite que separa as duas eras Mesozóica e Cenozóica, talvez haja alguma pista importante para explicar a extinção local. Sinais de uma grande transformação no ambiente estão registrado em suas rochas. Se as idades calculadas com K/Ar forem reais, Poços de Caldas registraria um período de atividade vulcânica da ordem de 20 ou 30 Ma – muitas vezes superior ao que se conhece para outros vulcões em atividade e também extintos (Hosrtpeter e Mabel Ulbrich,1992).

Cratera do vulcão extinto de Poços de Caldas, MG, em imagem de satélite.

Outro paleovulcão brasileiro seria o do arquipélago de Fernando de Noronha. O arquipélago de Fernando de Noronha possui uma ilha principal de mesmo nome com 16,4 km² de área, e vinte ilhas menores. Registros revelam que o arquipélago eleva-se  sobre uma ampla plataforma de erosão, submersa atualmente. Esta plataforma está situada a 4km de profundidade em cima do assoalho oceânico. Localizado na Formação Remédios, suas rochas datam desde 8 a 12,3 milhões de anos — sendo essas as idades de resfriamento das mesmas. Considera-se esse vulcão relativamente recente e de vida curta. O seu estudo para a paleovulcanologia ajudaria a compreender a formação e declínio de um vulcão num curto período de tempo. 

Foto de Fernando de Noronha. Arquipélago formado por atividade vulcânica pretérita.

Registros de um dos mais antigos vulcões em território brasileiro seria o da região de São Félix do Xingu (PA) da Era Paleoproterozóica. Os geólogos Dr. Caetano Juliani e Dr. Carlos Marcello Dias Fernandes descreveram sua geomorfologia, tomando como base as rochas de até 2 bilhões de anos abrangendo as Formações Sobreiro e Santa Rosa. Este vulcão estaria relacionado com um grande evento magmático denominado Uatumã (Pessoa et. al., 1977), num dos maiores terrenos pré-cambriano do mundo, o Cráton Amazônico (Almeida et. al., 1981). Devido a selva amazônica ser muito fechada, os estudo desse gigante baseou-se na interpretação de imagens digitais do Projeto SIPAM (Sistema de Proteção da Amazônia) e do SRTM (Shuttle Radar Topographic Mission). O trabalho de campo foi realizado ao longo do rio Xingu por trilhas e estradas. Investigações petrológicas, texturais e mineralógicas foram analisadas por interpretação petrográfica da transmissão e reflexão de luz. Por muitas das rochas estarem em processo de metamorfismo, percebe-se que o vulcão dessa região era realmente muito antigo. A paleovulcanologia, neste caso, estuda a influência deste imenso evento vulcânico de Uatumã, que hoje abrange uma área de 1.500.000 km², no Cráton Amazônico. Na época em que este vulcão estava ativo, a atmosfera era rarefeita e o planeta muito mais quente, existiam apenas seres vivos unicelulares e raríssimos multicelulares. Esse vulcão pode ser um possível candidato que ajudou a liberar gases para a formação da atmosfera favorável para a evolução da vida terrestre além da formação de oceanos e diminuição da temperatura global. O seu volume vulcânico foi de longe o maior de todo o território brasileiro, até mesmo maior do que o derrame de lava da Formação Serra Geral da Bacia do Paraná, que cobriu os grandes paleodesertos Botucatu e Pirambóia.

A questão da paleovulcanologia como ciência pode ser desafiadora e o estudo desses vulcões, nada fácil, mas frente a influência que  tiveram no meio ambiente pretérito (com reverberações até a atualidade), considero a paleovulcanologia como uma ciência válida. Ao estudarmos as estruturas dos vulcões extintos, tentamos entender como era o ambiente durante a sua formação e as possíveis alterações no ecossistema que eles causaram – muitas vezes diferentes das que observamos hoje. Além disso, temos de nos preocupar com a previsão de novos eventos, só assim poderemos mitigar tragédias humanas e ambientais.

Não existem dois vulcões iguais, cada evento é único, mas podemos compará-los para esclarecer o passado e imaginar como poderá ser o futuro.

Juliana Freitas da Rosa é estudante de Geologia na Universidade de São Paulo (USP). Ela é apaixonada por Vulcanologia e pretende seguir seus estudos na área. Trabalha como monitora no Museu de Geociências e está disponível para discutir mais sobre o tema ou tirar dúvidas. Deixe seus comentários!