A física do Champagne

 

Propaganda de 1923 do champagne Chauvet. Fonte: Wikimedia Commons

Como você vai servir a champagne hoje no Réveillon? Qual a melhor forma de servir a champagne de modo a maximizar a experiência sensorial? Um estudo publicado em 2010 na revista Journal of Agricultural and Food Chemistry confirmou a sabedoria dos connoisseurs. Usando uma técnica para visualizar as bolhas e a temperatura do líquido por radiação infravermelha, uma equipe liderada pelo físico-químico Gérard Liger-Belair, da Universidade de Reims, na França, mostrou que derramar a champagne na taça inclinada preserva até duas vezes mais bolhas de gás carbônico do que derramá-la no meio da taça.

Servir a Champagne bem gelada também é extremamente importante para manter as bolhas, verificou esse estudo que descobri assistindo a um vídeo especial de fim de anos da American Chemical Society sobre champagne (via Discovery, destacado pelo sempre atento @Peter_Moon1).

Há mais de uma década, Liger-Belair e sua equipe vêm estudando a formação das bolhas no champagne, usando técnicas avançadas de dinâmica dos fluidos, que eles descrevem em um longo artigo publicado em 2009 na American Scientist. Liger-Belair escreveu em 2004 um livro de 160 páginas sobre a ciência do champagne

Como todos os vinhos, a champagne surge da fermentação feita por leveduras, que transformam as moléculas de glicose e frutose do suco de uva em outros compostos, incluindo o dióxido de carbono e o etanol. A champagne, entretanto, passa por uma segunda fermentação quando já está engarrafada, que produz o gás carbônico que se dissolve no líquido.
Embora mais de 600 compostos químicos contribuam com o aroma e o sabor da bebida, o segredo da experiência única de tomar champagne está mesmo nas suas bolhas. À medida que as bolhas ascendem pela taça, elas arrastam consigo as pequenas moléculas que explodem na superfície fazendo cócegas no nariz e estimulando os sentidos.

Liger-Belair e seus colegas determinaram a formação das bolhas em uma taça depende da viscosidade do líquido, da presença de microfibras de celulose que permanecem na superfície da taça depois que estas são limpas por um pano, bem como do formato das taças.

Eles observaram em detalhe o colapso das bolhas, quando atingem a superfície do líquido, como descrevem no artigo da American Scientist:

Apenas a parte de cima da bolha emerge do líquido, como um iceberg. A medida que o fluído no topomicrossegundos da bolha escorre para baixo, em cerca de 10 a 100 microssegundos, a parede da bolha alcança uma espessura de menos de 100 nanômetros e se rompe. Os lados correntes da bolha em colapso se encontram no fundo da cavidade, provocando a ejeção de um jato de líquido, que se quebra em gotículas. O jato pode viajar a uma velocidade tão grande quanto alguns metros por segundo e alcançar alguns centímetros acima da superfície.

Bolha implodindo e formando um jato na superfície da Champagne. Crédito: American Scientist/Guillaume Polidori, Philippe Jeandet, Gérard Liger-Belair

Mas o fenômeno essencial por trás da formação das bolhas é mesmo a chamada Lei de Henry, descoberta em 1803 pelo químico inglês William Henry, cuja fórmula aparece na foto abaixo, tirada da edição de maio da Wired:


C é a concentração do gás em uma solução. kH  é uma constante que mede a habilidade do líquido em dissolver o gás. P é a pressão parcial do gás acima do líquido. Em outras palavras, essa lei dita que a pressão P de um gás acima de uma solução é proporcional a concentração do gás na solução. Em uma garrafa fechada de champagne, o dióxido de carbono dissolvido no vinho está em equilíbrio com o gás entre a rolha e o líquido. Abrindo a garrafa o equilíbrio se desfaz. Subitamente a pressão do gás acima do líquido diminui e, pela lei de Henry, a concentração do gás no líquido também deve diminuir. Assim, o dióxido de carbono dissolvido deixa o líquido.

O gás não pode escapar de uma vez porque a tensão superficial do líquido torna difícil as bolhas se formarem e expandirem. Assim ele sai aos poucos, na forma de pequenas bolhas. Mas você  pode acelerar o processo se chacoalhar a garrafa. Mais gás vai se dissolver no líquido e assim, pela lei de Henry, vai aumentar a pressão, dando mais ímpeto ao gás. Quando abrir a rolha o gás vai sair explodindo na forma de um jorro de espuma.

O típico estampido da rolha saltando e o som de fizzzzz das bolhas da espuma se dissolvendo foi analisado em um artigo publicado na Physical Review Letters, em 2001, por uma equipe de físicos liderada por Nicolas Vanderwalle , da Universidade de Liege, na Bélgica (soube via Nature  News). Eles descobriram que esses sons são o resultado da soma de vários estouros individuais de bolhas que não acontecem uniformemente, mas agrupados em surtos. Os físicos mediram a duração dos surtos de estouros de bolha verificando que eles são imprevisíveis. Podem durar de milissegundos a segundos. Esse “comportamento de avalanche” que obedece o que se chama de lei de potência é típico de vários fenômenos naturais, de deslizamentos de terra às flutuações do mercado financeiro (saiba mais na minha reportagem para Unesp Ciência de maio de 2010, sobre a física da economia). Se os estouros acontecessem uniformemente, o som seria mais parecido com o ruído de estática do rádio. Isso acontece porque o estouro de cada bolha não acontece independentemente. Ao implodir, uma bolha afeta as outras ao seu redor.


Liger-Belair capturou ao microscópio o momento em que uma bolha implode, deformando suas vizinhas, criando padrões em forma de flores que desabrocham e desaparecem num piscar de olhos (via Reader’s Digest) :

Crédito: Gerard Liger-Belair/CIVC

 

Melhores vídeos do cometa Lovejoy

Umas das coisas mais incríveis desse fim de ano está sendo a passagem do cometa Lovejoy. Se você ainda não viu, sugiro que assista em tela cheia o vídeo abaixo feito pelo astrofotógrafo Stéphane Guisard, no Chile:

O cometa foi descoberto no final de novembro, pelo o astrônomo amador australiano Terry Lovejoy. Desde o início ficou claro que era um cometa do tipo conhecido como rasantes Kreutz, cuja órbita extremamente excêntrica começa lá nos confins do sistema solar e termina quase em linha reta em direção ao Sol. Sendo assim, a maioria dos astrônomos acreditava que o Lovejoy não sobreviveria ao encontro com o Sol, acabando por ser totalmente fritado pelo astro rei.

Mas não é que o bendito sobreviveu aos milhões de graus Celsius da coroa solar, dando a volta de raspão pelo Sol entre os dias 15 e 16 de dezembro, chegando a uma distância da nossa estrela que é um pouco menos que a distância entre a Terra e a Lua, e seguiu de volta para longe dele?

Retornando triunfante de seu encontro mortal, o Lovejoy se tornou o cometa mais brilhante visto da Terra desde 2007. Já tênue, ele ainda poderá ser visto até os primeiros meses de 2012, por quem estiver no hemisfério sul, logo antes do amanhecer, rente ao horizonte leste, em locais com horizonte limpo e baixa poluição luminosa. Ou seja, sem chances de vê-lo aqui na cidade de São Paulo 🙁

Felizmente muitos astrofotógrafos profissionais e amadores postaram suas imagens na internet, incluindo no Brasil.

Uma das fotos e vídeos mais legais foram tirados pelo astronauta Dan Burbank, na Estação Espacial Internacional:

 

Na foto acima, se você reparar bem dá para ver que o Lovejoy tem na verdade duas caudas! Todos os cometas são assim na verdade, como explica o astrônomo e blogueiro Phil Plait do Bad Astronomy :

Cometas são compostos de rocha e gelo – o gelo sendo o que normalmente conhecemos como líquido ou gás, como amônia, dióxido de carbono e até a boa e velha água. O calor do Sol transforma esse gelo diretamente em gás (em um processo chamado sublimação), o qual se expande ao redor do núcleo sólido do cometa, formando o que se chama de coma. A pressão da luz do Sol bem como o vento solar assopram esse material para fora da cabeça do cometa, resultando e uma adorável cauda, que pode se estender por milhões de quilômetros.
Mas em muitos casos, os cometas tem duas caudas: uma feita de poeira, e outra feita de gás. A cauda de poeira é feita de pequenos grãos de rocha do cometa que se soltaram junto com o gelo que sublimou. Esse material segue praticamente a mesma órbita que a do próprio cometa, de modo que visto daqui da Terra tende a parecer curvado.
O gás, entretanto, tem seus elétrons arrancados pela luz ultravioleta do Sol, de modo que dizemos que ele está ionizado, o que é chamado de plasma. Esse material é fortemente afetado pelo campo magnético do Sol e pelo vento solar, que é soprado para fora do Sol mais rápido que a velocidade com que o próprio cometa está se movendo. Por causa disso, a cauda de íons tende a permanecer bem reta, a aponta diretamente para fora do Sol.

Uma série de vídeos espetaculares foi criada por Jason Davis, do blog Astrosaur, que compilou os dados de seis sondas espaciais dedicadas a observar o Sol, mas que acabam também registrando a passagem de cometas como o Lovejoy. Davis também escreveu uma linha do tempo descrevendo dia a dia a jornada do cometa.

No vídeo abaixo feito a partir de imagens capturadas por uma das duas sondas STEREO, da Nasa, dá para ver na segunda compilação as duas caudas do cometa. Repare também nas labaredas da coroa solar. As linhas de luz e os pontos brilhantes são planetas – Mercúrio, na primeira compilação, Mercúrio e Júpiter na segunda.

Neste vídeo com imagens da sonda SOHO, dá para ver o Lovejoy se aproximando do Sol (tapado no centro). Parece que o cometa colide com o Sol, mas o cometa logo reaparece, formando suas duas novas caudas em seguida:

No vídeo abaixo, com imagens das sondas SDO, Hinode e Proba-2, dá para ver a cauda do cometa serpenteando! Acredita-se que esse movimento seja causado pela interação do plasma da cauda com os campos magnéticos da coroa solar.

Por fim, tem esse vídeo incrível com imagens da sonda STEREO, que mostra o cometa quase mergulhando no Sol, com sua cauda sendo arrancada e impelida a frente pelo vento solar, enquanto o seu núcleo consegue dar a volta e escapar:

 

Neutrinos mais rápidos que a luz cada vez mais difíceis de explicar

 

Rastro deixado por múon de alta energia nos detectores do observatório IceCube. Crédito: icecube.wisc.edu

Mais uma vez os neutrinos mais rápidos que a luz esbarraram com a física conhecida. E dessa vez a trombada foi feia, muito pior que das outras vezes. Uma nova análise do polêmico resultado do experimento OPERA, cujo anúncio em setembro deste ano deixou tanto o público quanto a comunidade dos físicos em estado de choque, confrontou as conclusões do experimento com princípios básicos do movimento das partículas elementares, tais como a conservação da energia e do momento, assim como os dados de diversos experimentos espalhados pelo mundo, que detectam os neutrinos criados na colisão dos raios cósmicos com átomos da atmosfera da Terra. A conclusão da análise foi que, mesmo se a teoria da relatividade de Einstein, que proíbe a existência de partículas mais rápidas que a luz, não for totalmente verdadeira, mas apenas uma boa aproximação da realidade, mesmo assim os neutrinos mais rápidos que a luz supostamente detectados pelo OPERA não deveriam existir.

O físico Ramanath Cowsik, da Universidade Washington, em Saint Louis, no Missouri (EUA), junto com seus colegas Shmuel Nussinov e Utpal Sarkar, descobriram que o problema com os neutrinos mais rápidos que a luz começa exatamente quando eles são formados. No polêmico experimento, esses neutrinos nascem na Suíça a partir de um feixe de prótons em um laboratório do CERN. Quando os prótons colidem com um alvo de carbono, parte da sua energia se transforma em partículas chamadas mésons, principalmente os do tipo chamado píons, que viajam por um túnel a vácuo guiadas por um campo magnético, até que em um dado momento essas partículas se transformam em múons (uma espécie de elétron gordo e de vida curta) e neutrinos do múon. Esses neutrinos seguem debaixo da terra por 730 km, atravessando os Alpes, até colidirem com os detectores do OPERA, instalados a 1.400 metros de profundidade, no Laboratório Nacional de Gran Sasso, próximo a Roma, na Itália. A questão toda é o fato desses neutrinos terem chegado em média 60 nanossegundos antes que a luz demoraria para percorrer o mesmo caminho.

Fora a possibilidade de que haja um erro desconhecido nessa medida, um erro tão sutil que mesmo depois de meses de checagem e rechecagem nenhum dos 160 físicos que trabalham no experimento o tenha conseguido identificar, a explicação mais simples proposta até a agora é a de que a teoria da relatividade de Einstein não seja exatamente correta. Assim como hoje sabemos que, embora extremamente úteis, as leis do movimento da teoria da mecânica clássica de Isaac Newton são apenas aproximações válidas em certas circunstâncias, derivadas das leis da teoria da relatividade, a própria teoria da relatividade seria a aproximação de uma teoria desconhecida.

Mesmo sem saber os detalhes dessa teoria desconhecida, os físicos podem calcular as consequências de se considerar a relatividade uma aproximação. O coração da relatividade é uma estrutura matemática chamada de simetria ou invariância de Lorentz. Essa simetria implica que as leis da física são as mesmas para observadores em movimento uniforme e que a velocidade da luz é a mesma para qualquer observador. A ideia é que a teoria desconhecida resultaria em uma pequena quebra nessa simetria. Einstein estaria errado, mas só um pouquinho. A medida do movimento superluminal dos neutrinos do OPERA, por exemplo, sugere que a invariância de Lorentz seja violada em aproximadamente uma parte em cem mil.

O que Cowsik e seus colegas fizeram foi calcular qual seria o efeito de uma violação da invariância de Lorentz na transformação dos píons em múons e neutrinos do múon. O cálculo deles é simples de fato, assumindo apenas coisas bem básicas como a conservação da energia e do momento linear. A conclusão, publicada em 24 de dezembro na revista Physical Review Letters (preprint), é que quanto mais os neutrinos viajam mais rápidos que a luz, mais tempo os píons demoram para se transformarem, e uma fração cada vez menor da energia dos píons é transferida aos neutrinos.

Eles calcularam que, se o tamanho da violação da invariância de Lorentz for mesmo a sugerida pelo resultado do OPERA, o tempo de vida dos píons seria seis vezes maior que o observado, além do que não seriam observados neutrinos superluminais com energias maiores 5 GeVs. Os neutrinos detectados pelo OPERA, porém, tinham energias em torno de 20 GeVs, o que mostra que o resultado experimental não é consistente com premissas da física ainda mais fundamentais que as da teoria da relatividade.

Além disso, o trio de físicos resolveu comparar seus cálculos para os píons com os dados da detecção de múons e neutrinos do múons produzidos a partir de píons originados na colisão de raios cósmicos com átomos da atmosfera. Em particular, compararam seus cálculos com resultados recentes do maior telescópio de neutrinos em atividade, o gigantesco IceCube, localizado no Pólo Sul. E o resultado foi que, se existe mesmo uma violação da invariância de Lorentz, ela não deve ser maior que uma parte em mil bilhões, isto é, pelo menos cem milhões de vezes menor que a violação que resultado do OPERA sugere.

Os cálculos deles também mostraram que a situação só piora se essa violação da invariância de Lorentz depender da energia do neutrino, o que deveria acontecer para compatibilizar a medida do OPERA com outra medida da velocidade dos neutrinos, feita em 1987. Naquele ano, o experimento japonês Kamiokande detectou os neutrinos vindos da explosão de uma estrela na Grande Nuvem de Magalhães, a 168 mil anos-luz daqui, a supernova 1987A, e verificou que os neutrinos não viajam mais rápidos que a luz (se a velocidade dos neutrinos fosse a medida pelo OPERA, as partículas teriam chegado quatro anos antes na Terra). A energia dos neutrinos da 1987A, porém, era mil vezes menor que a dos neutrinos do OPERA, o que abre a possibilidade de que a violação dependa da energia. Mas essa mesma dependência não permitiria que os neutrinos superluminais de alta energia se formassem, de acordo com os cálculos de Cowsik e colegas, o que novamente torna o resultado do OPERA inconsistente com as leis da física.

Essa não é a primeira demonstração de que os neutrinos superluminais não podem ser explicados por uma violação da invariância de Lorentz. Em um trabalho semelhante publicado em outubro na Physical Review Letters (preprint), Andrew Cohen e Sheldon Glashow, ambos da Universidade de Boston, EUA, demonstraram que neutrinos superluminais tenderiam a perder energia ao longo do caminho, emitindo pares de elétrons e pósitrons (a antipartícula do elétron), de maneira semelhante a geração da onda de choque produzida por um avião quando quebra a barreira do som. Pelos cálculos de Cohen e Glashow, o OPERA não deveria detectar neutrinos com energias superiores a 12 GeVs, sendo que de fato alguns dos neutrinos chegavam a ter energias maiores que 40 GeVs. Outro experimento em Gran Sasso, o ICARUS, buscou por sinais da emissão de elétrons e pósitrons e nada encontrou.

Ao que parece, uma violação simples da invariância de Lorentz está descartada para explicar as medidas do OPERA. Como Cowsik e colegas comentam em seu artigo, pode ser que a violação tenha uma dependência da energia com termos matemáticos que precisamente cancelem o efeito que eles descobriram, mas isso soa bastante improvável. Se a medida do OPERA for confirmada, a física talvez passe por uma grande revolução, que no entanto manterá a relatividade de Einstein intacta.

***

P.S.: Pouco antes de publicar esse post encontrei este artigo interessante, em que os autores notam que todos os efeitos descritos acima que tornam o resultado do OPERA absurdo não existiriam se em vez da simetria de Lorentz ser quebrada, ela seja levemente deformada. Esse é um cenário teórico que alguns dos autores desse paper, os físicos Lee Smolin e Giovanni Amelino-Camelia vêm investigando há alguns anos, inclusive buscando por sinais de deformação na simetria de lorentz em observações de raios X, raios gama e raios cósmicos de altíssima energia vindos de explosões cósmicas extremas, até agora sem sucesso.

 

Referências:

Cowsik, R., Nussinov, S., & Sarkar, U. (2011). Superluminal Neutrinos at OPERA Confront Pion Decay Kinematics Physical Review Letters, 107 (25) DOI: 10.1103/PhysRevLett.107.251801

Descongelando o blog

meu episódio de Star Trek favorito

Como os leitores dos ScienceBlogs podem ter notado, o Universo Físico anda tão agitado quanto um condensado de Bose-Einstein a milikelvins do zero absoluto. Uma das minhas resoluções para o ano que vem é descongelá-lo aos poucos. Embora parte desse período hibernativo tenha sido desperdiçada em meio a atribulações prosaicas sobre as quais não vale à pena se alongar, passei outra parte do tempo refletindo sobre como um jornalista científico pode melhor utilizar o seu blog – reflexões que merecem um post a parte e que espero por em prática em 2012.

Talvez haja mais um post até o fim do ano, mas em todo caso, aproveito este para desejar a todos boas festas!

Sobre ScienceBlogs Brasil | Anuncie com ScienceBlogs Brasil | Política de Privacidade | Termos e Condições | Contato


ScienceBlogs por Seed Media Group. Group. ©2006-2011 Seed Media Group LLC. Todos direitos garantidos.


Páginas da Seed Media Group Seed Media Group | ScienceBlogs | SEEDMAGAZINE.COM