Micróbios fazem chover granizo, mais água na Lua e o espelho que cria luz do vácuo – destaques da semana

Micróbios fazem chover granizo
Pesquisadores encontraram bactérias bem no centro de pedras de granizo, sugerindo que esses micróbios foram semente a partir da qual as pedras de gelo cresceram e caíram. É mais uma evidência de que microorganismos seriam tão importantes para a precipitação de granizo, neve ou chuva, quanto as partículas a poeira e a fumaça que os cientistas atmosféricos tradicionalmente levam em conta em seus modelos do clima. A Sociedade Americana de Microbiologia dedicou uma sessão inteira ao tema em seu encontro anual, onde o estudo das pedras de granizo foi apresentado. A repórter Veronique Greenwood lembra no site 80beats que a ideia não é nova. Outro estudo realizado em 2008, por exemplo, analisou a população de bactérias de 19 quedas de neve em todo o mundo, descobrindo que os micróbios faziam com que os cristais de gelo crescessem em uma temperatura muito maior. Uma das espécies de bactéria induzia os cristais de gelo a crescer a -2∘C, em vez dos esperados -40 ∘C. Aliás, bactérias já são ingredientes de misturas usadas por resorts de ski em máquinas de fazer neve. Fazer neve ou chuva seria evolutivamente favorável às espécies, pois assim se dispersariam para novas regiões. (Fontes: 80beats, Physics Today News Picks. )


Mais água na Lua (será mesmo?)
Sondas espaciais confirmaram faz menos de 2 anos que há água em forma de gelo na superfície da Lua. Acredita-se que essa água chegou lá pelo impacto de asteroides e cometas. Mas um novo estudo sugere que ela pode ter vindo também do interior da Lua. Geoquímicos analisaram fragmentos microscópicos de lava endurecida encontrados no interior de cristais de olivina em meio a uma amostra de solo lunar trazida pela missão Apollo 17. Os cristais impediram que a água evaporasse durante o resfriamento da lava, permitindo assim saber qual era o conteúdo aquoso original dela. Surpresa: a concentração de água é de 20 a 100 vezes maior que a encontrada em outros estudos de rochas lunares, uma quantidade comparável a da lava da Terra. A descoberta contraria a teoria mais aceita para a formação da Lua, segundo a qual ela teria se formado há uns 4 bilhões de anos, a partir dos destroços da colisão da Terra com outro planeta de tamanho parecido ao de Marte. Os destroços teriam perdido seu conteúdo de água antes de se fundir para formar a Lua. A descoberta também contraria outro estudo, que por um método distinto concluiu que o interior da Lua é seco. (Fontes: NYT, BBC e Nasa; Imagem: foto microscópica de vidro vulcânico incluso em olivina da Lua, Crédito: Nasa)

Espelho cria partículas de luz do vácuo 
Imaginem um espelho se movendo quase à velocidade da luz. Os físicos prevêem que esse espelho geraria partículas de luz, ou fótons, um fenômeno conhecido como efeito Casimir dinâmico. Isso porque o vácuo não é de fato vazio, mas sim cheio de “campos quânticos”, cujos valores flutuam constantemente. Essas flutuações podem ser interpretadas em certos casos como o nascimento de pares de partículas elementares que desaparecem tão rapidamente quanto surgiram – são as chamadas partículas virtuais. Um espelho quase na velocidade da luz dá uma raquetada em alguns dos fótons virtuais, fornecendo a energia que eles precisam para se tornarem reais. É quase impossível acelerar um espelho normal para observar o efeito Casimir dinâmico. Um grupo de físicos, entretanto, conseguiu observar pela primeira vez o fenômeno, construindo uma aparelhagem que cria na prática a mesma perturbação no vácuo que um espelho viajando a 5% da velocidade da luz criaria. (Fontes: The ArXiV Blog, Ars Physica)


Censo dos filamentos da teia cósmica
Quando li a manchete no site da revista Cosmos “Estudante encontra massa faltante do universo”, logo pensei na minha ingenuidade, “descobriram uma quantidade de matéria normal que dispensa a  existência de matéria escura?” Não, não foi dessa vez. Como explica Ethan Siegel em seu blog, a porcentagem de matéria normal e a de matéria escura são determinadas por diversas observações independentes (flutuações da radiação cósmica de fundo, abundâncias esperadas dos elementos químicos mais leves, etc.) que, se estiverem erradas, levam todo o modelo do Big Bang por água abaixo. A “massa faltante” que a manchete se refere é parte da matéria normal do Universo que, de acordo com o modelo cosmológico, estaria em sua maior parte (90%) contida nos filamentos de gás e poeira entre os aglomerados de galáxias (como pode ser visto na imagem acima, um mapa do universo local também divulgado esta semana, cuja versão em 3D pode ser vista nos vídeos neste site). Ninguém até agora, porém, havia verificado a previsão. Um grupo de astrônomos australianos, incluindo a aluna de graduação Amelia Fraser-McKelvie, fez justamente isso mapeando as emissões de raios-X de 41 desses filamentos para estimar sua densidade e temperatura. (Fontes: Cosmos, Starts with a Bang; Crédito da imagem: T.H. Jarrett (IPAC/SSC))

E MAIS NOTÍCIAS:

*Cristais de olivina espiralando ao redor de uma estrela jovem (Nasa)

*Cachorros têm mais em comum com gatos do que gostariam, inclusive a maneira como usam a língua para beber, revelaram vídeos em raios-X (New Scientist)

*A melhor medida da “forma” do elétron até agora sugere que ele é perfeitamente esférico (como assim?
o elétron não é pontual? Mais sobre isso em um próximo post…) (Nature News, Uncertain Principles)

*Colisões de ions de chumbo no LHC criaram plasma de quark-gluons duas vezes mais quente que o produzido no RHIC (National Geographic News)

*Como calcular a idade de uma estrela por seu giro (mais sobre isso em um próximo post!) (Physics World)

E IMAGENS E VÍDEOS:

*Mais uma vez, o telescópio espacial Swift quebra recorde de erupção de raios gama mais antigo já vista. O universo tinha “apenas” 520 milhões de anos quando essa luz foi emitida:

*Campos elétricos e magnéticos criam estranhos padrões em um gás ionizado (plasma ) como este que aprece uma flor (via Physical Review Focus):

*A Sonata das Supernovas Ia (via Observations da SciAm):

.

*Fotografias de impactos de  Alan Sailer (via Boing Boing):

*Imagens de Titã e Encedalus, luas de Saturno, tiradas pela sonda Cassini (via Universe Today):

*”Parque fotovoltaico” inaugurado na França, em Le Mées, fornecerá energia elétrica para 8 mil famílias (Fonte: The Guardian, via @carloshotta ):

*A Orquestra Tesla (via Physics World blog):

*Uma bela imagem de parte da Nebulosa da Tarantula, uma região formadora de estrelas na Grande Nuvem de Magalhães, obtida pelo telescópio ESO:

MAIS LEITURAS INTERESSANTES:
*Universos paralelos: a interpretação dos muitos mundos da mecânica quântica e o multiverso da inflação cosmológica são a mesma coisa? (The ArXiV Blog, Cosmic Variance)
*Sonda Voyager 1  a um passo das estrelas (CH Online)
*A física e a imortalidade da alma (SciAm )
*Jornada ao Centro da Terra (SciAm)
*Cáusticas nos olhos (Gurney Journey)
*Kurt Vonnegut transforma Cinderela em uma equação (Krulwich Wonders)
*As paixões de Marie Curie: uma delas foi a radioatividade; as outras são contadas em um livro peculiarmente ilustrado de Lauren Redniss (via BrainPickings)
*Aaarrr! A física da vela, para piratas (io9)

Ketchup venenosos e planetas solitários, em uma galáxia muito, muito simétrica – destaques da semana

Veneno de cobra flui feito ketchup
Sempre imaginei que as presas de cobra injetassem veneno na gente do mesmo jeito que uma agulha de seringa médica injeta uma vacina. Isso é verdade para algumas espécies. A maioria das cobras venenosas, porém, não injetam seu veneno. Em vez disso, o veneno escorre por um sulco em suas presas (foto acima). Em
um novo estudo, físicos desvendaram a dinâmica desse processo. Eles descobriram que, assim como a ketchup, o veneno é um fluido chamado não-newtoniano: sua viscosidade diminui quanto mais rápido se mexe. É por isso que temos de chacoalhar ou espremer a embalagem de ketchup para o condimento sair, e é também por isso que o veneno da cobra não pinga antes da hora da picada. Quando a cobre morde sua presa, o veneno escorre para o interior da vítima, sempre pelo sulco, devido à diferença de tensão superficial do líquido dentro e fora do sulco. (Fonte: 80 Beats, ISNS; Imagem: Leo van Hemmem e Bruce Young)

Mundos Vagamundos
Vasculhando o espaço entre 50 milhões de estrelas perto do centro de nossa galáxia, um grupo de astrônomos observou dez planetas vagando livres, leves e soltos pelo espaço interestelar. Eles não viram os planetas diretamente, mas os detectaram por uma técnica chamada de micro-lente gravitacional. A massa de uma planeta  funciona como uma lente, distorcendo a luz de uma estrela distante que por acaso passe justamente atrás dele. Das centenas de eventos de microlente observados, dez duraram menos de dois dias, o implica que foram gerados por corpos com uma massa parecida com a de Júpiter. Por uma análise estatística, os astrônomos estimaram que esses planetas solitários podem ser até duas vezes mais comuns que os planetas orbitando estrelas. Seriam 400 bilhões deles só na Via Láctea. Sua existência já havia sido prevista por simulações computacionais do nascimento de sistemas planetários, nos quais a interação gravitacional entre os planetas em formação lançariam alguns deles – tanto rochosos, quanto gigantes gasosos – para fora do sistema. Seria possível a vida em um planeta solitário? Estudos recentes sugerem que sim, graças ao calor produzido pelo decaimento de isótopos radioativos e mantido por atmosferas espessas de gás hidrogênio. Imaginem só, se um desses planetas visitasse o nosso sistema solar. O que aconteceria??? (Fontes: Nasa, Chi Vó Non Pó, Nature, Physics World Imagem: concepção artística, NASA/JPL-Caltech)



Simetria Galáctica

Uma pena não podermos ver de longe nossa própria galáxia, a Via Láctea, como vemos as outras. Seria uma bela imagem, perfeitamente simétrica, sugere um achado recente. Ao analisarem dados sobre as emissões de rádio de hidrogênio e de monóxido de carbono de nuvens de gás da Via Láctea, astrônomos descobriram que um dos maiores braços de sua forma espiral, o braço Scutum-Centaurus, se estende por muito mais do que se imaginava. Isso significa que ele é tão grande quanto o braço do outro lado da galáxia, o braço de Perseus. Assim, metade da galáxia seria uma imagem espelhada da outra metade, com ambos os braços se estendendo a partir de extremos opostos do aglomerado de estrelas em forma de barra no centro galáctico. Por que só agora os astrônomos notaram uma estrutura gigantesca dessas com mais de 18 kiloparsecs de comprimento? A maioria dos estudos observa o plano da galáxia, enquanto essa extensão do braço Scutum-Centaurus se curva para fora, feito a borda de uma tampinha de garrafa. Os pesquisadores ainda precisarão de anos para mapear as nuvens de gás para ter certeza absoluta de que a estrutura é mesmo uma extensão gigante de um dos braços galácticos. A forma exata da espiral de nossa galáxia é uma questão polêmica entre os astrônomos, que discordam quanto ao número de braços , seus formatos e tamanhos.  (Fontes: Science News e The ArXiV Blog; Imagem: T. Dame, Robert Hurt)

Extinção em massa recalculada
Algumas estimativas prevêem a extinção de 18 a 35% de todas as espécies de seres vivos até 2050. Mas esse processo de extinção em massa pode ser na verdade cerca de 2 a 2,5 vezes mais lento, de acordo com um novo estudo de como as espécies desaparecem pela perda de seu hábitat – a principal causa da extinção. Isso significa que talvez possamos salvar mais espécies do que imaginávamos. Mesmo assim, não dá para sentir muito alívio, já que as taxas de extinção atuais continuariam de 100 a 1000 vezes maiores que as naturais. É impossível medir diretamente a perda de espécies, primeiro porque não conhecemos todas elas, segundo porque é muito difícil registrar a extinção da maioria que conhecemos. Em um dos métodos usados para estimar as taxas de extinção, os ecólogos assumem que o tamanho da área de hábitat que precisa ser destruída para extinguir uma certa espécie é igual a área mínima que precisariam vasculhar para encontrar pelo menos um indivíduo dessa espécie. No novo estudo, entretanto, os pesquisadores notaram que a perda de área necessária para remover o último indivíduo de uma espécie precisa ser muito maior, implicando que o método tradicional sobrestima as taxas de extinção. Eles também compararam seus cálculos usando um novo modelo com a distribuição de espécies de aves e árvores na América do Norte, demonstrando que o novo modelo fornece uma estimativa melhor. (Fontes: New Scientist, Ars Technica; Imagem: Nasa, tirada daqui)

Energia escura confirmada (mais uma vez)
Observações de quase 240 mil galáxias realizadas durante cinco anos pela eq
uipe de astrônomos do WiggleZ Dark Energy Survey confirmou que 70 a 75% da energia do universo não está na forma de matéria normal, radiação ou matéria escura. Essa forma desconhecida de energia descoberta pela observação de supernovas distantes em 1998, a chamada energia escura, age como uma espécie de anti-gravidade, constantemente acelerando a expansão do universo. A equipe do WiggleZ estudou aglomerados de galáxias a uma distância na qual os vemos como eram quando o universo tinha cerca de 7 bilhões de anos, mais ou menos a metade de sua idade atual. É nessa época que a anti-gravidade da energia escura começaria a superar a atração gravitacional entre as galáxias. Os cientistas confirmaram a ação da energia escura por dois métodos diferentes. Em um deles, observaram como as galáxias estão distribuídas no espaço. Medindo a distância entre elas e comparando com o valor esperado se essas distâncias fossem determinadas apenas pelas variações de densidade no início do universo, impressas na radiação cósmica de fundo, eles  determinaram a contribuição da energia escura para o afastamento das galáxias. No outro método, verificaram o quão rápido os aglomerados de galáxias crescem ao longo do tempo, à medida que mais e mais galáxias se atraem mutuamente pela gravidade, ao mesmo tempo que são repelidas pela energia escura. Ambas técnicas confirmam que a aceleração do universo devida a energia escura permanece constante ao longo do tempo. Não é a primeira vez que a energia escura é confirmada, e pelo jeito não será  a última. (Fontes: Nasa, BBC e Starts With a Bang; Imagem: Nasa/JPL-Caltech)

MAIS NOTÍCIAS:
*O “Dogma Central” da biologia parece que não é tão dogmático assim. Trechos idênticos de DNA, trancritos em cadeias de RNA editadas por alguma coisa que ninguém sabe, podem produzir proteinas bem diferentes.

*Em Saturno, uma tempestade do tamanho da Terra.

*Na Terra, relâmpagos gigantes disparados para cima.

*O planeta Gliese 581d, vizinho do famoso 581g (que talvez não exista), também pode ter água líquida, sugerem simulações.

*Os elétrons captados pelo observatório espacial de raios cósmicos PAMELA continuam apresentando sinais inconclusivos, mas tantalizantes, de matéria escura…

*Sentimos aqui em cima na crosta terrestre os efeitos da dinâmica do manto e do núcleo do planeta. Mas parece que o contrário também é verdadeiro! Parte do núcleo da Terra derrete embaixo de regiões sem muita atividade tectônica, como o Brasil, sugere estudo que saiu na Nature.  

VÍDEOS E IMAGENS SENSACIONAIS:

*Imagens de alta resolução dos jatos emitidos (muito provavelmente) por um buraco negro supermassivo no centro de uma galáxia:
 

*Para quem acha que pêndulos são chatos (mais informações aqui):

*Fotos da trilha de fumaça do ônibus espacial Endavour vista de balão lançado por estudantes (via G1):

*Um laço de tartan escocês foi o objeto da primeira foto colorida da História, tirada dia 17 de maio de 1861, pelo fotógrafo Thomas Sutton e por ninguém mais nem menos que o físico James Clark Maxwell  (via thedailywhat, betapixel e BBC):

E MAIS LEITURAS INTERESSANTES…

*Robert Krulwich não consegue parar de pensar na boca irreverente dos Platybelodons.

*Margareth da Silva Copertino alerta para as emissões do “carbono azul”, vindos da destruição de manguezais, restingas e outras vegetações da costa brasleira.

*Ray Villard reporta sobre físicos especulando sobre como uma civilização alienígena avançada seria capaz de criar pequenos buracos negros e usá-los para propelir espaçonaves (é sério)

*Daniel Ferrari conta como as formigas o ensinaram a fazer programas de computador. 

* Philip Ball explica como a complexidade de seres multicelulares como nós pode ser uma desvantagem e nos trazer sérios problemas a longo prazo.

* Phil McAndrew revela “segredos super óbvios” para os aspirantes a cartunistas, que servem para escritores e outros artistas em geral.

Mais sobre fragmentação e Mata Atlântica

Só agregando mais informações interessantes à matéria que escrevi para a revista Pesquisa Fapesp sobre a diversidade de animais em habitats fragmentados.
O modelo que Renata Pardini e seus colegas da USP criaram para explicar a diversidade de pequenos mamíferos nas paisagen fragmentada de Mata Atlântica tem sérias implicações para o Pacto Pela Restauração da Mata Atlântica, um grande esforço do governo e ONGs que pretende dobrar a cobertura da Mata Atlântica até 2050. Para saber mais sobre o Pacto e a situação atual das florestas brasileiras, recomendo vocês lerem a reportagem de Isis Diniz na edição de maio da Scientific American Brasil. 
Um dos ingredientes-chave do modelo é levar em consideração a capacidade de locomoção dos animais, que nem sempre é a que imaginamos. A maioria das pessoas acha que as aves, por serem capazes de voar, não tem limites para se locomover. Mas nem sempre é o caso. Às vezes uma simples estrada é um obstáculo intransponível, como um grupo de pesquisadores da Unesp verificou, reporta Luiz Cristino na edição de maio da Unesp Ciência.

Como prever (e evitar) o colapso de ecossistemas?

A revista Pesquisa Fapesp deste mês traz uma reportagem minha sobre biólogos que querem entender porque alguns trechos do que restou da Mata Atlântica preservam uma grande diversidade de animais e outros não. Em um artigo científico publicado ano passado na PLoS ONE, os pesquisadores Renata Pardini, Adriana Bueno, Toby Gardner, Paulo Prado e Jean Paul Metzger, explicaram porque isso acontece com um modelo que comprovaram analisando os dados de um levantamento das populações de pequenos mamíferos (roedores e marsupiais) no planalto paulista.  “Um trabalho insano”, foi como Pardini descreveu para mim o esforço de coleta dos pequenos mamíferos que realizou com Adriana. Em cada um dos 68 pontos de coleta, seja dentro de fragmentos ou da mata contínua, as zoólogas passavam 32 dias registrando os animais que caiam nas armadilhas, uma série de 11 baldes de 60 litros enterrados no chão da floresta, distantes 10 metros um dos outros. Identificar as espécies também foi um desafio, pois havia relativamente pouca informação sobre os animais, por serem pequenos, noturnos e furtivos. Trabalhando junto com taxonomistas, chegaram a encontrar uma espécie de um gênero novo, o roedor Drymoreomys albimaculatus.

O modelo, porém, não vale só para a Mata Atlântica, nem só para pequenos mamíferos, mas em princípio para qualquer espécie animal vivendo em um habitat fragmentado:

Segundo o modelo, o colapso das populações seria causado pela combinação de processos que ocorrem em duas escalas: local e regional. Os processos com efeito regional estão ligados à dificuldade de migrar de um fragmento de floresta para outro. Condicionada à área total de matas remanescentes na região, essa dificuldade aumenta com o avanço do desmatamento, pois crescem exponencialmente as distâncias separando os trechos de florestas – e muitas espécies, até pássaros como o trepador-coleira (Anabazenops fuscus), não se deslocam de um fragmento a outro quando há pastagens ou estradas no caminho. Presos a áreas restritas, essas espécies se tornam mais suscetíveis a processos que influenciam as extinções em escala local, como a redução na área dos fragmentos, que diminui o tamanho das populações.

O mais importante é que esse modelo pode orientar decisões sobre o melhor modo de aplicar recursos para conservar e recuperar a mata atlântica. Segundo os pesquisadores, ele prevê, por exemplo, que os eventos que precedem a extinção dariam pistas de sua chegada com antecedência. A maneira como as espécies se distribuem nos fragmentos de uma região sinaliza quando a biodiversidade está no limite de cair abruptamente, mas ainda tem boa chance de ser recuperada. “Nessas condições, pequenos investimentos de restauração que facilitem o fluxo de animais entre os fragmentos produziriam um retorno grande”, diz Metzger. “Se quisermos aumentar a cobertura florestal da mata atlântica com ganhos rápidos de diversidade biológica, é nessa faixa [regiões com 20% a 40% de remanescentes] que temos de atacar.”LINK

Essa é mais uma pesquisa que vai na tendência atual de buscar sinais nos ecossistemas que indiquem que esses estejam perto do colapso, influenciadas pelas ideias de ecólogos como Marten Scheffer (veja uma palestra dele aqui). Mês passado um experimento em um lago nos EUA conseguiu observar justamente isso. Os trabalhos nessa área parecem bem adiantados em ecossistemas aquáticos e estão apenas começando em outros ecossistemas (ecólogos, me corrigam!).
 
Na verdade, me interessei em fazer a reportagem inicialmente porque o modelo dos pesquisadores é inspirado em parte em resultados de simulações de computador do desmatamento, cujos resultados podem ser entendidos por uma teoria que vem da física-matemática, a teoria da percolação, que estuda o grau de conexão entre pontos em uma rede bidimensional. Os resultados das simulações sugerem que, à medida que a cobertura de vegetação nativa diminui, seus fragmentos sofrem transformações abruptas durante o processo, parecidas com as transições de fase que a água passa durante sua fervura ou congelamento. Uma dessas transformações é o distanciamento exponencial dos fragmentos. De início, o desmate afasta lentamente os fragmentos, até que de repente, a distância entre eles começa a aumentar exponencialmente. Essas transformações foram confirmadas também por estudos de paisagens reais, feitos por Metzger e outros pesquisadores. Em um artigo publicado em 2006 na revista Landscape Ecology, por exemplo, Metzger e seu então aluno de mestrado Francisco de Oliveira Filho analisaram por fotos de satélite a evolução do desmatamento de três áreas diferentes na Amazônia ao longo de 14 anos. Embora cada uma das áreas tenha sido desmatada de maneiras diferentes (uma por pequenas propriedades ao longo de um estrada, outra por propriedades distribuídas irregularmente e a última por grandes fazendas), eles observaram nos três casos mudanças bruscas ao longo do tempo nos tamanhos dos fragmentos e nas distâncias entre eles.

crédito da imagem: © 2010 Pardini et al. T, doi:10.1371/journal.pone.0013666.g002

As origens do carbono, o laser que entorta água e uma nova luz sob o câncer – destaques da semana

Os TOP 5 da semana passada:

Os blocos dos blocos da vida
Se a água é o “solvente universal”, o carbono é a “fita crepe” da vida, disse uma vez a jornalista científica Natalie Angier. Agora, mais de 60 anos depois que Fred Hoyle propôs a reação pela qual nasceriam os núcleos atômicos de carbono, pesquisadores conseguiram desenvolver o poder computacional e os truques matemáticos necessários para calcular como prótons e nêutrons grudam uns nos outros durante essa reação. O que se sabe sobre a formação dos elementos químicos é que logo após o Big Bang, o universo era cheio de hidrogênio, hélio e um pouquinho de lítio. Os elementos mais pesados restantes, incluindo o carbono, foram forjados no interior de estrelas massivas e na explosão que marca o fim delas. Em 1954, Hoyle imaginou como três núcleos de hélio-4 poderiam se fundir no interior dessas estrelas formando um núcleo de carbono-12. Primeiro, dois núcleos de hélio se juntariam em um núcleo de berílio-8. Em seguida, o berílio precisaria colidir com outro hélio para formar um núcleo de carbono-12. Esse carbono nasceria com energia em excesso, ou no jargão dos físicos, em um “estado excitado”, que era desconhecido na época, sendo observado em laboratório apenas três anos depois. Os cálculos agora publicados na Physics Review Letters revelam como a dinâmica dos prótons e nêutrons do berílio e do hélio criam esse estado excitado. (Fontes: The Photonist, Physics, Dot Physics, A Física Se Move. Crédito da imagem: Carin Cain)

Laser entorta água
Uma gota d’água normal funciona como uma lente biconvexa, explica muito bem o Prof. Dulcidio. Mas um aparato usando feixes de raios laser de potência tão fraca quanto o de um aparelho de DVD pode ser capaz de transformá-las em qualquer tipo de lente (em bicôncava, por exemplo), afirma o casal de físicos franceses Janine e Olivier Emile, em artigo na Physical Review Letters. Eles incidiram um feixe laser em um recipiente cheio d’água com um espelho no fundo e descobriram que, inclinando o feixe no ângulo certo, a combinação da pressão da luz dos raios incidente, transmitido e refletido era capaz de superar a tensão superficial da água, forçando o líquido a se curvar para dentro, criando um vale na superfície (Até onde entendi, não dá para fazer a experiência em casa, pois a curvatura na superfície é pequena demais, sendo verificável apenas com um aparelho especial). A descoberta foi uma surpresa, pois apesar de experimentos anteriores demonstrarem desde os anos 1970 a capacidade da luz deformar a superfície de líquidos, esses foram realizados com laseres de alta potência, e o resultado era um calombo na superfície, não um vale. O por quê da diferença ainda não está claro. Seja como for, a descoberta abre a possibilidade de usar laseres para criar lentes que mudam de forma, para telescópios ou celulares, por exemplo. (Fonte: Physical Review Focus. Crédito da imagem: telegraph.com.uk)

Uma nova luz sobre o câncer
Sabe aquela luminescência azul das piscinas dos reatores nucleares, a chamada radiação Cherenkov? Ela está começando a ser usada agora  em uma nova técnica para identificar células cancerígenas. Nicole Ackerman e seus colegas da Universidade Stanford, EUA, apresentaram na última reunião da American Physical Society, o seu Imageamento por Luz Cherenkov de tecidos vivos. Na técnica, o paciente ingere glicose contendo o elemento radiativo actínio-225. Como as células cancerígenas consomem mais glicose que as normais, o actínio-225 se concentra dentro delas. O elemento radioativo dispara elétrons que viajam mais rápido que a velocidade da luz na água. Em um processo que lembra o estrondo gerado pelos aviões quando eles quebram a barreira do som, esses elétrons velozes criam uma onda de choque eletromagnética, emitindo luz (a tal radiação Cehrenkov) que pode ser detectada pelos mesmos sensores que os biomédicos já utilizam em outras técnicas de imagem, como a bioluminescência. A técnica já está em fase de testes clínicos nos EUA. (Fonte: Dyscovery News)




Raios cósmicos influenciam o clima da Terra?
Tudo indica que a resposta é não, pelo menos não a ponto de causar mudanças grandes no clima como o aquecimento global. Todos pesquisadores respeitados acreditam nisso, com exceção de Henrik Svensmark. Segundo o físico dinamarquês, a passagem dos raios cósmicos pela atmosfera ionizaria as partículas de poeira e fumaça em torno das quais o vapor d’água se condensa para formar nuvens. Essa ionização aumentaria a formação de nuvens, o que por sua vez afetaria o clima, aumentando ou diminuindo a temperatura global. A quantidade de raios cósmicos galácticos que atingem a Terra depende da atividade do Sol,  já que o campo magnético solar age como escudo protetor desviando parte deles. Assim, Svensmark defende que há uma conexão intensa entre a atividade solar e o clima terrestre, embora não haja evidências disso. Em um artigo recentemente publicado na Geophysical Research Letters, Svensmark e colegas reportam como um feixe de elétrons, simulando os raios cósmicos, aumentou a formação de aglomerados de moléculas d’água em uma câmara de 0,05 m³cheia de gases, simulando a atmosfera terrestre. Mas um dos membros da equipe contou ao Physics World que para provar mesmo a conexão entre os raios cósmicos e a formação de nuvens, terão de repetir a experiência com uma câmara de nuvens maior, o que esperam realizar no experimento CLOUD, do CERN. Ainda assim, mesmo se o CLOUD for bem sucedido, ainda restará responder se o efeito dos raios cósmicos nas nuvens seria desprezível ou não para afetar o clima. (Imagem: Experimento CLOUD)



Computador dito quântico tem algo de quântico afinal

Em 2007, a maioria dos especialistas classificou de golpe de marketing o anúncio da empresa canadense D-Wave, afirmando ter criado o primeiro computador quântico comercial, com um processador de 16 “qubits” – que, ao contrário de uma sequência de bits convencional, poderia assumir todas as possíveis combinações de 0s e 1s simultaneamente, permitindo em tese à máquina resolver problemas impossíveis para um computador normal. Na época, a comunidade científica se queixou porque a empresa não apresentou nenhuma evidência de que sua invenção funcionava quânticamente. Agora, finalmente, cientistas filiados a D-Wave publicaram na Nature um artigo com os resultados de um experimento que mostra que o mecanismo pelo qual seu aparelho funciona envolve um processo quântico chamado de tunelamento. A demonstração, entretanto, ainda é pouco. Uma prova crucial que falta é mostrar se os qubits do mecanismo permanecem “emaranhados” – o estado que permite rodar programas explorando aspectos quânticos dos qubits (Fontes: ScienceNOW, blog da D-Wave, blog do Scott Aaronson. Imagem: processador da D-Wave)

Mais notícias que me chamaram atenção:

*Atmosferas espessas de hidrogênio podem tornar planetas distantes de suas estrela habitáveis.

*Telescópios captaram as erupções de raios gama mais brilhantes que já vieram do centro da Nebulosa do Carangueijo, onde acredita-se há uma estrela de neutrons e turbulentos campos magnéticos. A intensidade e o período de poucos dias dessas erupções desafiam explicações. :

*Vem ai um novo tipo de fone de ouvido que promete eliminar o desconforto causado pelos fones atuais devido às pressões que exercem no sistema auditivo (via iG e io9)

* Fazer um buraco negro em casa é complicado, mas uma analogia matematicamente precisa de um buraco branco é fácil de criar bem na pia da cozinha.

*Astrofísicos ponderam a possibilidade de hidrogênio sólido existir no espaço ser a fonte de um misterioso brilho difuso do meio interestelar.

*Missão de barco robótico para explorar mares de Titã, lua de Saturno, mencionada ao Estadão por brasileiro que trabalha na Nasa, está na lista das finalistas da agência para receber financiamento.

Imagens e vídeos incríveis da semana:
 
*A lua Iapetus, de Saturno, tem uma estranha cadeia montanhosa em seu equador (via ArXiV blog):

* A sonda SOHO flagra cometa caindo no Sol (via Universe Today):

*Para quem lembra das aulas de química do colégio, a equação de Henry para dissolução de gases em líquidos, escrita em forma de gases dissolvidos em líquidos, na revista Wired:

*No mar da Islândia, entre duas placas tectônicas (via Folha):


*A macieira de Newton (via Daily Mail):

*Tudo sobre o Fonotropo:

*As Caverna de Carlsbad iluminada com LEDs, e sem LEDs (via EPOD):

*A natureza por números (via Ciência na Mídia):

*Como funciona o detector de fumaça (via The Best Physics Videos):

*Conan O’Brein pede ajuda a um físico do MIT para quebrar seu recorde de girar uma aliança (via Dot Physics, com boas observações sobre como conduzir um experimento):

*Amebas sociais reproduzem mapa rodoviário da Espanha (via Wired Science):

*E para terminar, um vídeo inspirador mostrando a Via Láctea vista da montanha de El Teide, na Espanha, por Terje Sorgjerd:

E mais uma miscelânia de textos que ainda quero dar uma lida:

*Entrevistas com Stephen Hawking no NYT e no the Guardian, sobre vida, morte, vida após a morte, teorias de tudo,
essas coisas.

*Um discurso inspirador de Robert Krulwich para os novos jornalistas.

*Buracos negros eclipsando raios-X no núcleo de galáxias ativas.

*Planos para observar raios cósmicos ultra-energéticos em satélites.

*Todos sabem como os dinossauros se extinguiram, mas como eles surgiram?

* Celebrando os 100 anos da descoberta da supercondutividade

* A física do voo 447

*O problema da replicação nos experimentos científicos

*Novo livro sobre a emergência das baterias de lítio, cada vez mais importantes

*Entrevista com João Steiner sobre astrofísica de buracos negros

*Quem é mais eficiente: fotossíntese das plantas ou as células fotovoltaicas dos painéis solares?

*O tic-tac da vida: biologia sistêmica

*A planta mais solitária do mundo.

O Universo iluminado por detrás, uma Super Terra infernal e os 15 minutos de fama da antimatéria – Destaques da Semana

Esta é a primeira edição em muitos meses do “destaques da semana” do Universo Físico. Espero reviver um hábito antigo meu de pegar a enxurrada de notícias de ciência que nos atinge toda semana e selecionar cinco ou seis delas que mais chamaram minha atenção para ler com mais cuidado e resumir aqui no blog. Tomara que isso seja útil para alguém além de mim…



O Universo iluminado por detrás
Astrônomos criaram o maior e mais detalhado mapa tridimensional do universo visível, quando ele tinha apenas 3 bilhões de anos (hoje tem quase 14 bilhões). Para tanto, usaram um instrumento chamado BOSS que acoplado ao telescópio SDSS, permitiu coletar a luz individual de 14 mil corpos celestes chamados quasares – galáxias extremamente brilhantes e distantes, cuja a maior parte da luminosidade é emitida concentrada em um feixe, que serve de holofote para iluminar o universo mais recente. No caminho em direção a Terra, parte da luz desses feixes é absorvida por nuvens de gás hidrogênio, que re-emitem a luz em comprimentos de ondas diferente, imprimindo no espectro da luz dos quasares uma série de linhas que os astrônomos chamam de “floresta Lyman-alfa”. Analisando essas “florestas” é possível criar um mapa das variações de densidade das nuvens de hidrogênio, revelando quando e como elas se expandiram ou contraíram O mapa foi divulgado  em um encontro da American Physical Society esta semana. Os pesquisadores acreditam que acrescentando mais quasares ao mapa, poderão alcançar a sensibilidade para testar o papel da energia escura na aceleração da expansão do universo. (Fontes: Wired, New Scientist e LBNL. Imagem 1 extraída desta apresentação . Crédito da imagem 2: A. Slosar e colabroção SDSS-III, extraida da Wired)

Super Terra infernal em estrela visível a olho nu
“Há um certo prazer em ser capaz de apontar para uma estrela visível a olho nu e saber a massa e o raio de um de seus planetas”, escreve um grupo de astrônomos em um artigo, no qual reportam observações com o telescópio espacial canadense MOST. Observando a queda de luminosidade provocada pela passagem do planeta “55 Cancri e” em frente de sua estrela, a 55 Cancri, há 41 anos-luz de distância e com massa semelhante a do Sol, eles calcularam a distância do planeta à estrela (20 vezes mais próximo que Mercúrio do Sol) e o seu raio (60% maior que o da Terra). De observações anteriores da oscilação da velocidade radial da estrela, eles já sabiam o período de translação (17 horas e meia) e a massa do planeta (14 vezes a da Terra). Assim, determinaram que a densidade do “55 Cancri e” é quase o dobro da Terra, tão denso quanto chumbo. Outro grupo de astrônomos, porém, usando o telescópio espacial infravermelho Spitzer, da Nasa, obteve um valor 1,3 vezes maior para o raio, o que daria para o planeta uma densidade um pouco menor que a da Terra. Ambos grupos não sabem explicar a discrepância, que esperam resolver apontando o telescópio Hubble para a 55 Cancri. Em todo caso, está claro que o “55 Cancri e” faz parte de uma nova classe “Super Terras” próximas a suas estrelas – planetas rochosos um pouco maiores que a Terra, muito provavelmente com uma face sempre voltada para o seu sol, coberta por um oceano de lava – do qual fazem parte também os planetas recém descobertos Corot 7b e Kepler 10b. (Fontes: Universe Today, National Geographic News, Centauri Dreams e Starts With a Bang! Crédito da imagem: Jason Rowe, NASA Ames and SETI Institute and Prof. Jaymie Matthews, UBC)

Os 15 minutos de fama da antimatéria
Físicos do experimento ALPHA, no CERN, quebraram o recorde de aprisionamento de antimatéria estabelecido por eles mesmos em 2010. Ano passado, os pesquisadores anunciaram que haviam criado 38 átomos de anti-hidrogênio ao colidir uma nuvem de pósitrons (partícula de mesma massa que o elétron, mas com carga elétrica positiva) com um nuvem de antiprótons (partícula de mesma massa que o próton, mas com carga elétrica negativa), e os haviam aprisionado por 1/5 de segundo em uma armadilha magnética, tempo após o qual os anti-hidrogênios acabavam sendo aniquilados, ao entrar em contato com a matéria normal. Agora, o time do ALPHA conseguiu criar 309 anti-hidrogênios e mantê-los aprisionados por mil segundos, um pouco mais que 15 minutos. Conseguindo manter a antimatéria intacta por mais tempo vai permitir nos próximos anos realizar experimentos que vão testar se a antimatéria reage de maneira diferente à gravidade (será que antimatéria cai para cima?) ou ao eletromagnetismo (o espectro de emissão e absorção de luz do anti-hidrogênio é diferente do hidrogênio? ). (Fontes: Physics World, New Scientist, The ArXiV Blog. Crédito da imagem: Niels Madsen, ALPHA, CERN)


Brisa de matéria escura?
A famosa matéria escura – cuja existência é invocada pelos astrofísicos para explicar do giro das galáxias à evolução do universo inteiro – constitui 80% de toda a matéria, na forma de nuvens de gás rarefeito englobando a maioria das galáxias. Ela permeia tudo a nossa volta, embora seja imperceptível por interagir quase nada com a matéria comum. Alguns experimentos estão tentando obs
ervar colisões de partículas de matéria escura com os átomos de seus detectores, instalados no subterrâneo de minas ou montanhas para isolá-los da colisão com outras partículas que vem do espaço. Esta semana foi anunciado que o experimento CoGeNT registrou durante seus 15 meses de operação um excesso de colisões no verão e um déficit delas no inverno – um sinal atribuído a um “vento” de matéria de escura, que atingiria a Terra em seu giro em torno do Sol. A chance do sinal ser obra do acaso, porém, é muito alta. Serão necessários muito mais dados para confirmar uma possível descoberta. O sinal, entretanto, chamou a atenção por ser o primeiro resultado que se parece com o observado por outro experimento, o DAMA/LIBRA, em funcionamento há mais de dez anos, mas que contradiz os resultados do XENON100 e do CDMS II, que não registraram nada até agora.  (Fontes: Cosmic Variance, Physics Buzz, New Scientist, Science News. Imagem: Pesquisador-chefe do CoGeNT segurando a peça de germânio que serve de detector de matéria escura ).


Relatividade Geral confirmada (de novo)
Dois efeitos previstos pela teoria da gravitação de Einstein, a Relatividade Geral, foram confirmados pela equipe de cientistas da missão Gravity Probe B (GP-B). O projeto mais longo da Nasa (nasceu em 1959), a sonda ficou em órbita da Terra entre 2004 e 2005, carregando um conjunto de quatro esferas de quartzo cobertas de nióbio, cada uma girando rapidamente em torno de si, isoladas o máximo possível do ambiente de modo que o eixo de rotação de cada uma delas fosse influenciada apenas pela gravidade da Terra. Infelizmente, uma série de defeitos inesperados em sua aparelhagem e uma tempestade solar comprometeram seriamente a precisão do experimento. Agora, finalmente, a equipe do GP-B afirmou conseguir extrair de seus dados cheios de ruído os sinais de que os eixos de rotação das esferas foram desviados 0,0018 graus em um ano na direção norte-sul, como se esperaria de um corpo em queda livre no espaço curvo da Terra, e desviados de 0,000011 graus em um ano na direção leste-oeste, devido à curvatura provocada pela rotação do planeta. O anúncio serviu mais como uma prestação de contas da Nasa, uma vez que a GP-B foi muito criticada por sua demora e seu custo (760 milhões de dólares), além desses dois efeitos já terem sido comprovados por outros experimentos, inclusive com maior precisão. Mas ninguém pode negar o pioneirismo da GP-B e as tecnologias que sua equipe desenvolveu ao longo dos anos, que levaram à criação do GPS, por exemplo. (Fontes: Discovery News, Wired Science, Science News, Centauri Dreams, Carlos Orsi, Chi vó non pó, Science NOW Imagem: Gravity Probe B)

Fontes misteriosas de raios cósmicos no hemisfério sul
Embora tenha sido planejado para observar neutrinos, o experimento IceCube, próximo ao pólo Sul, detecta todo ano involuntariamente dezenas de bilhões de raios cósmicos – núcleos atômicos vindos do espaço que atingem a Terra a velocidades próximas a da luz. Raios cósmicos colidem com átomos da atmosfera, produzindo partículas carregadas chamadas múons. No gelo da Antártica, os múons emitem luz que é registrada pelos foto detectores do experimento. Físicos apresentaram na reunião da American Physical Society um mapa do hemisfério sul que mostra um excesso de raios cósmicos vindos de metade do céu, e um déficit na outra metade. Um padrão semelhante foi observado por outros experimentos no hemisfério norte. O problema é que esperava-se que os raios cósmicos viessem igualmente de todas direções, uma vez que suas prováveis fontes estão bem longe da Terra e os campos magnéticos da galáxia e de suas estrelas embaralharia suas direções. Algum fenômeno magnético, talvez  dentro do nosso sistema solar, está concentrando o raios cósmicos em certas partes do céu. Mas o que? (Fontes: New Scientist, PhysOrg e Astronomy)

Sobre ScienceBlogs Brasil | Anuncie com ScienceBlogs Brasil | Política de Privacidade | Termos e Condições | Contato


ScienceBlogs por Seed Media Group. Group. ©2006-2011 Seed Media Group LLC. Todos direitos garantidos.


Páginas da Seed Media Group Seed Media Group | ScienceBlogs | SEEDMAGAZINE.COM