Arquivo da categoria: Paleontologia Geral

Astropaleobiologia: Uma ciência embrionária

 
Esta contribuição foi feita pelo aluno de graduação da Universidade Federal de Uberlândia (UFU) chamado Rodolfo Otávio dos Santos. Atualmente ele se encontra no 6º período do curso de Ciências Biológicas e está estagiando no Laboratório de Paleontologia da UFU (https://www.facebook.com/PaleoUFU).
Devido ao seu interesse na área e de auxiliar na divulgação sobre tais assuntos, ele seguirá contribuindo com mais postagens sobre os mais variados tópicos. Rodolfo fez sua primeira contribuição tratando sobre a discrepância entre a abundância de dinossauros na Argentina x Brasil (aqui) e sua segunda discutindo sobre quais fósseis reais foram usados como base para os Pokemon fósseis (aqui). Hoje elecomenta brevemente sobre uma ciência que não é nova, mas que nas últimas décadas tem apresentado novas descobertas incríveis. A ciência em questão é a Astrobiologia, bastante em voga nas ultimas semanas devido a descoberta de novos planetas com potencial significativo de haver vida!


Uma forma bastante eficiente de se conhecer uma ciência é saber qual seu objeto de estudo, ou seja, quais perguntas ela busca responder. Dessa forma a Biologia, por exemplo, tem como objetivo final explicar a totalidade das questões relacionadas à vida. Para áreas emergentes da ciência, no entanto, delimitar as questões que as concernem não é uma tarefa muito simples, pois a maioria aborda temas cujo nosso conhecimento atual é demasiadamente pequeno. Podemos citar, como exemplo, estudos sobre a astropaleobiologia, o tema deste texto.
É preciso, de início, definir o termo astropaleobiologia, que é: área da ciência responsável pelo estudo dos fósseis encontrados fora do planeta Terra. Nesse sentido, é válido mencionar que o vocábulo astropaleontologia já era utilizado anteriormente, porém com outros significados, como: o estudo da evolução das estrelas e/ou o estudo de como os eventos astronômicos influenciaram a vida da Terra. Sendo assim, o termo astropaleobiologia é atualmente o mais utilizado para designar a área que estuda os restos de organismos vivos que porventura habitaram outros locais do nosso universo.
A partir do momento que os astrônomos começaram a estimar com maior precisão o tamanho do universo e se depararam com sua grandeza, logo perceberam que as escalas de medidas convencionais eram ineficazes para as distâncias cósmicas. A noção de que o universo é infinitamente grande e antigo fez com que novos questionamentos surgissem. Parece existir uma incongruência entre a quantidade de espaço disponível e o número de formas de vida no universo, conhecida popularmente como Paradoxo de Fermi. Em outras palavras, parafraseando o célebre astrônomo norte americano Carl Sagan: “Seria o universo um grande desperdício de espaço?”.

Fig. 1 (Créditos NASA)
Fig. 1: Foto conhecida como “O ponto pálido azul”, tirada pela espaçonave Voyager 1, a uma distância de 6,4 bilhões de km, próxima da órbita de Saturno. Nela, nosso planeta aparece como um pequeno ponto luminoso, em contraste com a imensidão e escuridão do espaço circundante. (Créditos: NASA)

Quando o assunto é a possibilidade de vida extraterrestre, outro tópico importante é a Equação de Drake. Trata-se de um famoso cálculo, criado por Frank Drake, que busca estimar a quantidade de civilizações presentes na galáxia, partindo do uso de algumas variáveis (até então impossíveis de serem mensuradas na época de sua criação, ainda que hoje algumas delas sejam razoavelmente conhecidas). A equação foi recentemente atualizada, havendo uma substituição de algumas variáveis por outras que atualmente são capazes de serem mensuradas, passando a ser conhecida como Equação de Seager.
Fig. 2 (Créditos Revista Época)
Fig. 2: Comparação entre as duas equações. A mais recente possui variáveis que podem ser mensuradas a partir de dados coletados principalmente pela Sonda Kepler, dando uma estimativa mais aproximada do número de planetas habitáveis. (Créditos: Revista Época)

 
A descoberta de organismos vivos fora da Terra traria implicações para toda nossa sociedade, principalmente para a ciência, filosofia e religião. Por exemplo, a possibilidade de múltiplas origens do que conhecemos como vida, ou o fato dos organismos vivos terem se originado em outros locais do universo e posteriormente terem colonizado a Terra (a famosa panspermia cósmica) revolucionariam toda a Sistemática Filogenética e, consequentemente, o modo como entendemos as relações de parentesco entre os seres vivos.
Mesmo nos dias atuais, não existe um consenso entre os biólogos sobre uma definição universal de vida. A existência de seres extraterrestres, que provavelmente teriam uma bioquímica muito diferente da nossa, poderia fazer com que a resposta para tal pergunta ficasse ainda mais difícil, pois ampliaria o leque de possibilidades para aquilo que definimos como um ser vivo. Em Titã, um dos satélites naturais de Saturno, cientistas têm especulado sobre um possível tipo de vida muito diferente da terrestre, baseado em hidrocarbonetos como o metano, dada a ausência de água líquida nessa lua.
Fig. 3 (Créditos Walter Myers)
Fig. 3: Representação artística de uma sonda explorando os lagos de hidrocarbonetos de Titã. Astrônomos descobriram que existe um ciclo de metano semelhante ao ciclo da água terrestre. Dessa forma, haveriam condições para o desenvolvimento de formas de vida muito diferentes das terráqueas, ainda que muito simples. (Créditos: Walter Myers)

 
Do ponto de vista astropaleobiológico, a hipótese mais interessante seria a de que, tal como ocorre na Terra, as taxas de extinções de seres vivos no universo sejam grandes, de forma que a grande maioria dos organismos já se extinguiram. Dessa forma, para conhecermos de fato essa diversidade inimaginável, teríamos que estudar os vestígios por eles deixados, provavelmente análogos ao que conhecemos como “fósseis”. Portanto, nesse momento, entra em cena a Astropaleobiologia.
Desde o final do século XX, graças às melhorias em nossa tecnologia, foi possível detectar os primeiros exoplanetas (planetas localizados fora do sistema solar). Atualmente, são conhecidos mais de 3000, alguns deles com características semelhantes às encontradas na Terra e consequentemente, os locais mais prováveis de encontrarmos vida fora de nosso planeta. Os radiotelescópios também têm ajudado os astrobiólogos na procura pela vida extraterrestre. Em 2016, a China inaugurou o maior até então já construído, o que pode ser um passo definitivo para respondermos a questão: estamos ou não sozinhos no universo?
Fig. 4 (Créditos Nan et al)
Fig. 4: Radiotelescópio chinês, conhecido como FAST (sigla para Five-hundred-meter Aperture Spherical Telescope). Estes aparelhos captam sinais (ondas de radio), emitidos naturalmente por estrelas, galáxias, quasares e outros objetos. Além disso, podem ser utilizados na procura de eventuais transmissões de civilizações extraterrestres. (Créditos: Nan et al)

 
Apesar do pequeno número de evidências, existem materiais para estudos astropaleobiológicos e, por mais paradoxal que possa parecer, esses materiais foram encontrados em nosso próprio planeta, porém suas origens remontam a um local distante. No passado, corpos celestes chocaram-se contra Marte, fazendo com que rochas marcianas fossem lançadas para o espaço. Eventualmente, algumas delas caíram na Terra e os cientistas, ao estudarem sua composição, perceberam que tais rochas não eram terrestres.
Em 1996, a notícia de que um meteorito (ALH 84001), encontrado na Antártica, continha estruturas muito semelhantes a fósseis de “bactérias marcianas” correu o mundo. Em 2006 cientistas analisaram outro meteorito, encontrado em 1911 no Egito, que possuía estruturas microtubulares, possível evidência de atividade microbiana. Mais recentemente, em 2014, outra rocha marciana (Y000593), encontrada no Japão, ganhou as manchetes por também apresentar microtúbulos, além de pequenas esferas, prováveis resquícios da presença de organismos vivos.
Alguns cientistas alegam que os microtúbulos seriam, na realidade, túneis escavados por estes organismos extraterrestres enquanto se alimentavam, de forma muito semelhante ao que é feito por algumas bactérias terrestres. Outros pesquisadores, entretanto, afirmam que tais estruturas teriam uma origem totalmente abiótica, sendo resultantes de reações físico-químicas desvinculadas de atividade biológica, pois não foram encontrados vestígios de moléculas capazes de se replicar. Há ainda a possibilidade de contaminação do material por organismos terrestres, o que dificulta os estudos.
Fig. 5 (Créditos McKay)
Fig. 5 (Domínio Público)
Fig. 5: Microscopia eletrônica do meteorito ALH 840001, acima, detalhando estruturas muito semelhantes a bactérias fossilizadas. Passado o alvoroço da descoberta, estudos posteriores mostraram que elas poderiam ter se originado a partir de processos físico químicos. Abaixo, microscopia do meteorito Y000593, evidenciando a presença de micro esferas ricas em Carbono no círculo vermelho (prováveis fósseis de “bactérias”), e microtúbulos, no círculo em azul, que teriam sido feitos por atividade biótica (um possível icnofóssil extraterrestre). (Modificado de McKay (1996)).

Porém, de nada adianta os organismos vivos deixarem restos de sua existência para trás se os futuros cientistas não conseguirem ter acesso aos materiais. Em nosso planeta, conseguimos ter acesso aos fósseis pois as camadas em que eles se encontram são soerguidas graças à forças vindas do interior da Terra, possibilitando aos paleontólogos acesso mais fácil aos materiais. Isso só é possível devido ao fato de que a Terra é um planeta geologicamente ativo. No sistema solar, corpos celestes como Vênus provavelmente compartilham essa característica, enquanto outros, como Mercúrio e Marte, são geologicamente inativos, fator que dificultaria, e muito, o trabalho dos futuros astropaleobiólogos.
É importante salientar que as buscas por vida extraterrestre são altamente enviesadas, pois nossa procura se concentra em locais semelhantes à Terra (restrita, portanto, a planetas rochosos e com água). De forma similar, a procura pelos “fósseis” extraterrestres também está limitada ao nosso conhecimento acerca dos processos de fossilização terrestres. Entretanto, muito provavelmente, a imensa biodiversidade universal, ainda oculta, deve carregar consigo uma gama ainda maior de processos que desafiam nosso conhecimento.
Fig. 6 (Créditos NASA)
Fig. 6: Sonda Espacial Kepler, lançada em 2009 e responsável pela descoberta de milhares de exoplanetas. Estimativas feitas por cientistas, com base nos dados por ela obtidos, indicam que podem haver aproximadamente 40 bilhões de planetas rochosos na Via Láctea. (Créditos: NASA)

A busca por organismos extraterrestres, estejam eles já extintos ou ainda vivos, é sobretudo uma forma de conhecermos a nós mesmos, de entendermos qual nosso papel no universo. No futuro, talvez o conhecimento adquirido com o estudo de possíveis “fósseis” extraterrestres, possamos definir e explicar de forma mais satisfatória o fenômeno que denominamos de vida. Quanto aos paleontólogos do presente, resta usar a imaginação, na tentativa de vislumbrar o passado de outros mundos, e aguardar pacientemente o progresso da ciência em sua procura por organismos extraterrestres.
Adendo: Duas descobertas recentes trouxeram grandes avanços para a Astropaleobiologia. A primeira pesquisa revelou a existência de um sistema composto por sete planetas rochosos, distante 39 anos-luz da Terra, orbitando a estrela TRAPPIST-1, dos quais três estão na chamada zona habitável, a região em que, caso exista água, ela se encontra no estado líquido, aumentando as chances de encontrarmos organismos vivos. Foi a primeira vez que um sistema contendo tantos planetas com grande potencial para abrigar vida foi encontrado.
Fig. 7 (Créditos NASA)
Fig. 7: Representação artística do recém-descoberto sistema planetário da estrela anã-vermelha TRAPPIST-1, com seus sete planetas rochosos, mostrados em escala de tamanho em relação ao planeta Terra. (Créditos: NASA)

 
A segunda pesquisa mostrou a existência de fósseis de bactérias com uma idade entre 3,8 e 4,3 bilhões de anos, os mais antigos encontrados até o momento. Os materiais foram encontrados no Nuvvuagittuq Supracrustal Belt, em Quebec. No passado, este local foi um sistema de fontes hidrotermais rico em ferro, elemento que era utilizado no metabolismo dessas bactérias, que deixaram vestígios na forma de pequenos túbulos. Essa descoberta indica que a vida na Terra apareceu pouco tempo após a formação dos oceanos.
Fig. 8 (Créditos Matthew Dodd)
Fig. 8: Fósseis das mais antigas formas de vida até então conhecidas, bactérias que viviam em fontes hidrotermais, numa região onde hoje se localiza o Canadá. (Créditos: Mathew Dodd)

 
Os autores do estudo ainda lembraram que as condições do planeta Marte há 4,3 bilhões de anos eram semelhantes às da Terra primitiva, um forte indício de que a vida possa ter prosperado também no planeta vermelho, ainda que por um curto período de tempo. Considerando tais estudos, a existência de vida extraterrestre ganhou fortes evidências a seu favor e agora é uma questão e tempo até que novas descobertas sobre o assunto sejam encontradas, confirmando a existência de vida extraterrestre.
 
Referências Bibliográficas:
Astropaleobiologia:
COX, G. Astropaleobiology. Disponível em: <https://starscapescientific.wordpress.com/2012/06/09/astropaleobiology/>. Acesso em 4 de mar. 2017.
Paradoxo de Fermi:
NUNES, J. O Paradoxo de Fermi. Disponível em: <http://www.universoracionalista.org/o-paradoxo-de-fermi/>. Acesso em 4 de mar. 2017.
Equação de Drake e Seager:
OLIVEIRA, D. R. A. Equação de Drake para a vida alienígena recebe um upgrade. Disponível em: <http://www.universoracionalista.org/equacao-de-drake-para-a-vida-alienigena-recebe-um-upgrade/>. Acesso em 4 de mar. 2017.
PONTES, F. A caçadora de extraterrestres: A exótica missão da astrônoma Sara Seager, em busca de planetas habitáveis pelo Universo. Disponível em: <http://epoca.globo.com/vida/noticia/2013/08/cacadora-de-bextraterrestresb.html>. Acesso em 4 mar. 2017.
Vida em Titã:
HRALA, J. Life “Not as We Know It” Might Be Possible on Titan. Disponível em: <http://www.sciencealert.com/life-on-titan-might-be-completely-different-than-the-life-we-re-familiar-with>. Acesso em 4 de mar 2017.
Radiotelescópio Chinês:
O’NEILL, I. Monster Chinese Telescope the Next ET Hunter?. Disponível em: <http://www.seeker.com/monster-chinese-telescope-the-next-et-hunter-1765285433.html>. Acesso em 4 de mar. 2017.
Vida em Marte e Meteoritos:
SÉRVULO, F. Como procurar por vida em Marte?. Disponível em: <http://www.universoracionalista.org/como-procurar-por-vida-em-marte>. Acesso em: 4 de mar. 2017.
MCKAY, D. S. et al. Search for past life on Mars: Possible relic biogenic activity in martian meteorite ALH84001. Science, Washington, v. 273, p. 924-930, ago. 1996.
MIKOUCHI, T. et al. Mineralogy and petrology of Yamato 000593: Comparison with other Martian nakhlite meteorites. Antarctic Meteorite Research, Washington, v. 16, p. 34-57, fev. 2003.
MCKAY, D. S. et al. Life on Mars: new evidence from martian meteorites. Proceedings of SPIE Annual Meeting, Bellingham, v. 7441, p. 80-102, ago. 2009.
WARMFLASH, D.; WEISS, B. Dis life come from another world?. Disponível em: <http://www.bibliotecapleyades.net/ciencia/esp_ciencia_life09.htm>. Acesso em 4 de mar. 2017.
Missão Kepler:
NASA. Importance of Planet Detection. Disponível em: <https://kepler.nasa.gov/Mission/QuickGuide/>. Acesso em 4 de mar. 2017.
CLARK, S. Kepler space telescope in emergency mode. Disponível em: <https://spaceflightnow.com/2016/04/09/kepler-space-telescope-in-emergency-mode/>. Acesso em 4 de mar. 2017.
Exoplanetas:
SCHNEIDER, J. et al. Defining and cataloging exoplanets: the exoplanet.eu database. Astronomy & Astrophysics. Paris, v. 532, p. 79-90, jul. 2011.
LOPES, M. Métodos de Detecção de Planetas Extrasolares. Disponível em: <http://www.astropt.org/2013/11/20/metodos-de-deteccao-de-planetas-extrasolares/>. Acesso em 4 de mar. 2017.
Planetas geologicamente ativos:
SANCEVERO, S. Vênus é um planeta geologicamente ativo?. Disponível em: <http://www.astropt.org/2016/11/30/venus-e-um-planeta-geologicamente-ativo/>. Acesso em: 4 de mar. 2017.
Planetas em TRAPPIST-1:
BARSTOW, J. K.; IRWIN, P. G .J. Habitable worlds with JWST: transit spectroscopy of the TRAPPIST-1 system?. Monthly Notices of the Royal Astronomy Society, Oxford, v. 461, n. 1, p. 92-96, mai. 2016.
Fósseis mais antigos já encontrados:
DODD, M. S. et al. Evidence for early life in Earth’s oldest hydrothermal vent precipitates. Nature, Londres, v. 543, p. 60-64, jan. 2017.

A História de Franz Nopcsa: o Barão paleontólogo que foi o pai da Paleobiologia

Olá a todos! Após um breve periodo sem postagens finalmente volto com uma grande contribuição de meu estimado colega Giovanne Mendes Cidade. Em seu texto ele apresenta um pouco sobre a história de um renomado e famoso paleontologo,  Franz Nopcsa! Com sua escrita leve e divertida, o Giovanne nos mostra um pouco sobre quais foram as contribuições e dilemas deste paleontologo pioneiro.
Sem mais delongas, vamos ao texto:


Um homem excêntrico, de personalidade difícil. Homossexual, não fazia questão nenhuma de esconder sua sexualidade.
Hoje em dia, esta descrição se encaixa em praticamente todo o paleontólogo que você poderá conhecer um dia. No entanto, entre o fim do século XIX e o começo do século XX, esta descrição, muito provavelmente, levaria qualquer pessoa a pensar em um único nome: o do Barão Franz Nopcsa von Felső-Szilvás – que ficaria mais conhecido no meio científico e paleontológico simplesmente como Franz Nopcsa ou Barão Nopcsa.
E as razões pelas quais ele ficaria conhecido no mundo científico e paleontológico não foram poucas: considerado o pai da chamada Paleobiologia (que, neste sentido, pode ser definida como um ramo da Paleontologia que se dedica a inferir como os animais eram, quando vivos, a partir de seus restos fossilizados, seja em termos de anatomia de tecidos moles, comportamento, fisiologia, entre outros). Portanto, na prática, Franz Nopcsa foi um dos primeiros paleontólogos que tentou “colocar carne nos ossos fossilizados” numa época em que a maioria de seus colegas se preocupava apenas em “reunir” ossos fossilizados e simplesmente lhes dar nomes bonitinhos em latim.

Imagem 1
Figura 1: Franz Nopcsa (1877-1933).

Origens
Nascido de uma família de etnia húngara em 3 de maio de 1877 nas cercanias da vila de Szacsal, na Transilvânia (então parte do chamado Império Austro-Húngaro, ou Áustria-Hungria, mas que hoje faz parte da Romênia), a trajetória de Franz Nopcsa pela paleontologia começaria em 1895, quando a sua irmã, Ilona, descobriu alguns “ossos petrificados” perto da propriedade da família. Ela levou esses materiais ao seu irmão, que se interessou por eles e terminou por levá-los, que no mesmo ano os mostrou a um professor de geologia da Universidade de Viena chamado Eduard Seuss, que os identificou como restos de dinossauros e propôs a Nopcsa que os estudasse, além de incentivá-lo a fazer mais escavações na área em que eles haviam sido encontrados.
Imagem 2
Figura 2: O castelo da família Nopcsa em Szacsal (então Áustria-Hungria, hoje Romênia).

 
De acordo com um artigo de um blog da Scientific American [1], quando Nopcsa perguntou a Seuss por conselhos e literatura sobre osteologia de dinossauros, o professor teria simplesmente respondido “ – Estude-os!” – o que nos dá uma indicação de que as relações entre orientadores e alunos não mudaram substancialmente nos últimos 120 anos.
Apesar de tudo, a descoberta desses fósseis de dinossauros incentivou Nopcsa a se matricular em um curso de geologia na Universidade de Viena em 1897. Ele progrediu em seus estudos rapidamente, apresentando em apenas dois anos a primeira parte de uma planejada série monográfica de 5 volumes sobre os “Dinossauros da Transilvânia”. Embora ele tivesse progredido rapidamente em seus estudos e muitos reconhecessem o seu brilhantismo, Nopcsa também era apontado por muitos como um sujeito um tanto arrogante e dotado de uma personalidade difícil, com quem por vezes se era difícil de conviver.
Nopcsa concluiu seus estudos em 1903 e a partir daí, aproveitando-se da grande riqueza de sua família, que fazia com que ele não precisasse ter um emprego fixo (praticamente a melhor agência de fomento que um pesquisador poderia ter), ele se dedicou quase exclusivamente às suas pesquisas paleontológicas. Suas pesquisas envolveram principalmente uma série de répteis do Mesozoico (de dinossauros a serpentes, envolvendo também crocodilos, pterossauros e tartarugas, entre outros) e aos seus estudos sócio-antropológicos sobre o povo, a cultura, a sociedade e a linguagem da Albânia – um pequeno país da região dos Balcãs, no sudeste da Europa – até 1914: quando começou a Primeira Guerra Mundial. O Império Austro-Húngaro se envolveu na guerra e Nopcsa chegou a atuar como um espião para o seu país, além de arregimentar um grupo de voluntários albaneses para lutar ao lado da Áustria-Hungria.
Paleontologia
O trabalho de Nopcsa abordou vários grupos de vertebrados fósseis sob as variadas perspectivas. Neste artigo, no entanto, se abordará principalmente as contribuições que ele deu através de uma abordagem paleobiológica – ou seja, aquelas em que ele manifestou uma preocupação em utilizar as informações contidas nos fósseis para tentar inferir a anatomia dos tecidos moles, a fisiologia, o comportamento, a ecologia ou as razões para as extinções dos diferentes grupos de vertebrados que ele estudou.
Começando com os dinossauros, grupo com o qual Nopcsa trabalhou mais extensivamente (mais de 40 dos seus 101 artigos científicos em paleontologia são sobre dinossauros [2]), o autor não só descreveu várias espécies novas como trabalhou extensivamente com os Ornitischia (um grupo de dinossauros majoritariamente quadrúpedes e herbívoros cujo arranjo dos ossos cintura lembra o de uma ave). Em 1915, ele defendeu que os ornitísquios que possuíam extensas armaduras ósseas junto à parte externa do corpo, incluindo os famosos Stegosaurus e Ankylosaurus, deveriam ser agrupados em um mesmo grupo, ao qual ele denominou Thyreophora. A ideia dos Thyreophora como um grupo não recebeu muito suporte à época de Nopcsa, mas acabou se tornando aceita entre os paleontólogos a partir de 1970 até hoje, quando Thyreophora passou a ser o nome de um clado (veja o artigo de Thompson et al., 2011 [3]).
Imagem 3a
Imagem 3b
Figura 3: Fósseis de Telmatosaurus transsylvanicus, um dinossauro ornitísquio descrito por Nopcsa em 1899: uma mandíbula esquerda (acima) e algumas vértebras (abaixo).

Nopcsa também foi um dos primeiros a tentar pesquisar sobre como a musculatura e o sistema nervoso dos dinossauros poderia ter sido através de análises dos restos fósseis. Além disso, ele também procurou compreender o comportamento e a ecologia do grupo, sendo um dos primeiros a cogitar, por exemplo, que dinossauros adultos exibiam uma espécie de hierarquia social e cuidado parental; esta última ideia, em particular, só ganharia suporte muito tempo depois – particularmente em 1979, quando da descoberta do famoso dinossauro ornitísquio Maiasaura peeblesorum, cujos fósseis encontrados – que incluíam ninhos contendo ovos com embriões e animais jovens – indicavam, também por evidências histológicas, que esta espécie efetivamente exibia um comportamento de cuidado parental.
E, assim como quase todo mundo, Nopcsa também dedicou um bom tempo e energia para falar de sexo. Particularmente, sexo em dinossauros. Ele foi um dos primeiros a propor que dinossauros poderiam ter estruturas e comportamentos de display sexual (ou seja, uma estrutura utilizada por indivíduos de um dos sexos, mais frequentemente o macho, para atrair indivíduos do sexo oposto). Em um trabalho de 1905, ele chegou a argumentar que um osso previamente identificado como uma clavícula era na verdade uma espécie de osso peniano, que comprovaria a existência de pênis nos dinossauros saurópodes. Esta ideia, no entanto, foi rejeitada por praticamente todos os seus contemporâneos e o continua sendo até hoje, já que, por exemplo, répteis atuais não apresentam ossos penianos, embora crocodilianos atuais possuam pênis que contém cartilagem.
Imagem 4
Figura 4: Uma reconstrução feita por Nopcsa do dinossauro ornitísquio Struthiosaurus (1915).

Porém, outra sugestão de Nopcsa sobre sexo em dinossauros acabou gerando desdobramentos mais interessantes: em uma série de trabalhos a partir de 1915, ele passou a argumentar que algumas diferenças morfológicas presentes em dinossauros, especialmente em ornitísquios do grupo dos Hadrosauridae (os chamados dinossauros de “bico de pato”) eram na verdade caracteres sexuais secundários, e que poderiam ser usados para diferenciar machos de fêmeas. Entre estes caracteres, estavam o formato do crânio, a morfologia das vértebras e o tamanho relativo dos ossos dos membros. Embora muitas dessas observações de Nopcsa sobre caracteres sexuais secundários se revelariam posteriormente incorretas [vejam detalhes em 4], a ideia de que diferenças morfológicas observáveis poderiam ser caracteres sexuais secundários se tornou recorrente nas pesquisas paleontológicas, não só de hadrossaurídeos como de praticamente todos os grupos de vertebrados fósseis em que a existência de sexos diferentes pode ser presumida.
Nopcsa também fez algumas propostas sobre como teria sido a evolução das aves a partir de dinossauros não-avianos. Embora esta ideia não fosse nem um pouco nova – já tendo sido defendida por Thomas Huxley no século XIX –, Nopcsa inovou em propor que as aves teriam surgido de dinossauros que se moviam com as pernas sobre o solo, “correndo”, e que eventualmente, com a evolução das penas, estes animais teriam adquirido a capacidade de voar. Esta teoria contrastava com a teoria predominante até então, que dizia que as aves teriam surgido a partir de dinossauros que habitavam as copas ou as regiões mais altas das árvores, tendo evoluído sua capacidade de voo a partir de uma primordial capacidade de planar, adquirida ao “saltar” dessas regiões mais altas de árvores. A teoria defendida por Nopcsa, chamada às vezes de “ground-up” (“do chão para cima”) também não foi muito defendida ou discutida em sua época, ganhando um pouco de atenção apenas na década de 1960.
Imagem 5
Figura 5: Um desenho feito por Nopcsa de fósseis do lagarto Bavariasaurus dentro da barriga do dinossauro terópode Compsognathus (1903), ambos do Jurássico da Alemanha.

No entanto, descobertas recentes de dinossauros penosos, principalmente na China, têm não só evidenciado a proximidade entre dinossauros a aves (hoje já praticamente consenso na paleontologia de vertebrados) como também têm reforçado a hipótese de que os primeiros dinossauros voadores, que dão origem às aves, eram na verdade habitantes dos altos das árvores ao invés de animais de solo, indo contra a teoria de Nopcsa. Apesar disso, como nota o paleontólogo David Weishampel em [5] “Nopcsa estava fazendo boas perguntas, até mesmo quando ele não conseguia as respostas corretas”, fazendo um tributo à sua curiosidade intelectual.
Ao estudar fósseis de dinossauros vindos de depósitos do Cretáceo Superior de uma região chamada Haţeg, numa área hoje localizada na Romênia, Nopcsa percebeu que, no que dizia respeito aos fósseis encontrados naquela região, “enquanto as tartarugas, crocodilianos e animais similares do Cretáceo Superior atingiam o seu tamanho normal, os dinossauros quase sempre eram de um tamanho menor” se comparados com indivíduos de grupos semelhantes provenientes de outras localidades. Eventualmente, com base nesta e em outras observações, Nopcsa concluiu que a região estudada teria sido uma ilha durante o Cretáceo, enquanto o tamanho menor dos dinossauros representaria um caso do hoje conhecido fenômeno denominado “Nanismo Insular”. Neste, restrições ambientais presentes nas ilhas (como alimento e espaço) fazem com que animais de pequeno porte sejam favorecidos em detrimento de espécies e/ou indivíduos de maior tamanho, o que pode fazer com que animais originalmente grandes terminem por diminuir de tamanho ao longo de sua história evolutiva.
Imagem 6
Figura 6: À esquerda, outro exemplo de nanismo insular ocorrido entre as décadas de 1970 e 1980 do século passado.

Esta ideia de Nopcsa para os dinossauros da região de Haţeg (e também a ideia de que a região era uma ilha) seria reforçada por muitos estudos posteriores, incluindo um estudo muito recente de Benton e colaboradores (2010) [6] que contou até com análises histológicas e concluiu que os indivíduos de dinossauros encontrados na região eram realmente adultos de pequeno tamanho, e não simplesmente animais juvenis.
Imagem 7
Figura 7: Um mapa mostrando onde seria a ilha de Haţeg (indicada com o ponto vermelho) na região da atual Europa no Cretáceo Superior. Imagem retirada de [7].
Outros grupos e outros ramos da ciência
Nopcsa foi um dos primeiros a propor que os pterossauros (conhecido grupo de répteis voadores do Mesozoico) teriam “sangue quente” – isto é, seriam capazes de manter uma temperatura corporal constante e alta, ao invés de possuírem uma temperatura corporal que oscilaria junto com o ambiente. Também esta ideia de Nopcsa, como tantas outras, estava muito à frente de seu tempo: segundo [5], a ideia de que os pterossauros (e também os dinossauros) seriam homeotérmicos não seria consideradamente de maneira séria de novo até a década de 1970.
Com relação aos crocodilomorfos, Nopcsa se destacou por propor que um táxon do Cretáceo Superior do Egito que possui um rostro em formato de “bico de pato”, Stomatosuchus inermis, possuiria uma espécie de “saco gular” no palato inferior, com o qual formaria um tipo de “rede de pesca” para capturar as presas. Esta estrutura (e o comportamento associado com ela), que sem dúvida diferem bastante do que se observa na grande maioria dos crocodilomorfos extintos ou atuais, seria aproveitada por outros pesquisadores para outro grupo de crocodilomorfos do Mioceno da América do Sul, Mourasuchus, o qual é bem distante filogeneticamente de Stomatosuchus, mas desenvolveu uma morfologia bastante parecida com aquele táxon de forma convergente (ou, como também se disse no jargão filogenético, homoplásica).
Além disso, Nopcsa também foi um dos primeiros paleontólogos a se propor a utilizar histologia como ferramenta de análise sobre a fisiologia, a taxonomia e a ontogenia de táxons fósseis, em um tempo onde a obtenção de cortes histológicos certamente era mais difícil do que hoje.
Imagem 8
Figura 8: Trecho de uma carta ao paleontólogo Friedrich von Huene, de 1925, em que Nopcsa desenha e aponta para diferenças nas estruturas histológicas de dois sinápsidos basais do grupo dos Sphenacodontia: Palaeohatteria (esquerda) e Pantelosaurus (direita).

Franz Nopcsa também se interessou pela ciência com a qual a paleontologia sempre se imiscui: a geologia. Nopcsa publicou 35 trabalhos nessa área, mostrando um especial interesse pela tectônica de placas, sendo um dos primeiros cientistas a apoiar a Teoria da Deriva Continental proposta por Alfred Wegener.
Albânia
O outro grande interesse de Franz Nopcsa, além da Paleontologia, foi absolutamente tudo o que envolvia a Albânia – um pequeno país dos Balcãs, na costa leste do Mar Adriático, não muito longe da terra Natal de Nopcsa. O excêntrico Barão percorreu grandes áreas do país entrevistando pessoas e tirando fotografias (uma tecnologia ainda relativamente nova na época) coletando informações que o levaram a escrever muitos volumes sobre a Albânia, seu país e seu povo – muitos dos quais, no entanto, não chegou a ser publicados enquanto ele vivia. Uma coleção das fotos tiradas por Nopcsa nas suas viagens à Albânia pode ser vista em [8].
Imagem 9
Figura 9: Franz Nopcsa enquanto jovem, vestido como um “guerreiro albanês”.

Outra ligação forte entre Nopcsa e a Albânia se deve ao fato de que o seu secretário, melhor amigo – e, segundo todas as fontes, namorado –, o geólogo Bajazid Elmaz Doda, era albanês. Doda e Nopcsa viveram juntos por mais de 20 anos, realizando também várias viagens por toda a Albânia juntos. Nopcsa até chegou a nomear, em homenagem a Doda, uma tartaruga fóssil que ele descreveu do Cretáceo Superior da Romênia: Kallokibotion bajazidi. Foi uma homenagem, com certeza, mas podemos ficar nos perguntando se homenagear o parceiro com uma tartaruga não seria uma espécie de indireta depois de uma DR particularmente difícil.
Seu fascínio pela Albânia era tanto que, quando o país se tornou independente do Império Otomano em 1913, Nopcsa se prontificou a ser um dos candidatos a se tornar o rei do novo país, que seria definido em um Congresso na cidade de Trieste naquele mesmo ano. Nopcsa, no entanto, acabou por desistir de sua candidatura, e um dos fatores mais elencados como motivo de sua desistência foi o fato de ele não só ser um homossexual, como o de não fazer absolutamente nenhuma questão de esconder isso. Na época, muitas pessoas viram isso de maneira negativa, muito embora Nopcsa tenha chegado a declarar que, se ele conseguisse se tornar rei, poderia fazer o sacrifício de se casar com uma mulher rica que aceitasse pagar uma boa soma em dinheiro para se tornar uma rainha. Este dinheiro, então, seria usado para a construção de obras de infra-estrutura que a Albânia tanto precisava, como estradas e hospitais.
No entanto, Nopcsa acabou por desistir mesmo de se tornar rei e nada disso se tornou uma realidade. O que é uma pena, porque a Albânia poderia ter se tornado o único país do mundo em que o orçamento para pesquisas em Paleontologia seria praticamente infinito.
 
Últimos anos, Morte e Legado
Depois que o Império Austro-Húngaro foi derrotado na Primeira Guerra Mundial, em 1918, a área onde ficavam as propriedades de Nopcsa foram transferidas à Romênia, que fez com que todos os nobres de origem austro-húngara perdessem suas terras. Isso forçou o nobre Nopcsa a, pela primeira na vida, procurar um emprego assalariado – e ele acabou arranjando um no Instituto Geológico Húngaro, no recém-criado país independente da Hungria, em 1925.
No entanto, a nova vida de trabalhador assalariado aparentemente não se encaixou bem para Nopcsa. De acordo com as publicações sobre sua vida, Nopcsa distraía-se muito em seu trabalho e eventualmente pediu demissão em 1929. Desempregado, ficou com depressão e acumulou dívidas a ponto de ter que vender sua coleção de fósseis para o Museu de História Natural de Londres e, depois, vendeu também vários livros que possuía. O quadro depressivo foi se acumulando até que, no dia 25 de abril de 1933, Franz Nopcsa cometeu suicídio em seu apartamento em Viena, na Áustria. Antes, porém, ele também assassinou com um tiro seu secretário, amigo e namorado de longa data Bajazid Doda. Em uma carta de suicídio, Nopcsa declarou que a razão de ter matado Doda foi porque ele não queria, ao suicidar-se, abandonar seu companheiro “doente, na miséria e sem um centavo, porque ele acabaria sofrendo muito”, quase como dizendo que matar alguém, às vezes, é apenas uma maneira um pouco peculiar de dizer “eu te amo”.
Imagem 11
Figura 10: Bajazid Elmaz Doda (esquerda) e Franz Nopcsa.

Mas hoje, mais de 80 anos depois de sua morte, o legado de Franz Nopcsa – o pai da Paleobiologia – como paleontólogo (e albanologista) continua vivo – embora não muito frequentemente lembrado – como um dos mais polivalentes, criativos, ousados e dinâmicos cientistas da nossa área.
Referências
[1] Baron Nopcsa: More than just Transylvanian dinosaurs
https://blogs.scientificamerican.com/history-of-geology/baron-nopcsa-more-than-just-transylvanian-dinosaurs/
[2] Weishampel, D.B & Kerscher, O. 2013. Franz Baron Nopcsa, Historical Biology: An International. Journal of Paleobiology 25:4, 391-544, DOI: 10.1080/08912963.2012.689745
[3] Richard S. Thompson, Jolyon C. Parish, Susannah C. R. Maidment and Paul M. Barrett (2011). “Phylogeny of the ankylosaurian dinosaurs (Ornithischia: Thyreophora)”. Journal of Systematic Palaeontology10 (2): 301–312. doi:10.1080/14772019.2011.569091.
[4] Weishampel, D.B & Wolf-Ernst Reif, W-E. 1984. The Work of Franz Baron Nopcsa (1877-1933): Dinosaurs, Evolution and Theoretical TectonicsJahrbuch der Geologischen Bundesanstalt 127(2):187-203.
[5] Nopcsa, Baron Franz
http://www.glbtqarchive.com/ssh/nopcsa_bf_S.pdf
[6] Benton, M.J., Csiki, Z., Grigorescu, D., Redelstorff, R., Sander, P.M., Stein, K., and Weishampel, D.B. (2010).Dinosaurs and the island rule: The dwarfed dinosaurs from Haţeg Island. Palaeogeography, Palaeoclimatology, Palaeoecology, 293(3-4): 438–454.
http://www.sciencedirect.com/science/article/pii/S0031018210000386
[7] http://planetdinosaur.wikia.com/wiki/Ha%C8%9Beg_Island
[8] The Photo Collection of Franz Nopcsa
http://www.albanianphotography.net/nopcsa/
 
Leituras Complementares:
Baron, Scientist, Swashbuckler, Spy: The Colorful Life and Tragic Death of Franz Nopcsa
https://chasmosaurs.blogspot.com.br/2016/04/baron-scientist-swashbuckler-spy.html
History Forgot This Rogue Aristocrat Who Discovered Dinosaurs and Died Penniless

http://www.smithsonianmag.com/history/history-forgot-rogue-aristocrat-discovered-dinosaurs-died-penniless-180959504/
 
Fontes das Figuras:
[1]: http://www.albanianhistory.net/1907_Nopcsa1/index.html
[2]: Weishampel, D.B & Kerscher, O. 2013. Franz Baron Nopcsa, Historical Biology: An International. Journal of Paleobiology 25:4, 391-544, DOI: 10.1080/08912963.2012.689745
[3, Figura de cima], [4], [9], [11]: http://www.smithsonianmag.com/history/history-forgot-rogue-aristocrat-discovered-dinosaurs-died-penniless-180959504/
[3, Figura de baixo]: https://en.wikipedia.org/wiki/Telmatosaurus#/media/File:Telmatosaurus_transsylvanicus_vertebrae.JPG
[4]  Nopsca, F. (1915). “Die Dinosaurier der siebenburgischen Landesteile Ungarns”. Mit. a. d. Jahrb. d. kgl. ungar. Geolog. Reichsanst.
https://archive.org/stream/cbarchive_109076_nopcsaf1915diedinosaurierdersi1873/nopcsaf1915diedinosaurierdersi1873#page/n13/mode/
[5]: https://diogenesii.wordpress.com/tag/paleobiology/
[6]: http://seriesedesenhos.com/index.php/series-antigasda-tv/item/672-a-ilha-da-fantasia-1977
[7] http://planetdinosaur.wikia.com/wiki/Ha%C8%9Beg_Island
[8] https://blogs.scientificamerican.com/history-of-geology/baron-nopcsa-more-than-just-transylvanian-dinosaurs/


16735619_1201225939972881_1202071666_oGiovanne Mendes Cidade, Bacharel em Ciências Biológicas pela Universidade Federal de Uberlândia (UFU), Mestre e atualmente Doutorando em Biologia Comparada pela Universidade de São Paulo (USP), campus de Ribeirão Preto. Estuda principalmente crocodilianos fósseis, com ênfase em sistemática, taxonomia, biogeografia e anatomia de crocodilianos do Cenozoico, em especial do grupo dos Alligatoroidea. Também tem interesses diletantes em história da Paleontologia e em filosofia da Ciência como um todo, e da Biologia em particular, além de Evolução. 

 

Tetrapodophis amplectus e a história sem fim da “cobra” de quatro patas: uma perspectiva interna.

Em 2015, um fóssil proveniente do Brasil veio à tona com uma publicação feita por Martill e colaboradores. A repercussão dessa publicação foi imensa por vários motivos, como por exemplo, o fato de se tratar de um espécime muito bem preservado de uma suposta cobra de quatro patas. No entanto, nem tudo foram flores, críticas acerca da procedência duvidosa do material e até mesmo da sua designação como uma serpente foram levantadas. Para sabermos um pouco mais sobre o assunto e a importância das discussões levantadas convidamos o Doutorando Tiago Rodrigues Simões, especialista no estudo da origem e evolução de Squamata (lagartos e cobras), para escrever o esclarecedor texto abaixo.

Obs: Agradeço ao colega João Francisco Botelho pela sugestão do tema, que me motivou a convidar o Tiago para redigir tal texto.

———–

 (TEXTO POR TIAGO SIMÕES)   

Tetrapodophis amplectus e a história sem fim da “cobra” de quatro patas: uma perspectiva interna

Fósseis espetaculares costumam chamar a atenção da comunidade científica e da mídia ao redor do mundo. Em parte pelo fascínio que a paleontologia como um todo (especialmente através dos dinossauros) causa em muitos, em parte pelas novas perspectivas que certos fósseis fornecem acerca da evolução dos seres vivos. Dentro desse último aspecto encontra-se um réptil fóssil denominado Tetrapodophis amplectus (Figura 1), da Formação Crato da Bacia do Araripe, que viveu a cerca de 115 milhões de anos atrás. A espécie, originalmente publicada como uma cobra de quatro patas (Martill, Tischlinger & Longrich, 2015) criou grande comoção na comunidade científica internacional no ano de 2015. Contudo, logo após a sua publicação, o estudo foi alvo de uma série de controversas envolvendo tanto a procedência do material, quanto a ciência por trás da descoberta. No relato abaixo, eu forneço um relato e as minhas perspectivas sobre o assunto do ponto de vista de um brasileiro, especialista em lagartos fósseis e diretamente envolvido na nova pesquisa sobre a Tetrapodophis.

dsc_3341
Figura 1: Espécime (holótipo) de Tetrapodophis amplectus. Créditos: Michael W. Caldwell

Problemas na caracterização anatômica e classificação

A posição ocupada pela Tetrapodophis na evolução do grupo que compreende as cobras e lagartos (Squamata, ou escamados) é sem dúvida o aspecto mais problemático na interpretação científica do fóssil. No último encontro da Society of Vertebrate Paleontology (SVP) em Salt Lake City, nos EUA, um time de colaboradores liderados por Michael Caldwell (University of Alberta, Canadá), e que também inclui Robert Reisz (University of Toronto, Canadá), Randall Nydam (Midwestern University, EUA), Alessandro Palci (Flinders University, Austrália), além de mim (afiliação abaixo), apresentou uma série de dados novos sobre a Tetrapodophis. Em resumo, aspectos da morfologia dentária (Figura 2), craniana e das vértebras indicam que o indivíduo se parece mais com um grupo extinto de lagartos aquáticos denominados dolicossaurídeos (proximamente relacionados aos mosassauros) do que com qualquer cobra vivente ou fóssil conhecida. Um dos aspectos mais relevantes dos novos dados obtidos é que a informação anatômica presente na descrição original do espécime ou está errada, ou é impossível de ser visualizada. Além disso, partes do material preservam impressões da morfologia do crânio (Figura 3) que foram simplesmente ignoradas no estudo original. É de se espantar que tal informação não tenha sido incluída no estudo original, já que tais impressões em baixo relevo do crânio fornecem informações valiosas sobre alguns ossos que são importantes para a classificação dessa espécie dentre os escamados (Squamata).

dentition
Figura 2: Imagem dos dentes presentes no holótipo de Tetrapodophis amplectus . a) material original; b) representação esquemática, enumerando os dentes. Créditos: Michael W. Caldwell

skulls-part-and-counterpart
Figura 3: Imagens do crânio de Tetrapodophis amplectus . Principais ossos preservados, bem como as impressões de ossos completa ou parcialmente destruidos. Créditos: Michael W. Caldwell

O leitor pode se perguntar como que erros em tamanho volume podem ter sido cometidos em um estudo publicado num periódico de tamanho escalão como a Science? Pois bem, você não é o único. Diversos outros especialistas em escamados presentes na reunião anual da SVP ficaram igualmente espantados sobre a falta de cuidado na correta interpretação anatômica da Tetrapodophis. Alguns já desconfiavam de diversos erros ao comparar as fotos publicadas com a descrição escrita do material no artigo original, mas somente agora com os novos dados fornecidos pelo nosso time de colaboradores puderam confirmar tais suspeitas (veja relato do Dr. Jason Head, Cambridge University: http://news.nationalgeographic.com/2016/11/snakes-tetrapodophis-fossils-ethics-science/).

Uma outra pergunta que aqueles que não são especialistas em cobras e lagartos podem fazer (e extremamente relevante nessa discussão) é: como um animal alongado e de patas curtas não é uma cobra? O que ocorre é que diversas linhagens de lagartos adquiriram um corpo alongado seguido de redução dos membros durante a sua história evolutiva, incluindo as cobras, dolicossaurídeos, anfisbênias, dibamídeos, pigopodídeos, diversas grupos de anguídeos, scincídeos, entre outros. Dessa forma, a redução de membros e presença de um corpo alongado estão longe de ser um aspecto exclusivamente observado nas cobras. Para se reconhecer uma cobra como tal, deve-se analisar a morfologia das vértebras e, em especial, do crânio. Sendo assim, a combinação de dados que foram mal-interpretados ou ignorados certamente influenciou os resultados apresentados por Martill e co-autores, inclusive a análise filogenética realizada pelos mesmos.

Problemas na interpretação do hábito de vida

A interpretação inicial do fóssil como um animal fossorial foi um dos pontos que mais me chamou a atenção na descrição por parte de Martill e colaboradores. O indivíduo possui os ossos do pulso e do tornozelo pouco ou não ossificados. Apesar de essa característica poder ser indicativa de um estágio juvenil em répteis, especialmente no estágio embrionário ou recém-nascido, nenhum outro aspecto da morfologia do animal indica um estágio de desenvolvimento tão jovem. Uma outra hipótese, no entanto, explica de forma mais parcimoniosa esse baixo grau de ossificação: um hábito de vida aquático, conforme observado em inúmeras linhagens de répteis que adquiriram um hábito aquático em sua história evolutiva (ex: mosassauros, plesiossauros, talatossauros, entre outros). Além disso, a baixa ossificação dos ossos do pulso e tornozelo tornariam as patas da Tetrapodophis pouco úteis para atividades como escavar ou escalar. Outros argumentos também foram utilizados em um estudo mais recente para demonstrar empiricamente que a Tetrapodophis não possui o leque de adaptações que normalmente se observa em lagartos ou cobras fossoriais (Lee et al., 2016).

Problemas legais e éticos

O outro aspecto controverso sobre a Tetrapodophis, e que concerne de forma mais direta a paleontologia brasileira, é como esse material foi parar em uma coleção particular na Alemanha. A legislação brasileira proíbe, desde 1942, a venda de fósseis ou a sua retirada do país sem permissão legal. No entanto, toneladas de fósseis deixam o Brasil ilegalmente para serem vendidos no exterior, especialmente aqueles da bacia do Araripe (região de procedência da Tetrapodophis)—para mais detalhes sobre a legislação brasileira sobre os fósseis e o problema do contrabando de fósseis, veja Simões and Caldwell (2015). Os autores do trabalho relataram não saber sobre a exata época em que o fóssil saiu do Brasil (http://www.sciencemag.org/news/2015/07/four-legged-snake-fossil-stuns-scientists-and-ignites-controversy). Na realidade, depoimentos por parte do autor principal (Martill) sobre a saída do material do Brasil demonstram o quão preocupado com as normas éticas e legais o autor parecia estar no momento de sua publicação “pessoalmente, eu não dou a mínima para como e quando o fóssil saiu do Brasil” [tradução livre] (veja o relato de Martill no link anterior). Contudo, o fato do fóssil pertencer a uma coleção particular e devido ao longo histórico de tráfico de fósseis da região do Araripe criam uma situação muito suspeita acerca da procedência do material e as circunstâncias da sua saída do país. Isso levou a abertura de um processo criminal para se investigar a saída desse fóssil do Brasil (http://www.nature.com/news/four-legged-snake-fossil-sparks-legal-investigation-1.18116).

Um dos grandes problemas envolvendo coleções particulares e venda de fósseis é a perda de conhecimento sobre a biodiversidade pretérita devido a exemplares que terminam em gavetas de indivíduos particulares, ao invés de serem estudados por especialistas em museus e universidades. No caso da Tetrapodophis, o exemplar havia sido depositado em um museu na região de Solnhofen à época da publicação. Contudo, o material pertence a um colecionador particular e o dono detém os direitos de retirar o espécime do museu quando bem entender. Em algum momento entre o fim de 2015 e início de 2016, soubemos da notícia que o dono do material havia retirado o espécime do museu em Solnhofen e que, portanto, o holótipo e único espécime conhecido de Tetrapodophis não estava mais disponível para estudo. As observações do espécime feitas por Martill e co-autores, seguidas das realizadas por Caldwell e Reisz em uma visita ao museu logo após a publicação da espécie, poderão permanecer como as únicas existentes acerca desse material, talvez por muitos anos a frente. Nesse contexto, e ao meu entendimento, fica clara a resposta a pergunta: quem ganha com materiais científicos depositados em coleções particulares? Certamente, não é a ciência.

Referências para os artigos citados acima:

Lee MSY, Palci A, Jones MEH, Caldwell MW, Holmes JD, Reisz RR. 2016. Aquatic adaptations in the four limbs of the snake-like reptile Tetrapodophis from the Lower Cretaceous of Brazil. Cretaceous Research 66: 194-199.

Martill DM, Tischlinger H, Longrich NR. 2015. A four-legged snake from the Early Cretaceous of Gondwana. Science 349: 416-419.

Simões TR, Caldwell MW. 2015. Fósseis e legislação: breve comparação entre Brasil e Canadá. Ciência e Cultura 67: 50-53.

Dados sobre o autor:

12645264_10207058817362317_831737693683863186_nTiago Rodrigues Simões possui graduação e mestrado em Ciências Biológicas pela Universidade Federal do Rio de Janeiro e atualmente está concluindo o doutorado na University of Alberta (Edmonton, Canandá). A sua pesquisa consiste no estudo da origem e evolução de Squamata (lagartos e cobras), utilizando dados de espécies fósseis e viventes (https://www.researchgate.net/profile/Tiago_Simes2).

Explicando as similaridades entre os seres vivos: da observação até as hipóteses!

Desde muito cedo em suas vidas os seres vivos instintivamente buscam abstrair padrões daquilo que seus sentidos captam do mundo ao seu redor. Uma planária é capaz de perceber por meio de seus ocelos ambientes mais claros e escuros, optando por aquele que lhes é mais favorável. Abelhas e Aves são capazes de detectar odores, formatos e cores das flores que os cercam separando-as nas que devem e não devem ser visitadas durante sua colheita/alimentação. Mamíferos herbívoros conseguem detectar por meio de odores, morfologia e padrões de cores espécimes vegetais que não devem ser utilizados para alimentação. Mamíferos carnívoros rapidamente aprendem a identificar as características que caracterizam certos animais como presas, inclusive sendo capazes de distinguir feições que tornam determinado indivíduo uma presa em potencial, como ferimentos e patologias. Nossos ancestrais, e incluindo a nós mesmos, utilizamos das feições contidas pelos objetos que nos cercam para identificar e agrupar em categorias funcionais. Por mais óbvio que isso possa parecer, um objeto é um objeto pelas características próprias que eles possuem principalmente aquelas tidas como exclusivas (Armstrong, 1997), e nos valemos disso para categorizá-los e atribuir algum significado/valor.

Georges_Cuvier_large
O ilustre paleontologo e anatomista Georges Cuvier.

Assim como nas cotidianas comparações entre as características dos objetos que nos cercam também são largamente utilizadas na ciência, com uso extensivo na paleontologia. Embora, hoje em dia, tais comparações na ciência pareçam triviais e automáticas, no passado elas não eram. Georges Cuvier (1769 – 1832; sim o mesmo que abordamos a algumas postagens atrás, aqui), considerado o Pai da Paleontologia, foi um dos responsáveis por estabelecer como um método cientifico o ato de se comparar características expressas por objetos diferentes, ato este conhecido como anatomia comparada e morfologia funcional (ato de atribuir funções associadas a determinados tipos de morfologia, um grande passo para os estudos paleoecológicos). Com tal metodologia em mãos ele foi capaz de comparar fósseis com esqueletos de animais viventes e devido às similaridades morfológicas ele foi capaz de realocar os fósseis (que antes eram classificados por Lineu junto às rochas), na taxonomia Lineana entre os grupos viventes.
sir-richard-owen-moa-skelton-1879-276x400
Richard Owen ao lado de um Moa, ave extinta da Nova Zelândia.

No entanto, foi um contemporâneo de Cuvier que buscou propor termos para tais características observadas pelo método comparativo. Este foi Richard Owen (1804 –1892), um prodigioso e produtivo pesquisador, famosos por ser um dos diretores do Museu de História Natural de Londres e cunhar o termo Dinosauria (veja Padian, 1997 e suas referências para um melhor entendimento da biografia de Owen). Owen, em 1843, publicou o trabalho intitulado “Lectures on the Comparative Anatomy and Physiology of the invertebrate animals” (tradução: Ensaios sobre anatomia comparada e fisiologia dos animais invertebrados), como o próprio nome diz, neste trabalho volumoso ele discorre sobre a anatomia comparada e fisiologia de uma vasta variedade de invertebrados. No entanto, o diferencial deste trabalho é a utilização de um termo, HOMOLOGO, empregado quando comparações entre características tidas como iguais eram feitas ou discutidas. Embora o termo homologo não seja novo e já tenha sido utilizado em outras áreas, como na matemática, e até mesmo na biologia pelo Francês Auguste de Saint-Hilaire, Owen foi o responsável por formalizar uma definição para tal termo dentro do estudo da anatomia comparada. Diante disto, no glossário de seu trabalho de invertebrados, Owen define tal termo da seguinte forma: “HOMOLOGUE. (Gr. homos; logos, speech.) The same organ in different animals under every variety of form and function.” (Owen, 1843: 379; tradução: Homologo (Gr. homos; logos, speech.) o mesmo órgão em diferentes animais sob qualquer variedade de forma e função). Dando continuidade à designação de termos no estudo da anatomia comparada Owen, em 1847, no trabalho intitulado “Report on the Archetype and Homologies of the Vertebrate Skeleton” (tradução: Reporte sobre o Arquétipo e Homologias do esqueleto dos Vertebrados) cunhou outro termo chamado Homologia, segundo ele tal termo pode ser dividido em três, cada um com uma aplicação própria, eles são: 1) Homologia especial é a correspondência de um órgão, ou parte de um órgão, cuja explicação indica a existência de um tipo comum entre os possuidores daquele órgão (e.g., quando correlacionamos os úmeros dos vertebrados e sugerimos que tal estrutura possui uma origem em comum); 2) Homologia geral um órgão, parte dele ou séries de partes de um organismo que possam ser relacionadas com um tipo fundamental/geral reconhecendo que determinado grupo de organismos formam um grupo natural (e.g., quando relacionamos alguma parte de nosso corpo diretamente a uma parte pertencente ao arquétipo de nosso grupo); e, 3) Homologia seriada sucessão de órgãos ou partes similares entre si que se sucedem longitudinalmente ao longo do corpo, sendo possível haver especializações regionais entre essa parte repetida, no entanto sem perder suas feições primordiais (e.g., as vértebras dos animais vertebrados que apresentam modificações especificas para cada parte do corpo, mas continuam tendo as feições necessárias para considerarmos como vértebras).
3-Organos-homologos
Exemplos de homologos, ou homologias como alguns virão a chamar, entre os ossos dos membros anteriores de um (da esquerda para direita): humano, gato, baleia e morcego.

Interessante notar que, além da proposição de novos termos, neste trabalho sobre o esqueleto dos vertebrados, Owen ressuscitou e defendeu a Teoria do Arquétipo como explicação causal para as similaridades observadas entre os organismos. Tal teoria propõe que todas as morfologias observadas nos organismos derivam de um arquétipo, que para Owen esse arquétipo não era uma entidade existente e sim um modelo ideal de onde todas as outras morfologias derivaram. Como resultado desta idéia Owen esboçou como ele imaginava que seria o Arquétipo dos vertebrados, sendo um animal fusiforme similar a um peixe composto por uma série de vértebras, ressuscitando a idéia de que o crânio era derivado das vértebras anteriores. Fica evidente a idéia de uma força superior que modelaria os vertebrados conhecidos baseado nesse modelo proposto.
500px-Vertebrate_archetype
O arquétipo dos vertebrados segundo Owen.

thomas-henry-huxley-1885220px-Ray_Lankester
Thomas Huxley (a esquerda) e seu estimado orientando Ray Lankester (a direita). Ambos grandes defensores das ditas teorias evolutivas de Darwin.
Em 1870, Ray Lankester, um jovem aluno de 23 anos, cujo orientador era ninguém menos que Thomas Henry Huxley (renomado pesquisador que hoje é famoso por ter defendido Darwin e suas idéias), publicou um trabalho revisando os termos propostos por Owen e recomendando a utilização de alguns novos, mais adaptados a teoria da descendência com modificação (hoje conhecida como evolução). Neste trabalho Lankester propõem que como o termo Homologia de Owen esta intrinsecamente associada à Teoria dos Arquétipos, visão esta que foi derrubada pela descendência com modificação e seleção natural, este deveria ser substituído por dois novos termos: homogenia e homoplasia. Ambos os termos se aplicariam como explicações causais das similaridades compartilhadas entre os organismos, no entanto, as homogenias seriam aplicadas para quando essa similaridade é explicada pela ancestralidade em comum e a homoplasia se aplicaria a todos os outros casos que não a ancestralidade em comum. No entanto, Lankester vislumbrou o termo homologo como sendo aplicado as estruturas que já haviam sido explicadas pelas homologias, justamente o oposto do que Owen havia proposto.
800px-St_George_Jackson_Mivart
George Jackson Mivart, grande defensor de Richard Owen e protagonizou trabalhos que antagonizavam as idéias de Darwin, como seu trabalho “Genesis of Species”.

Porém, embora a idéia de Lankester com seus novos termos fosse amenizar futuras confusões entre os termos e as teorias que estes termos representavam, suas propostas foram mal recebidas. No mesmo ano de sua publicação, 1870, um dos seguidores das idéias Owen, Mivart publicou um trabalho contrargumentando Lankester e propondo novas combinações com os termos antigos e novos usados na época. No fim, Mivart criou ainda mais confusão com suas proposições. Para piorar, pesquisadores posteriores resolveram começar a utilizar o termo homoplasia em seu sentido original, mas decidiram não utilizar o termo homogenia e manter o termo homologia. Apesar disso, a homologia nesse novo contexto não possuiria o mesmo significado original, proposto por Owen, e sim o significado de homogenia proposto por Lankester (Hass & Simpson, 1946).
394626aa.eps.0
Colin Patterson, grande paleontólogo Britânico que trouxe grandes contribuições teóricas para o estabelecimento daquilo que hoje conhecemos como Cladística.

Decorrente dessa história o significado de homologia se tornou um mistério que muitos tentaram resolver propondo conceitos diferentes para cada novo uso ou teoria proposta. Patterson, em 1981, fez uma revisão dos vários conceitos propostos para o termo homologia e, além disso, nessa época podemos verificar que os termos “homologo” e “homologia” começaram a ser tratados como sinônimos uns dos outros, tradição essa que permanece até hoje entre a maioria dos pesquisadores. Em sua revisão, Patterson defende que o melhor conceito de homologia/homologo seria equivalente ao de sinapomorfia (termo utilizado na sistemática filogenética para representar caracteres compartilhados por grupos monofiléticos), ou seja, uma visão “atualizada” da homogenia de Lankester. Essa vem sendo o conceito mais ensinado utilizado e aceito pelos biólogos atualmente.
download (7)
Representação esquemática de alguns termos utilizados na Cladística, sendo que para muitos homologia seria um equivalente de sinapomorfia (circulos cinza).

Com base nessa breve contextualização histórica, podemos concluir que uma das principais fundamentações para qualquer cientista é um conhecimento dos termos e seus significados. Apesar de alguns filósofos defenderem que os termos em si não são importantes, e sim a importância reside no significado que damos aos termos (i.e., semântica). Desta forma, entender a origem e aplicação dos diferentes termos permitem que se estabeleça um consenso de qual seriam os mais apropriados para o contexto da época. Finalizo por hoje ressaltando a importância de se compreender o contexto histórico em que tais termos estão envolvidos, pois parte de seus significados derivaram do conhecimento prévio da época. Sendo assim, leiam sempre que possível o trabalho original em que o termo foi proposto e busquem acompanhar e compreender o que aconteceu com ele ao longo dos anos, pois como vimos no termo homologia, muita confusão foi criada.
 
Gostaria como sempre de agradecer a Kamila L. N. Bandeira pela revisão do texto. Tal postagem foi inspirada nas discussões dos termos aqui apresentados feita por Fitzhugh (2006), no entanto, guardarei para uma próxima postagem as propostas feitas por ele e as implicações decorrentes disso e dos critérios filosóficos defendidos por ele. Além disso, aprofundarei nas demais visões vigentes acerca desta temática! Espero que gostem.
 
REFERÊNCIAS:
 ARMSTRONG, D. M. 1997. A World of States of Affairs. New York: Cambridge University Press, 300 p.
 FITZHUGH, K. 2006. The abduction of phylogenetic hypotheses. Zootaxa, 1145: 1-110.
HAAS, O. & SIMPSON, G.G. 1946. Analysis of some phylogenetic terms, with attempts at redefinition. Proceedings of the American Philosophical Society, 90: 319–349.
LANKESTER, E. R. 1870. On the use of the term homology in modern zoology, and the distinction between homogenetic and homoplastic agreements. Annals and Magazine of Natural History, 6: 35-43.
 MIVART, S. G. 1870. On the use of the term “homology”. The annals and Magazine of Natural history, 32 (4): 113-121.
 OWEN, R. 1843. Lectures on the Comparative Anatomy and Physiology of the Invertebrate Animals, Delivered at the Royal College of Surgeons, in 1843. London: Longman, Brown, Green, and Longmans.
OWEN, R. 1847. Report on the archetype and homologies of the vertebrate skeleton. Report of the Meeting of the British Association for the Advancement of Science, 16: 169-340.
PADIAN, K. 1997. The Rehabilitation of Sir Richard Owen. BioScience, 47(7): 446-453.
PATTERSON, C. 1982. Morphological characters and homology. In: Joysey, K.A. & Friday, A.E. (Eds.), Problems of Phylogenetic Reconstruction. Academic Press, New York, New York, pp. 21–74.

Paleontologia e Pokémon: Conheça os animais que inspiraram os Pokémon fósseis!

Esta contribuição foi feita pelo aluno de graduação da Universidade Federal de Uberlândia (UFU) chamado Rodolfo Otávio dos Santos. Atualmente ele se encontra no 6º período do curso de Ciências Biológicas e está estagiando no Laboratório de Paleontologia da UFU (https://www.facebook.com/PaleoUFU).

Devido ao seu interesse na área e de auxiliar na divulgação sobre tais assuntos, ele seguirá contribuindo com mais postagens sobre os mais variados tópicos. Rodolfo fez sua primeira contribuição tratando sobre a discrepância entre a abundância de dinossauros na Argentina x Brasil (aqui). Hoje ele traz um tema bastante atual e interessante, que é a relação dos Pokémon com os animais fósseis já descobertos, que servem de inspiração para os referidos monstrinhos. Divirtam-se!

figura 1

Criada pelo japonês Satoshi Tajiri há 20 anos, Pokémon é uma das mais bem sucedidas franquias de mídia de todos os tempos. Tudo começou no ano de 1996, com o lançamento dos jogos Pokémon Green e Pokémon Red, ambos para Game Boy, um videogame portátil da Nintendo. De lá pra cá, a franquia cresceu, e além de jogos engloba mangás, jogos de cartas, filmes e o anime (POKÉMON COMPANY, 2016), que foi o responsável pela popularização de Pokémon em diversos países, inclusive o Brasil, sendo praticamente unanimidade entre as crianças no início dos anos 2000. Recentemente, com o lançamento do jogo Pokémon GO, a franquia ficou novamente em evidência, e ao que tudo indica marcará a infância de uma nova geração de crianças ao redor do planeta.

O universo da franquia gira em torno dos seres chamados Pokémon, abreviação do termo Pocket Monsters (Monstros de bolso), que podem ser capturados e treinados por seres humanos (POKÉMON COMPANY, 2016). Os Pokémon, em sua maioria, são baseados em animais, porém alguns são inspirados em plantas, objetos e até mesmo criaturas mitológicas. Neste texto, discutirei sobre uma categoria especial de Pokémon, os Pokémon fósseis, que foram baseados em organismos fósseis reais!

De maneira semelhante ao que ocorre no mundo real, também existem fósseis no universo Pokémon, formados a partir dos restos orgânicos de seres vivos, em sua maioria já extintos. Porém, diferentemente da nossa realidade, no mundo Pokémon existe a possibilidade de trazer esses Pokémon de volta à vida, através de máquinas que utilizam o DNA contido em seus fósseis. Ao todo, são 11 tipos que podem ser encontrados nos jogos, e considerando suas evoluções, temos um total 21 Pokémon pré-históricos.

Os Pokémon ressuscitados dos fósseis sempre possuem o tipo Pedra (Rock), porém não está claro se isso é um efeito colateral do processo de renascimento ou se eles já apresentavam esse tipo originalmente no passado (O que poderia tornar o processo de fossilização mais fácil de ocorrer). De qualquer forma, o motivo deles possuírem o tipo Pedra é uma referência direta ao fato de que os fósseis são encontrados principalmente nas rochas sedimentares.


AerodactylNome: Aerodactyl (Aero – Ar, em grego e Pterodactyl – um gênero de Pterossauros).

Tipo: Rock/Flying
Obtido a partir do Old Amber (Uma possível referência ao filme Jurassic Park)

Aerodactyl é um Pokémon baseado nos Pterossauros, uma ordem de répteis que viveu durante a Era Mesozóica, sendo contemporâneos aos Dinossauros, porém formando um grupo separado (ou seja, os Pterossauros não eram Dinossauros). Dentre o grupo dos Pterossauros, aqueles que mais se assemelham ao Aerodactyl são os Rhamphorhynchoidea (pronuncia-se Ranforrincóide), caracterizados por possuírem boca com dentes pontiagudos e uma longa cauda óssea. Assim como nos Pterossauros, as asas do Aerodactyl são formadas a partir do prolongamento do 4º dedo, sendo recobertas por uma membrana que permitia a sustentação durante o voo. Outra característica comum de muitos Pterossauros (como o famoso Pteranodon) e presente no Aerodactyl são as cristas no crânio, cujas funções variavam desde atração sexual até controle da temperatura e direcionamento do voo (KELLNER; CAMPOS, 2002).Muito do conhecimento científico acerca dos Pterossauros foi produzido por pesquisadores brasileiros, pois há cerca de 110 milhões de anos os céus do nosso país eram dominados por esses animais (para mais informações sobre este assunto no livro escrito por Alexander W. A. Kellner intitulado “Pterossauros os senhores do céu do Brasil”).

Uma pesquisa recente revisando especimes previamente atribuidas a espécie Pterodactylus scolopaciceps foram realocadas em um novo gênero chamado Aerodactyl, em homenagem ao Pokemon homônimo aqui apresentado (VIDOVIC; MARTILL, 2014; veja também uma postagem sobre o assunto aqui no blog).

Omanyte e OmastarNomes: Omanyte e Omastar (estes nomes são uma derivação de Amonite, sendo que em Omastar há também uma referência ao formato de estrela star, devido a forma dos tentáculos do Pokémon).

Tipo: Rock/Water

Obtido a partir do Helix Fossil

Omanyte e Omastar são baseados nos Amonites, grupo de Moluscos Cefalópodes carnívoros (mesmo grupo das lulas e polvos), que surgiram há 400 milhões de anos, durante um período conhecido como Devoniano, e foram extintos no final do Cretáceo, na famosa extinção que também vitimou os dinossauros não-avianos. Os Amonites possuíam uma concha formada por Carbonato de Cálcio, em formato espiral, possuindo várias câmaras. Essa concha funcionava como um submarino, enchendo-se de líquido ou de gases, controlando a flutuação do animal na água (DAVIS et al., 1996), de forma similar ao cefalópode moderno Nautilus, que apesar de parecido com os amonitas é um parente distante. Omanyte e Omastar possuem numerosos tentáculos, assim como as criaturas em que foram inspirados. Adicionalmente, Omastar possui espinhos em sua concha, de forma semelhante às ornamentações presentes nas conchas de alguns Amonites, cuja função, segundo os paleontólogos, está relacionada ao dimorfismo sexual (DAVIS et al., 1996).

Kabuto e KabutopsNomes: Kabuto e Kabutops (Kabuto é o nome dado aos capacetes utilizados pelos samurais).

Tipo: Rock/Water

Obtido a partir do Dome Fossil

Kabuto e Kabutops, diferentemente da maioria dos Pokémon fósseis, são inspirados em criaturas ainda viventes, os Límulos, conhecidos popularmente como caranguejo-ferradura (apesar do nome, são mais aparentados às aranhas e escorpiões do que aos caranguejos). Os primeiros Límulos surgiram no planeta por volta de 450 milhões de anos atrás, e por manterem uma morfologia externa semelhante à de seus antepassados fósseis, os Límulos são chamados de fósseis vivos, embora esse termo não tenha nenhuma validade científica (ROMANO; RIFF; OLIVEIRA, 2007). São animais marinhos, dotados de uma carapaça com função de proteção, muito semelhante à de Kabuto, e diferentemente do Pokémon, apresentam uma cauda (Telson), além de apresentarem olhos apenas na região dorsal. Já Kabutops não parece ter sido inspirado em nenhum organismo fóssil específico, possuindo uma forma de um artrópode com características humanas (presença de apenas quatro membros e bípede). Os Límulos são muito conhecidos por sua migração anual para a costa norte americana, onde milhares de indivíduos buscam se reproduzir (SHUSTER; BARLOW; BROCKMANN, 2003). Além disso, compostos extraídos do seu organismo tem mostrado muito potencial farmacêutico, o que torna esses animais muito valiosos do ponto de vista econômico (HURTON, 2003).

Lillep e CradilyNomes: Lillep e Cradily (Do inglês Lily, pois foram baseados nos Lírios do mar).

Tipo: Rock/Grass

Obtido através do Root Fossil

Lillep e Cradily, assim como Kabuto e Kabutops, são baseados em organismos ainda viventes, os Lírios do mar, que apesar do nome são animais do mesmo grupo das Estrelas e Pepinos do mar, os Equinodermos. Durante o período chamado de Ordoviciano (cerca de 440 milhões de anos atrás) os Lírios do mar surgiram e se diversificaram bastante, sendo muito mais abundantes do que nos dias atuais (BAUMILLER, 1993), o que justifica o fato de terem sido utilizados como base de Lillep e Cradily. Os Lírios do mar se alimentam por meio de filtração, com a ajuda de seus numerosos braços que possuem várias ramificações (pínulas e pódios), responsáveis por levar o alimento até a boca, que fica na porção central do corpo. Os Lírios do mar são capazes de se movimentar por conta de seus cirros, estruturas localizada na base do corpo, semelhantes a uma raiz, que também são responsáveis pela fixação desses animais em rochas (ROCHA, 2006). Diferentemente dos Lírios do mar, Lillep e Cradily apresentam olhos, além de ocelos (manchas na pele em formato de olhos, encontradas em muitos animais, como algumas espécies de borboletas) também estarem presentes em Cradily. O tipo Grama é uma clara referência ao fato desses animais se assemelharem às plantas.

Anorith e ArmaldoNomes: Anorith e Armaldo (Anorith é a junção de Anomalocaris, animal no qual o Pokémon foi baseado e lith, sufixo que significa rocha; enquanto Armaldo é uma referência à Armor, armadura em inglês).

Tipo: Rock/Bug

Obtido através do Claw Fossil

Anorith e Armaldo são baseados num predador marinho pré-histórico conhecido como Anomalocaris, que viveu há 515 milhões de anos e foi um dos primeiros grandes predadores da Terra. Assim como o Anomalocaris, Anorith e Armaldo possuem projeções localizadas na lateral de seus corpos, chamados de lóbulos, que são utilizadas para impulsionar o animal na água. A “garra” dos Pokémon também é encontrada no Anomalocaris, sendo uma projeção utilizada para capturar as presas e leva-las a boca, que tinha um formato de disco (PETERSON, 2011). Os olhos compostos estavam localizados no final de pedúnculos laterais, sendo muito parecidos com os olhos dos  camarões atuais, embora os olhos dos Pokémon sejam normais. Ao evoluir, Armaldo adquire características não encontradas no Anomalocaris, possuindo um aspecto mais terrestre. Ambos Pokémon possuem o tipo Inseto, uma referência por serem baseados em animais que possuem íntimo parentesco com os Arthropoda (grupo em que estão incluídos os insetos).

Cranidos e RampardosNomes: Cranidos e Rampardos (Cranidos é derivado de Crânio, característica marcante dos Pachycefalosaurus, os dinossauros que serviram de inspiração aos Pokémon, enquanto Rampardos pode ser uma referência à palavra Rampage, que significa “ficar com raiva” em português).

Tipo: Rock

Obtido através do Skull Fossil (provável referência ao tipo de fósseis encontrados e referidos a Pachycefalosaurus)

Cranidos e Rampardos foram inspirados nos Pachycefalosaurus (lê-se Paquicefalossauros), um gênero de dinossauros que pertencem ao grupo Pachycephalosauridae, conhecidos por seus crânios peculiares, muito espessos, cheios de protuberâncias ósseas e com uma estrutura em forma de domo no topo, que segundo os paleontólogos era utilizada pelos machos em disputas por fêmeas ou território (BARRET, 2005). Ambos os Pokémon herdaram todas as principais características dos Pachycefalosaurus, incluindo os espinhos no crânio e o comportamento de utilizar a cabeça como principal arma de ataque e defesa.

Shieldon e BastiodonNomes: Shieldon e Bastiodon (O nome Shieldon é derivado de shield, escudo em inglês, enquanto Bastiodon vem da palavra bastion, baluarte em português, uma construção defensiva cercada por muralhas, muito utilizada na Europa a partir do séc. XV).

Tipo: Rock/Steel

Obtido através do Armor Fossil

Shieldon e Bastiodon foram baseados num grupo de dinossauros herbívoros muito conhecido, os Ceratopsídeos (grupo que inclui o famoso Triceratops). A principal característica destes dinossauros, também presente nos Pokémon, é a presença de uma estrutura no crânio em forma de escudo, que tinha um papel muito importante na defesa desses dinossauros contra seus predadores (BARRET, 2005). Shieldon parece ter sido inspirado num pequeno Ceratopsídeo conhecido como Protoceratops, por conta de seu pequeno tamanho e ausência dos chifres no crânio, que eram muito comuns nos Ceratopsídeos mais primitivos. Já Bastiodon parece ter sido inspirado no Chasmosaurus, uma espécie consideravelmente maior, que possuía espinhos no topo do escudo, característica compartilhada pelo Pokémon. Outra característica marcante do escudo de Bastiodon é a presença de “desenhos”, sendo que estes adornos também estavam presentes no Chasmosaurus. Porém sua função ainda é tema de discussão entre os paleontólogos, com alguns defendendo se tratar de uma estrutura que regula a temperatura corporal, enquanto outros argumentam que seria utilizada para atração sexual (BARRICK, 1998). Também é possível notar a semelhança do escudo do Bastiodon com a parede dos castelos medievais, com seus desenhos lembrando janelas.

Tirtouga e CarracostaNomes: Tirtouga e Carracosta (O nome Tirtouga é baseado em Tortuga, tartaruga em espanhol; enquanto Carracosta provavelmente faz referência à carapaça característica do grupo e à costa litorânea, local de nascimento das tartarugas marinhas).

Tipo: Water/Rock

Obtido através do Cover Fossil

Tirtouga e Carracosta são baseadas em Tartarugas, um grupo de animais que surgiu na Terra há aproximadamente 220 milhões de anos, caracterizados principalmente por sua carapaça, que é formada a partir da fusão das vértebras e costelas e recoberta com placas dérmicas. Apesar de aparentemente não serem baseadas em nenhuma tartaruga fóssil específica, é possível notar algumas pequenas semelhanças de Tirtouga com a Protostega gigas, uma espécie de tartaruga marinha que viveu há cerca de 84 milhões de anos, e assim como o Pokémon possuía depressões em seu casco (STEMBERG, 1903). Já Carracosta possui um aspecto mais terrestre, tendo as pernas traseiras adaptadas para andar, e não para nadar, de maneira similar às jabutis, animais intimamente aparentados com as tartarugas, porém de hábito terrestre. Seu grande tamanho, no entanto, é uma possível referência à Archelon ischyrus, maior espécie de tartaruga de todos os tempos, medindo cerca de 4 metros (WIELAND, 1896). É válido lembrar que várias espécies de tartarugas marinhas viventes corre risco de extinção, principalmente por conta da poluição dos oceanos (sobre programas de proteção às tartarugas visite o projeto TAMAR).

Archen e ArcheopsNomes: Archen e Archeops (O nome dos dois Pokémon é baseado em Archaeopteryx, um dinossauro muito semelhante às aves, que possuía asas, bico e penas).

Tipo: Rock/Flying

Obtido através do Plume Fossil (provável referência ao holótipo de Archaeopteryx, que consiste de uma única pena fossilizada)

Archen e Archeops são baseados num dos animais pré-históricos mais importantes já encontrados, o Archaeopteryx. Sua descoberta foi de grande ajuda à Teoria da Evolução, fornecendo fortes evidências de que os as aves seriam descendentes dos dinossauros, mais especificamente aqueles de um grupo chamado Theropoda (O mesmo dos famosos Tyrannosaurus e Velociraptor). Os dois Pokémon possuem todas as características mais marcantes do Archaeopteryx, como as asas ainda com garras, penas, cauda óssea e o bico com dentes (BARRET, 2005). O nome Archaeopteryx significa “Pena antiga”, nome este proposto pelo fato do primeiro fóssil encontrado, assim como ocorre nos jogos, conter apenas uma pena fossilizada. Archeops, além de se basear no Archaeopteryx, também parece ter sido inspirado no principal deus Asteca conhecido como Quetzalcóatl, uma serpente com várias penas pelo corpo.

Tyrunt e TyrantrumNomes: Tyrunt e Tyrantrum (Tyrunt é a combinação entre Tyrannosaurus e runt, palavra em inglês utilizada para designar alguém pequeno; enquanto Tyrantrum é a combinação de Tyrannosaurus e tantrum, palavra também de origem inglesa que significa ataque de raiva).

Tipo: Rock/Dragon

Obtido através do Jaw Fossil (Provável referência ao fato de que o primeiro fóssil de Tyrannosaurus descoberto se tratar de uma mandíbula)

Tyrunt e Tyrantrum são baseados no mais popular dos dinossauros, o Tiranossauro. As principais características deste dinossauro, como os famosos braços curtos, as pernas musculosas, além da cabeça grande com dentes igualmente enormes (HOLTZ, 1994), são encontradas em ambos Pokémon. Tyrunt ainda apresenta características de outros dinossauros carnívoros, como as cristas de cor laranja sobre os olhos, baseadas no Gorgosaurus. Tyrantrum também possui uma crista laranja sobre os olhos, porém num tamanho maior, lembrando uma coroa, sendo muito similar à encontrada num dinossauro conhecido como Cryolophosaurus. O nome Tyrannosaurus rex significa “Lagarto Tirano Rei”, e algumas características de Tyrantrum, como a já mencionada crista em forma de coroa, as penas brancas na maxila que lembram uma barba, e as do pescoço lembram uma capa, são inspiradas nos reis medievais. As penas brancas, também presentes no pescoço de Tyrunt, são uma referência à possibilidade de que os Tiranossauros possuíssem penas (XU et al., 2004) , assim como vários dinossauros Terópodes, incluindo o Velociraptor. Apesar de toda fama vinda dos filmes, alguns paleontólogos sugerem que o Tyrannosaurus pode não ter sido um predador tão veloz como o cinema nos mostra (HUTCHINSON; GARCIA, 2002).

Amaura e AurorusNomes: Amaura e Aurorus (O nome de ambos é baseado na junção de duas palavras: Amargasaurus, o dinossauro em que foram baseados, e aurora, uma referência ao fenômeno que ocorre na atmosfera, em regiões próximas aos polos).

Tipo: Rock/Ice

Obtido através do Sail Fossil

Amaura e Aurorus são baseados nos Saurópodes, dinossauros de pescoço e cauda muito longos e cabeça pequena, que foram os maiores animais terrestres de todos os tempos. Um deles em especial, o Amargasaurus, parece ter sido utilizado como principal inspiração, principalmente por conta das velas localizadas em seu pescoço, compartilhadas com estes Pokémon. Essas velas eram formadas através do prolongamento de espinhos que partiam da coluna vertebral e eram recobertos por uma membrana de pele (CARABAJAL; CARBALLIDO; CURRIE, 2014). Além disso, por toda parte dorsal do corpo dos Pokémon estão localizados pequenos cristais de gelo, que podem ter sido inspirados nos chamados osteodermas, estruturas presentes na superfície do corpo que conferiam proteção a estes animais (ROGERS et al., 2011). As velas dos Pokémon são capazes de mudar a coloração, de forma semelhante ao que ocorre com as auroras. Os paleontólogos acreditam que algumas espécies de Saurópodes podiam viver em climas mais frios, sendo essa a provável base para que Amaura e Aurorus fossem criados com o tipo gelo.

Aqui encerramos mais uma contribuição do nosso querido Rodolfo. Ao fim dessa leitura aprendemos um pouco mais sobre estes amaveis monstrinhos e sobre toda ciência envolta na criação deles. Embora alguns possam questionar a acuráncia dessas criações, elas não deixam de servir como uma forma de divulgação dos trabalhos paleontológicos. Ficamos no aguardo para mais contribuições do Rodolfo, espero que tenham gostado e comentem a vontade!!

Referências bibliográficas

todas as imagens aqui apresentadas foram retiradas do site: http://bulbapedia.bulbagarden.net/wiki/Main_Page.

BARRET, P. Dinossauros. 1 ed. São Paulo: Martins Fontes, 2005. 192 p.

BARRICK, R. E. et al. The thermoregulatory functions of the Triceratops frill and horns: heat flow measured with oxygen isotopes. Journal of Vertebrate Paleontology, Norman, vol. 18, n. 4, p. 746-750, dez. 1998.

BAUMILLER, T. K. Survivorship analysis of Paleozoic Crinoidea: effect of filter morphology on evolutionary rates. Paleobiology, Columbia, vol. 19, n. 3, p. 304-321, jul. 1993.

CARABAJAL, A. P.; CARBALLIDO, J. L.; CURRIE, P. J. Braincase, neuroanatomy, and neck posture of Amargasauruscazaui (Sauropoda, Dicraeosauridae) and its implications for understanding head posture in sauropods. Journal of Vertebrate Paleontology, Norman, vol. 34, n. 4, p. 870-882, jul. 2014.

DAVIS, R. A. et al. Ammonoid Paleobiology. 1 ed. New York: Springer US, 1996. 857 p.

HOLTZ, T. R. J. The Phylogenetic Position of the Tyrannosauridae: Implications for Theropod Systematics. Journal of Paleontology, Cambridge, vol. 68, n. 5, p. 1100-1117, set. 1994.

HURTON, L. Reducing post-bleeding mortality of horseshoe crabs (Limulus polyphemus) used in the biomedical industry. 2003. 80 f. Dissertação (Master of Science in Fisheries and Wildlife Sciences) – Virginia Polytechnic Institute, State University, Blacksburg. 2003.

HUTCHINSON, J. R.; GARCIA, M. Tyrannosaurus was not a fast runner. Nature, Londres, vol. 415, p. 1018-1021, fev. 2002.

KELLNER, A. W. A.; CAMPOS, D. A.The Function of the Cranial Crest and Jaws of a Unique Pterosaur from the Early Cretaceous of Brazil.Science, New York, vol. 297, p. 389-392, jul. 2002.

PETERSON, J. R. et al. Acute vision in the giant Cambrian predator Anomalocaris and the origin of compound eyes. Nature, Londres, vol. 480, p. 237-240, dez. 2011.

ROCHA, R. M. Echinodermata. In: RIBERIRO-COSTA, C. S.; ROCHA, R. M. (Org.). Invertebrados: Manual de Aula Prática. Ribeirão Preto: Holos Editora, 2006. p. 198-214.

ROGERS, K. C. et al. Sauropod dinosaur osteoderms from the Late Cretaceous of Madagascar.Nature Communications, Londres, vol. 2, p. 1-5, nov. 2011.

ROMANO, P. S. R.; RIFF, D.; OLVEIRA, G. Porque um “fóssil vivo” não pode existir: dedução lógica através de abordagem sistemática. In: CARVALHO, et. al. (Eds.). Paleontologia: Cenários de Vida. Rio de Janeiro: Interciência, 2007. p. 51-59.

SHUSTER, C. N.; BARLOW, R. B.; BROCKMANN, H. J.The American Horseshoe Crab. 1 ed. Cambridge: Harvard University Press, 2003. 427 p.

STEMBERG, C. H. Protostega gigas and Other Cretaceous Reptiles and Fishes from the Kansas Chalk. Kansas Academy of Science, Baldwin City, vol. 19, p. 123-128, ago. 1903.

THE POKÉMON COMPANY. Informação para pais. Disponível em <http://www.pokemon.com/br/guia-para-pais/>. Acesso em 16 de out. 2016.

VIDOVIC, S. U.; MARTILL, D. M. Pterodactylus scolopaciceps Meyer, 1860 (Pterosauria, Pterodactyloidea) from the Upper Jurassic of Bavaria, Germany: The Problem of Cryptic Pterosaur Taxa in Early Ontogeny. PLoS ONE vol. 9, n. 10, out. 2014. doi:10.1371/journal.pone.0110646

WIELAND, G. R. A new gigantic Cryptodire Testudinate from the Fort Pierre Cretaceous of South Dakota. American Journal of Science, Stanford, vol. 4, p. 399-413, dez. 1896.

XU, X. et al. Basal tyrannosauroids from China and evidence for protofeathers in tyrannosauroids.Nature, Londres, vol. 431, p. 680-684, out. 2004.