Arquivo da categoria: Geral

Inteligência Artificial na Paleontologia

Os modelos de Inteligência Artificial


Nos últimos anos, a inteligência artificial tem desempenhado um papel cada vez mais significativo na ciência, impulsionando avanços notáveis na forma em que os cientistas estudam e interpretam uma grande quantidade de dados. A análise de informações tem sido revolucionada pela aplicação de algoritmos, técnicas de aprendizado da máquina (machine learning) e aprendizagem profunda (deep learning), permitindo a extração de informações valiosas a partir de grandes conjuntos de dados, acelerando a identificação de padrões e relações complexas nos mesmos.


Um modelo computacional desenvolvido por técnicas de inteligência artificial exige, inicialmente, um conjunto de dados de treinamento, os quais são, em princípio, variáveis numéricas. Através de um algoritmo de aprendizagem, é realizado o ajuste da saída do modelo, e com isso, pode-se predizer uma entrada nova com base no comportamento das variáveis e dos dados utilizados para treinamento. Em algoritmos mais sofisticados e aprofundados, também é desenvolvido um processo de “reforço e reaprendizagem”, com otimização dos parâmetros, de modo a elevar a acurácia do modelo. Estes modelos aperfeiçoados podem ser úteis na predição, classificação, identificação, e segmentação de imagens, por exemplo. Nestas situações, os dados não-numéricos são previamente convertidos em parâmetros numéricos. Na segmentação de imagens tal conversão ocorre para cada pixel ou conjunto de pixels da figura, reduzindo-a a uma matriz numérica.

Diante do grande desenvolvimento destas técnicas, tem-se empregado, de forma notável, modelos computacionais nas mais diversas esferas científicas, e na paleontologia não foi diferente. Em maio de 2024, Yu e colaboradores fizeram uma busca por artigos científicos de modelos de inteligência artificial no estudo de fósseis, e encontraram um total de 79 trabalhos publicados até a data analisada! A análise dos autores demonstrou a popularização da utilização das técnicas de inteligência artificial na paleontologia, com uma ampla gama de aplicações, e ao mesmo tempo, evidenciou desafios a serem superados. Vamos conhecer os resultados desta pesquisa?

A inteligência artificial no estudo dos fósseis


Embora análises auxiliadas por máquina já tivessem sido propostas anteriormente, a inteligência artificial foi somente apresentada como uma ideia científica em um workshop realizado em 1956, em Dartmouth College, nos Estados Unidos. Desde então, com o desenvolvimento de algoritmos cada vez mais complexos, aliado ao aumento da capacidade computacional, as técnicas de aprendizagem da máquina e aprendizagem profunda tornaram-se cada vez mais apreciadas. Não obstante, a sua utilização no campo da paleontologia se deu tardiamente, somente na década de 80 (Healy-Williams, 1983; 1984). Os trabalhos pioneiros consistiram em, a partir de fotomicrografias, extrair os contornos e caracteres diagnósticos de fósseis de foraminíferos – microorganismos marinhos unicelulares, cujo comprimento máximo geralmente não ultrapassa 1 milímetro – do Quaternário. A técnica empregada, a análise de Fourier, consiste em extrair componentes das imagens através de equações, o que a torna bastante útil no reconhecimento de padrões e objetos.

De fato, os foraminíferos têm sido os principais organismos fósseis a serem estudados através da inteligência artificial, chegando a um terço do total de trabalhos publicados nas últimas décadas (Fig. 1). Quando somados a trabalhos que envolvem outros microfósseis – grãos de pólen, esporos de algas, conodontes e radiolários –, o volume de publicações científicas chega à marca dos dois terços. Essa diferença marcante em relação aos macrofósseis (fósseis de maior tamanho) não se deve somente à aplicabilidade econômica dos microfósseis, mas reflete também a facilidade da aplicação das técnicas existentes nesses tipos de fósseis. Ao passo que uma fotografia de um diminuto foraminífero retém muitas informações morfológicas deste organismo, ao se estudar o esqueleto de um dinossauro, por exemplo, podem ser necessárias diversas fotografias em diferentes ângulos. Além disso, a preservação das características anatômicas de animais e vegetais frequentemente é acompanhada por algum nível de deformação, dada pelo processo de fossilização. Seja pela formação de incrustações, fraturas, ou compressão – o que prejudica a performance dos algoritmos. A quantidade de dados disponíveis é outro fator limitante, macrofósseis podem ser mais raros em relação aos microfósseis, os quais podem possuir milhares de amostras correspondentes. Desta forma, os modelos que utilizam microfósseis costumam ser melhor treinados e mais acurados.

Figura 1. A inteligência artificial na paleontologia. Dados de Yu et al. (2024) baseados em 79 trabalhos publicados. MA = marcos anatômicos (landmarks); CNN = redes neurais convolucionais; ML = aprendizagem da máquina (machine learning); KBS = sistemas baseados em conhecimento (knowledge-based systems); FA = Análise de Fourier; GAN = redes adversárias generativas (generative adversarial networks).


O avanço nos modelos computacionais no estudo de fósseis tem sido perceptível. Eles tem sido principalmente aplicados em fotografias, com o objetivo de classificação dos fósseis. A técnica mais utilizada nas últimas décadas corresponde ao algoritmo de redes neurais, o que é identificado tanto na paleontologia, quanto em outras áreas da Ciência. Trata-se de uma técnica de aprendizagem em que se introduz uma matriz de equações aos dados numéricos, a fim de minimizar iterativamente a função perda, e alcançar seu valor ótimo durante o treinamento. A rede neural é estruturada em camadas, as quais permitem modelar, de forma mais satisfatória, relações não-lineares entre os dados, determinando a profundidade e a complexidade do modelo proposto. Desta forma, o algoritmo mimetiza a estrutura do sistema nervoso, em que a informação é passada por sequências de neurônios (Fig. 2).

Figura 2. Modelo de funcionamento do algoritmo de redes neurais artificiais. A partir de uma entrada numérica, a informação é passada pelos neurônios (círculos) através de equações (conexões), até produzirem um resultado final (saída).

Um notável exemplo de aplicação e desenvolvimento da técnica é de um estudo preliminar realizado em 1996, com fins de classificação de algas calcárias fósseis (cocolitóforos). Nesse estudo, Dollfus e Beaufort (1996) utilizaram a técnica da transformada de Fourier combinada com as redes neurais artificiais em duas camadas, o que resultou em um modelo com taxa de acerto de somente 49%. Entretanto, no trabalho sucessor publicado três anos depois, o modelo de redes neurais artificiais foi aprofundado para 5 camadas, obtendo, assim, uma acurácia de 86%, a uma taxa de 40 classificações por segundo (Dollfus e Beaufort, 1999). Outro exemplo é o trabalho de Lallensack e colaboradores (2022), em que os autores visaram distinguir imagens de pegadas de dinossauros terópodes das pegadas dos ornitísquios, por meio de rede neurais com múltiplas camadas de neurônios, alcançando uma taxa de acertos também de 86%.


Apesar do avanço na aprendizagem profunda, as técnicas tradicionais de aprendizagem da máquina ainda são bastante utilizadas. Entre os vários algoritmos de aprendizagem existentes, se destacam três na paleontologia: máquina de vetores de suporte, floresta aleatória, e k-vizinhos mais próximos. O primeiro método de treinamento, a máquina de vetores de suporte, consiste em encontrar a divisão ótima do espaço, obtendo um hiperplano que separe dados distintos o máximo possível (Fig. 3A). A eficácia deste algoritmo foi certificada por Xu e colaboradores (2020), num estudo que visava, através de imagens, determinar de forma automatizada se existiam microfósseis ou não, alcançando acurácia de 85%. Por outro lado, ao repetir o experimento com a técnica de redes neurais, supostamente superior, o resultado foi insatisfatório, chegando a 0% de acerto para certas classes, em parte devido ao conjunto limitado de dados. Já o algoritmo da floresta aleatória cria múltiplas árvores de decisão, construídas através de subconjuntos de dados definidos aleatoriamente. A classificação ocorre pelo voto da maioria das árvores em uma determinada classe (Fig. 3B). No trabalho de Wills e colaboradores (2023), o modelo de floresta aleatória foi utilizado para determinar, através da morfologia, se dentes de terópodes fósseis eram ou não de maniraptores (grupo de celurossauros). Estimou-se uma eficácia de 86% para o modelo de floresta aleatória, o resultado mais satisfatório dentre os testados pelos autores. Por fim, a técnica dos k-vizinhos mais próximos (Fig. 3C) estima a classe de novas amostras baseada na classificação de uma quantidade k de dados mais próximos utilizados para treinamento (por exemplo, os k espécimes mais semelhantes entre si). Cita-se o trabalho de Conceição e colaboradores (2023), realizado por pesquisadores brasileiros, em que 42 gêneros de gimnospermas paleozoicas foram utilizados para treinar um modelo de classificação de plantas fósseis em ordens taxonômicas pré-conhecidas, por meio de variáveis da anatomia dos troncos, através desta técnica na versão de 1-vizinho mais próximo.

Figura 3. Os três métodos de aprendizagem da máquina mais utilizados em paleontologia. O ponto de interrogação indica uma entrada nova ao modelo treinado. A) máquina de vetores de suporte, em que as conchas são separadas dos ossos por um hiperplano (em vermelho), determinando a entrada nova como uma concha; B) floresta aleatória, em que a maioria das árvores elege a categoria osso para a entrada; C) k-vizinhos mais próximos, na versão 6-vizinhos mais próximos, em que se elege a classe concha para a entrada nova.

Perspectivas para o futuro


Sem dúvida, a inteligência artificial ainda possui um grande campo a ser explorado dentro da paleontologia. A automatização de métodos dispendiosos, tal como a classificação de um grande número de microfósseis, vem a atenuar a dificuldade dessa tarefa. Dessa maneira, os paleontólogos poderiam se concentrar em trabalhos com viés mais intelectual em detrimento de tarefas mecanizadas. Além disso, embora a definição dos algoritmos e seus hiperparâmetros consistam em uma escolha do pesquisador, a utilização da máquina vem a reduzir o nível de subjetividade empregada nos métodos tradicionais de análise.


Há, no entanto, grandes desafios a serem superados. A tridimensionalidade dos macrofósseis exige um poderio computacional maior e a utilização de técnicas mais complexas, sugerindo que a paleontologia abrace o espaço da Big Data, o que preceitua volume, variedade, velocidade, e veracidade dos dados. Entretanto, o volume de dados e sua velocidade de coleta costumam ser bastante limitados quando se trata de fósseis. Além disso, o registro paleontológico é raro e depende do grau de preservação, o que pode gerar falta de dados ou vieses no treinamento. Essa dificuldade pode nunca ser superada para alguns grupos fósseis ou tipos de pesquisas.


Em relação aos modelos, a expectativa é o aumento na profundidade das aprendizagens, com algoritmos multicamada. Técnicas mais sofisticadas, como as redes adversárias generativas, ainda pouco aplicadas pela comunidade paleontológica, devem se sobressair à medida que a inteligência artificial se torna cada vez mais comum. Resume-se em um modelo de redes neurais dupla: um gerador e um discriminador, os quais competem entre si para produzir saídas mais próximas possíveis. Com novas técnicas, as partes incompletas de esqueletos, por exemplo, poderão ser estipuladas automaticamente, auxiliando nas reconstruções filogenéticas.


No futuro, a inteligência artificial deverá envolver a descrição comparativa de fósseis, classificação, processamento de dados de imagens e codificação de caracteres morfológicos, auxiliando na condução de estudos em larga escala baseados em dados. Essa união entre a inteligência artificial e a paleontologia abrirá novas perspectivas de pesquisa e descoberta, oferecendo compreensões inovadoras sobre a evolução da vida na Terra e a história dos seres vivos que habitaram nosso planeta.

Referências

Conceição, D.M., Esperança Júnior, M.G.F., Iannuzzi, R., Recamonde-Mendoza, M., Malta, G.B.B.O. 2023. PaleoWood: a machine learning approach for determining the affinity of Paleozoic gymnosperm woods. Journal of South American Earth Sciences, 121, 104125.
Dollfus, D., Beaufort, L. 1996. Automatic pattern recognition of calcareous nanoplankton. Proceedings of the Conference on Neural Networks and their Applications (NEURAP 96), pp. 306–311.
Dollfus, D., Beaufort, L. 1999. Fat neural network for recognition of position-normalised objects. Neural Networks, 12, pp. 553–560.
Healy-Williams, N. 1983. Fourier shape analysis of Globorotalia truncatulinoides from late Quaternary sediments in the southern Indian Ocean. Marine Micropaleontology, 8, pp. 1–15.
Healy-Williams, N. 1984. Quantitative image analysis: Application to planktonic foraminiferal paleoecology and evolution. Geobios, 17, pp. 425–432.
Lallensack, J.N., Romilio, A., Falkingham, P.L., 2022. A machine learning approach for the discrimination of theropod and ornithischian dinosaur tracks. Journal of the Royal Society Interface, 19(196), 20220588.
Wills, S. Underwood, C.J., Barrett, PM. 2023. Machine learning confirms new records of maniraptoran theropods in Middle Jurassic UK microvertebrate faunas. Papers in Palaeontology, 9, e1487.
Xu, Y.X., Dai, Z., Wang, J., Li, Y., Wang, H. 2020. Automatic recognition of Palaeobios images under microscope based on machine learning. IEEE Access, 8, pp. 172972–172981.
Yu, C., Qin, F., Watanabe, A., Yao, W., Li, Y., Qin, Z., Liu, Y., Wang, H., Jiangzuo, Q., Hsiang, A.Y. and Ma, C. 2024. Artificial intelligence in paleontology. Earth-Science Reviews, 104765.

Prehistoric Planet, o guia de episódios

Breves considerações sobre cada capítulo, do litoral da Zelândia às florestas congeladas do Polo Norte.

Ainda dá pra falar da série? Depois de discorrer sobre as expectativas da produção e minhas primeiras impressões, chegou a hora de revisitar os cinco episódios de Prehistoric Planet. A série da AppleTV+ possui uma abordagem padrão dos documentários de natureza atuais, com cada episódio focado num ecossistema, o que garante uma salada de diversidade para a tela, tanto de criaturas como de seus habitats e condições climáticas. Somadas, elas perfazem o mais assombroso esforço paleoartístico conjunto já realizado.

Resolvi rever toda a série e fazer comentários breves, apenas minhas impressões, a respeito de cada episódio. Para deixar a leitura mais dinâmica, decidi trazer uma referência aos documentários prévios da BBC para cada capítulo. Em alguns casos, esses momentos claramente serviram de inspiração à algumas sequências de Prehistoric Planet (ou a coincidência é muito braba, quem garante?). Cabe a você identificá-las enquanto assiste (e depois dizer se concorda comigo!)

Sem mais delongas, Prehistoric Planet, capítulo por capítulo:

Episódio 1 – Costas (Coasts)

Prehistoric Planet não é uma série sobre dinossauros, é uma série sobre a fauna de nosso planeta durante o Maastrichtiano, o finalzinho do período Cretáceo. “Costas” deixa isso claro desde o princípio: os Tyrannosaurus são os únicos dinossauros num episódio que está cheio de pterossauros, plesiossauros e tartarugas.
Um episódio que se destaca por ser simplesmente o primeiro, aquele que, se assistirmos a série na ordem, representa o início da nossa viagem ao tempo. Tudo é novo, você não sabe o que esperar. Quem veio pelos clichês do gênero se surpreende com peixinhos limpando a pele de um mosassauro, amonites bioluminescentes, Tuarangisaurus engolindo pedra, e por aí vai. Prehistoric Planet não apenas almeja mostrar a vida do Cretáceo como nunca antes vista, mas se orgulha em fazer isso.

Amonite bioluminescente do episódio 1, “Costas”.

Sequência favorita: no Norte da África, bebês Alcione (A Voz do Samba) precisam fazer um voo dos rochedos onde eclodiram às florestas seguras, passando por um verdadeiro corredor aéreo de predadores. Tudo aqui funciona: as paisagens são lindas, a diversidade de pterossauros impressiona, os comportamentos especulativos são sensacionais (os filhotes “caindo” durante o voo é o ponto alto) e, principalmente, o trabalho dos cinegrafistas é, no mínimo, realista. Filmar aves em voo não é tarefa fácil, ainda mais durante perseguições, e essa dificuldade é transposta em Prehistoric Planet: perceba como as imagens do Barbaridactylus em voo são tremidas, como eles saem e entram do enquadramento, às vezes fora de foco, tal qual um falcão seria filmado hoje em dia. Sublime.

O que não gostei: aqui temos os únicos momentos de toda a série em que o CGI claramente me pareceu CGI. Alguns movimentos dos répteis marinhos não me soaram naturais, especialmente a ausência de qualquer mudança de direção da cabeça dos mosassauros. Mas nada foi mais artificial do que quando as imagens de recifes de corais reais deram lugar, abruptamente, a recifes de CGI.

Parece que, enquanto assistia a Blue Planet, alguém mudou de canal e colocou em Procurando Nemo.

Momento “já vi isso na BBC”:

Episódio 2 – Desertos (Deserts)

O episódio sobre as regiões desérticas do planeta vem como um perfeito antídoto pra quem sentiu falta de dinossauros no episódio anterior: temos aqui o maior número de cabeças por minuto de projeção – só a sequência do oásis asiático tem mais figurantes que uns 3 episódios juntos. Lawrence da Arábia, versão cretácea.

Hadrossauros nômades (duas vezes!), pequenos especialistas do deserto, duelos de saurópodes e até mesmo lagartinhos garantem uma sequência mais impressionante que a outra, ainda que, como de costume, pouco seja explicado para além do que os dinossauros estão fazendo. Prehistoric Planet não almeja ser o tipo de documentário didático cheio de informações sobre o mundo, daqueles que a professora passava pra gente na escola. É uma obra muito mais contemplativa, artística. E, nesse quesito, a série acerta em cheio.

Mononykus retratato no episódio “Desertos”.

Sequência favorita: mais uma vez, temos a prova da qualidade audiovisual de Prehistoric Planet logo de cara. No meio do deserto, Dreadnoughtus se reúnem para disputar acesso às fêmeas de maneira extremamente violenta, praticamente uma versão terrestre de elefantes-marinhos. O grande macho líder está sujo de areia; no inevitável embate com um concorrente, a gente consegue enxergar o pó lançado ao ar a cada tranco que o bicho dá, um detalhe mínimo, mas que nos lembra do altíssimo nível da animação. Sem falar os efeitos sonoros bizarríssimos usados durante toda a sequência. Fino, coisa fina.

O que não gostei: embora seja um comportamento notável (e visto e revisto em outros documentários com o caso das sépias-gigantes do sul da Austrália), a cena das estratégias reprodutivas peculiares do Barbaridactylus perde ponto pelo antropomorfismo exagerado, em minha opinião (mais sobre isso, abaixo).

Momento “já vi isso na BBC”:

Episódio 3 – Água Doce (Freshwater)

Após rever a série inteira, confirmei minhas impressões iniciais: esse é meu episódio favorito. Acredito que aqui temos um ótimo equilíbrio entre criaturas “wtf?!” pulando (literalmente) na tela e bichos mais conhecidos vistos sob uma nova perspectiva. Se, por um lado, os famosos Velociraptor e Tyrannosaurus fazem uma reprise, somos brindados com um Deinocheirus flatulento e um grupinho fofo de Masiakasaurus (talvez um dos únicos bichos que não foi exibido na divulgação prévia do documentário).

Mas preciso dizer, o tema do episódio é ainda mais vago que os demais: apesar de se referir como “água doce”, a tal da água só tá ali pra servir de plano de fundo e conectar frouxamente minidramas do mundo natural. A ausência de crocodilos, um grupo extremamente diverso durante o Cretáceo, também não faz muito sentido.

Mãe Quetzalcoatlus e seu ninho, no episódio “Água Doce”.

Sequência favorita: os pterossauros em Prehistoric Planet roubam todas as cenas. Mesmo com uma bela sequência envolvendo uma mãe Quetzalcoatlus, porém, nada bate a arrepiante descida de três Velociraptor num desfiladeiro, atrás de… mais pterossauros, disparada minha cena favorita de toda a série. O negócio é tão bem feito que realmente parece algo filmado hoje em dia; o fato de o “ataque final” ter sido filmado numa tomada longa em plano aberto, com os bichinhos bem pequeninos e distantes, é só uma pequena parte disso. Quem já viu as inúmeras cenas de leopardos-das-neves em documentários sabe que não é fácil filmar caçadas completas em escarpas e penhascos, e a emulação dessa limitação técnica em Prehistoric Planet foi só mais uma nota do seu primor técnico.

E, convenhamos, ver os Velociraptor usando suas penas como vantagem para saltos mais longos é simplesmente impagável.

O que não gostei: a sequência dos Elasmosaurus, que fecha o episódio, é um tanto confusa geograficamente (ora parece que eles sobem o rio, ora que estão descendo), e não chega no mesmo nível de tudo o que foi mostrado antes. Não é necessariamente ruim, mas, para mim, serviu como um anticlímax.

Momento “já vi isso na BBC”:

Episódio 4 – Mundos Congelados (Ice Worlds)

Ainda hoje, mesmo dentro da academia (experiência própria), muitas pessoas vivem sob o antigo dogma de que dinossauros são lagartões de sangue frio, limitados a uma existência em áreas tropicais, úmidas e quentes. Um episódio inteiro dedicado à fauna cretácica das altas latitudes joga um banho de água fria (RÁ!) nessa visão, nos apresentando uma coleção extraordinária de dinossauros na neve. Como padrão quando o tema é regiões sazonais, o quarto episódio se desenrola no ritmo das estações, começando no início da primavera e terminando com as nevascas de inverno.

E sim, aqui temos o recorde de ornitísquios de Prehistoric Planet, com cinco formas diferentes dando as caras. O Olorotitan provavelmente reina soberano, e sua sequência é facilmente uma das mais bonitas de toda a série.

Troodontídeo usando fogo para caçar durante o episódio “Mundos congelados”.

Sequência favorita: embora o duelo final entre Pachyrhinosaurus e Nanuqsaurus seja o clímax perfeito, em termos técnicos e narrativos, para mim, toda e qualquer coisa que envolva a Antártida já é um destaque, então fico com o jovem Australopelta em busca de um refúgio no inverno. Além de possuir ecos diretos de Espíritos da Floresta de Gelo, meu episódio favorito de Caminhando com Dinossauros, acho que devemos lembrar que sempre é bom ver representações dos raríssimos anquilossauros gondwânicos.

O que não gostei: nada realmente problemático, mas achei a sequência original envolvendo Edmontosaurus e Dromaeosauridae um tanto genérica e previsível. Os Dromeosaurídae, por outro lado, são os Maniraptora mais bonitos da série (desculpa, Corythoraptor).

Momento “já vi isso na BBC”:

Episódio 5 – Florestas (Forests)

Das selvas do que é hoje a Argentina às florestas decíduas autunais do Extremo Oriente, o Planeta Pré-histórico era um Planeta Verde (Green Planet, ah lá o Attenborough fazendo jabá pra ele mesmo). Ao tratar de florestas, esse talvez seja o mais didático dos episódios, com brevíssimas menções à sucessão ecológica, papel ecológico do fogo e mudança de estações.

Mesmo assim, esse foi o com o qual menos me identifiquei (e veja abaixo o porquê). Pelo menos temos o Brasil, representado aqui pelo belíssimo Austroposeidon, da região de Presidente Prudente, SP.

Anquilossaurídeo que aparece no episódeo “Florestas”.

Sequência favorita: eu tenho uma queda por Abelisauridae, posso passar horas vendo as proporções bizarras de bichos como o Majungasaurus, Aucasaurus e, claro, o Carnotaurus. Mas também posso fazer isso com os Azhdarchidae, e como torci o nariz pra um pequeno detalhe envolvendo o Carnotaurus, minha sequência favorita ficou com o gigante Hatzegopteryx dando um rolê pelas florestas pré-históricas da Transilvânia. Os pequenos Zalmoxes são um detalhe à parte. O único contra é essa cena ter acabado tão rápido!

O que não gostei: criaturas antropomorfizadas têm sido comuns (infelizmente) em boa parte dos documentários atuais, e em Prehistoric Planet, não poderia ser diferente. Na minha interpretação, esse episódio traz mais momentos emotivos do que todos os outros. É o Carnotaurus visivelmente frustrado, o bebê Therizinosaurus admirado com o adulto e a mãe Triceratops apreensiva com sua filhote perdida na caverna. Passa a impressão de que o simples fato de os Triceratops adentrarem uma caverna não seja espetacular o bastante, precisa ser inserido um drama narrativo (e que nos distrai do que realmente é importante). Ainda que não chegue a um nível Disney de bobose, esses artifícios narrativos soam um bocado exagerados (e a trilha sonora contribui muito com isso), caminhando na contra mão do realismo proposto pela série.

Momento “já vi isso na BBC”:

Um breve adendo: a música da série

Eu sou um grande reclamão das trilhas sonoras dos documentários atuais. Para mim, elas são altas, onipresentes e sem inspiração, músicas compostas com o claro e único intuito de gerar emoções. Logo, já esperava que ia encontrar esse problema aqui, mas fui surpreendido positivamente: em algumas sequências, é possível apreciar o silêncio, o som do ambiente e dos animais.

Mas, quando presente, a trilha soa genérica demais. Em alguns casos, até lembra as de um filme de super-herói (a própria música título pode ter saído de um filme da Marvel). Essas características negativas ficaram ainda mais claras quando me lembrei da música de Caminhando com Dinossauros, que de genérica não tem nada, e percebi como ela foi importante para deixar a série de 1999 tão atmosférica, até meio sombria.

Felizmente alguém também notou isso, pois descobri uma sequência de Prehistoric Planet com a música de Caminhando com Dinossauros substituindo a original. Olha a diferença!

_______________________________________________________________________________

Link para meu texto sobre expectativa da série: https://www.blogs.unicamp.br/colecionadores/2022/04/20/de-caminhando-com-dinossauros-ate-prehistoric-planet/

Link para meu texto sobre primeiras impressões da série, e sua inspiração: https://www.blogs.unicamp.br/colecionadores/2022/06/05/prehistoric-planet-um-baita-exercicio-de-especulacao/ 

Prehistoric Planet está na Apple TV+: https://tv.apple.com/us/show/prehistoric-planet/umc.cmc.4lh4bmztauvkooqz400akxav

Descrição do Austroposeidon magnificus: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0163373

Sépias espertas: https://www.youtube.com/watch?v=KT1-JQTiZGc&ab_channel=BBCEarth

Leopardo-das-neves: https://www.youtube.com/watch?v=GgDHvl1wD20&ab_channel=WildFilmsIndia

The Green Planet: https://www.youtube.com/watch?v=3G1arGl8RvA&ab_channel=BBC

Uma fauna muito, muito grande, que chamamos de Mega

Texto por Thaís Pansani

Quando se fala de Paleontologia, muitos associam na sua imaginação automaticamente os dinossauros – não os culpo, pois muitas das indústrias (especialmente a cinematográfica) apostam, tradicionalmente, na imagem do T. Rex e dos pescoçudos pra vender seus produtos e conquistar o público. Quantas histórias contadas vocês já ouviram sobre dinos na televisão? Quantos desenhos com alguns mais coloridos, outros mais assustadores, nos cinemas? Quantas camisetas, canecas e até mesmo bichinhos de pelúcia? Até o nome estegossauro é familiar. Agora, tente se lembrar de quantos filmes sobre preguiças-gigantes você já viu no cinema? Essa é mais fácil, porque temos o “Era do Gelo” (pra alegria dos pesquisadores). Mas e se eu te perguntar quantas pessoas na rua você já viu com uma camiseta de tigre-dentes-de-sabre ou quantos bichinhos de pelúcias de gliptodontes (um tipo de tatu gigante com armadura) você já viu? Aposto que não vai ser tão fácil agora. E se eu disser que o nome toxodonte não é tão familiar assim (você provavelmente nunca ouviu falar nele, não é mesmo?). Acontece que há uma história cheia de animais incríveis que existiram (e infelizmente hoje não existem mais), que vai muito além dos dinossauros. Nossos queridos dinos, tão popularmente conhecidos, viveram apenas uma fraçãozinha de tempo no nosso registro geológico da Terra, ocupando a Era Mesozóica, apenas. Eles viveram durante os períodos Triássico, Jurássico (esse é famoso!) e Cretáceo, entre aproximadamente 230 e 66 milhões de anos atrás. Antes e depois desse período de tempo, temos outras eras, divididas entre muitos outros períodos, os quais tinham as mais diversas espécies e em que ocorreram os mais diversos eventos ecológicos, geográficos, geológicos e ambientais. Sinto que o que falta na Ciência, são mais pesquisadores com desejo de difundir informações sobre as espécies que estudam para o público geral. Quem sabe assim, quando se falasse de Paleontologia, aqueles (ainda uma porção pequena) que conhecem essa ciência passariam a ter uma visão mais ampla sobre diversidade e evolução da vida ao longo do tempo geológico. Não desmerecendo a importância dos dinos – nem paleontológica nem na divulgação científica – , mas quero falar aqui de uma outra fauna. Com alguns animais tão grandes e impressionantes quanto os dinossauros e, o mais fascinante, tão recentes, que alguns co-existiram com as primeiras populações humanas.

tempo-geolgico-1-638

Na Era Cenozoica (era atual em que vivemos), a linhagem dos mamíferos se diversificou. Muito do seu sucesso evolutivo se deu devido à extinção dos dinossauros, no final do período Cretáceo (período que encerra a era anterior, a Mesozoica). Os animais que vamos tratar aqui, são especificamente do período Quaternário, a última subdivisão da Era Cenozóica, que se estende até a atualidade. Porém, essa fauna incrível, que vocês estão para conhecer, apenas permaneceu viva até o final do Pleistoceno (cerca de 11 mil anos atrás), extinta por alguns fatores que vamos apresentar no desenrolar dessa história.

Considera-se megafauna todo conjunto de grandes animais. E quando digo grande, são grandes mesmo! Animais com mais de 50 kg, 100 kg, alguns com mais de 1000 kg. Ao longo da Era Cenozóica, uma distinta megafauna de mamíferos evoluiu independentemente em vários cantos do planeta, ocupando os espaços ecológicos deixados vagos pelos dinossauros. São centenas de organismos fascinantes, mas dessa vez, eu vou apresentar um pouco sobre a  fantástica megafauna sul-americana:

1-smithsoniansA América do Sul permaneceu muito tempo isolada ao longo da Era Cenozoica, e isso permitiu com que animais muito estranhos e únicos evoluíssem por aqui nesse intervalo de tempo. A megafauna endêmica de mamíferos da America do Sul é muito específica e alguns dos seus principais representantes foram as preguiças-gigantes, os litopternos, os gliptodontes e os pampaterídeos (vamos conhecer mais sobre eles já já). Assim que o Ístimo do Panamá foi formado, houve um intercâmbio de animais entre América do Norte e do Sul, evento conhecido como “O Grande Intercâmbio Biótico Americano” ou GIBA, para os íntimos. Durante o GIBA, alguns animais típicos da megafauna de mamíferos endêmica norte-americana como os tigres-dente-de-sabre, os ursos, os cavalos e os poderosos proboscídeos vieram parar por aqui. Assim como alguns dos nossos megamamíferos migraram para lá. Terminou, que no Pleistoceno estavam todos juntos… e algumas espécies se perderam nesse contexto, mas isso é história para outra postagem. Vamos nos ater à megafauna endêmica da América do Sul:

As maiores espécies de preguiça-gigante que existiram na América do Sul podiam chegar a ter 6 metros de comprimento e alcançar até 4 metros de altura, quando sobre duas patas. Elas tinham garras enormes que, entre outras coisas, ajudavam na sua proteção. Além disso, apresentavam uma pelagem espessa com pequenos ossículos embebidos na pele, formando uma espécie de armadura. O tamanho e o peso das preguiças-gigantes variava muito entre os gêneros. Nothrotherium, por exemplo, podia ser considerada uma preguiça-gigante “nanica”, mas te garanto que eram muito grandes se comparadas as ‘preguicinhas’ atuais, que vemos em cima das árvores. Falando nisso, as preguiças gigantes eram todas terrícolas, não arborícolas! Nada de ficar de galho em galho descansando (conseguem imaginar o tamanho de uma árvore pra conseguir isso?). As preguiças-gigantes perambulavam pelas vegetações abertas e podiam até fazer tocas com suas garras, seja pra descanso temporário ou habitação. As preguiças-gigantes foram os mamíferos mais diversificados da América do Sul (considerando tamanho, peso, preferências alimentares, etc.), além de o grupo mais amplamente distribuído geograficamente. Uma espécie específica, Eremotherium laurillardi, conseguiu alcançar do sul da América do Sul ao norte da América do Norte, sendo considerada uma espécie “pan-americana”. Pensa no sucesso para se estabelecer em todo canto das Américas!

eremotherium

Eremotherium, arte de Jorge Blanco.

ground-sloth-size-comparison

Algumas preguiças-gigante em escala.

Os Litopternos são bem menos conhecidos, mas não menos interessantes. Eles eram de tamanho semelhante ao de um camelo e pesavam cerca de 1 tonelada. Tinham o pescoço comprido, pernas longas com três dedos e uma estranha narina entre os olhos, que levou pesquisadores à sugerirem a existência de uma tromba, semelhante à da anta.

Вики

Macrauchenia, um litopterno, arte de Kobrina Olga.

Sabe aquele fusca azul, que a gente não resiste e dá um soco no coleguinha por conta de uma brincadeira clássica? (espero que ainda conheçam essa brincadeira e eu não esteja ficando tão velha). Ele é do tamanho de um glitptodonte, um bicho parecido com um tatu, com uma carapaça alta, cheias de osteodermos ornamentados, caudas robustas e garras capazes de cavar tocas que podiam servir como abrigo, proteção contra o frio ou até mesmo esconderijo de predadores. Na verdade, assim como as pregiças-gigantes, existiram diversas espécies de gliptodontes!

extinctglypt

Dois gliptodontes lutando. Arte de Peter Schouten.

Toxodontes, por sua vez, possuíam um tamanho semelhante ao de um hipopótamo, podendo chegar a 2 metros de altura. Tinham um crânio grande, pescoço achatado, pernas curtas, com patas dianteiras menores que as posteriores e ouvidos na região acima da cabeça. Viviam por vezes associados a cursos de água e, supostamente, tinham hábito semi-aquático. Pelo que se sabe por meio do registro fossilífero, não chegaram na América do Norte, mas conseguiam sobreviver graças a seu hábito generalista, alimentando-se de acordo com a sua localização geográfica.

Toxodon-01

Toxodonte. Arte de Jorge Blanco.

É incrível imaginar como a evolução selecionou organismos tão grandes e é tão incrível que ainda se discute na academia o que os levaram à extinção. Algumas das sugestões são: doenças; alterações climáticas e ambientais; a relação com os seres humanos primitivos, afetando direta (ex: pela caça) ou indiretamente (ex: queimada e derrubada de árvores afetando seus habitats) suas populações; ou junção de um ou mais desses fatores. Para cada continente, atribui-se um motivo mais provável para a extinção desses animais. No caso do sul-americano, por falta de evidências substanciais da interação entre ser humano/megafauna no registro paleontológico (diferente de na América do Norte, que esses indícios são bem mais comuns), é pressuposto que variações climáticas e na dinâmica da vegetação tenham sido os principais fatores que levaram esses organismos à extinção. Entretanto, vale salientar que a Paleontologia é uma ciência relativamente nova, principalmente no continente sul-americano. Há a possibilidade de que existam evidências que ainda não investigamos ou encontramos, por falta de cientistas trabalhando com o tema ou por falta de exploração de novas áreas, coletas e/ou organização de dados.

Estudar a megafauna pleistocênica possui uma série de importâncias. A começar pela compreensão da grandiosidade que esse termo “megafauna” carrega. Estamos falando de animais de grande porte que viveram espalhados pelo mundo todo até muito recentemente. Esses organismos passaram por evento de extinção significativo, que concentrou os seus únicos remanescentes atuais nas savanas africanas. Atualmente estamos passando por um processo muito semelhante de perda de espécies, o que significa, que estudar os efeitos da extinção desses animais no passado pode ser muito importante. Além disso, entender a diversidade e como eles se organizavam em comunidades pode nos ajudar a reconstruir todo um cenário ambiental de uma determinada época e/ou de um determinado local. Tente fechar os olhos e imaginar como era a sua cidade há 30 anos atrás. Agora, volte um pouco mais no tempo e tente imaginar há 300 anos atrás. 3 mil anos atrás. 30 mil anos atrás. Expanda sua imaginação para todo seu estado ou a região. Será que o Brasil era desse exato jeitinho, caracterizado pelas mesmas florestas e cursos de rios e sensação térmica há 40 mil anos atrás? Um dos maiores desafios dos paleoecólogos é reconstituir um ambiente do passado com as informações presenteadas pelos fósseis. A partir da dieta inferida pela análise dos dentes da maioria dos animais da megafauna, por exemplo, conseguimos deduzir qual o tipo de vegetação que predominava no ambiente em que este animal viveu, do que ele se alimentava, quão generalista ele era, etc. Fechamos os olhos e conseguimos imaginar um palco em que as cortinas se abrem e temos campos de matas abertas e clima muito mais seco do que o atual, algo completamente diferente do que existe hoje na Mata Atlântica, por exemplo. Onde preguiças terrícolas andavam tranquilamente por uma vegetação mais aberta e menos úmidas e alguns tatus-gigantes migravam em busca de comida e temperaturas mais amenas. Conseguimos também imaginar a dinâmica das populações desses animais, como se reproduziam ou interagiam com as outras espécies. Além disso, conseguimos associar fatores que tenham contribuído para com que o espetáculo de diversidade deste palco imaginário tenha sido encerrado e estabelecer associações com o que ocorre atualmente em nossa biodiversidade, nossas taxas de extinções e as consequências ambientais e ecológicas que o nosso modo de vida pode e já está acarretando. Afinal, vivemos em um constante conflito de uma nova época, que alguns cientistas já denominam como “Antropoceno”. E que talvez possa ter um desfecho diferente, se conseguirmos aprender com o passado.

Há muito a ser descoberto em nossas cavernas mineiras, nossos tanques nordestinos e demais sitios fossilíferos espalhados pelo Brasil – muitos ainda desconhecidos. Acredito que há ainda muitas espécies a serem descritas, muitos paradigmas a serem derrubados e conclusões que nem sequer começamos a imaginar. Não é preciso uma distância de 100 ou mais milhões de anos para nos sensibilizarmos com a maravilha que é um mundo que não existe mais. Parece que foi ontem (em escalas de tempo geológico), mas o panorama que configurava a megafauna sul-americana há pouco mais de 10 mil anos atrás foi completamente diferente do que temos hoje. E isso não é tão apaixonante quanto imaginar grandes dinossauros? Espero que, ao final deste texto, a resposta seja sim, e que só não se tinha esse sentimento ainda por culpa nossa – de nós, paleontólogos, que nos esquecemos de enaltecer as outras facetas da Paleontologia.

thais

Sobre a autora:

Thaís Pansani é bióloga formada pela UFSCar Sorocaba, atualmente é mestranda em Ecologia e Recursos Naturais pela UFSCar São Carlos e trabalha com megafauna pleistocênica sul-americana e suas relações ecológicas e paleobiogeográficas.


Referências:

Cartelle, 1994. Tempo Passado.

Cartelle, 2000. Preguiças terrícolas, essas desconhecidas.

Ghilardi et al. 2011. Megafauna from the Late Pleistocene-Holocene deposits of the Upper Ribeira karst area, southeast Brazil. Quaternary International, 245: 369-378.

Oliveira et al. 2017. Quaternary mammals from central Brazil (Serra da Bodoquena, Mato Grosso do Sul) and comments on paleobiogeography and paleoenvironments. Revista Brasileira de Paleontologia, 20(1):31-44.

http://revistapesquisa.fapesp.br/2005/07/01/o-mastodonte-e-a-macrauquenia/

Sobre penas e escamas: a nova roupa do rei

Recentemente uma nova publicação causou uma acalorada discussão entre amantes dos dinossauros na internet. Trata-se de um assunto muito mais polêmico que mamilos. Claro, só poderíamos estar falando de PENAS em dinossauros. Ou talvez, nesse caso, a ausência delas.

Polemica

No início do mês Phill Bell e colaboradores, incluindo os Phill Currie, Robert Bakker e Pete Larson (alguns paleontólogos de renome na área), publicaram um artigo na revista Biology Letters intitulado Tyrannosauroid integument reveals conflicting patterns of gigantism and feather evolution, ou, traduzindo: “O integumento de tiranosauróides revela um padrão conflituoso entre gigantismo e a evolução das penas”. Esse artigo foi amplamente noticiado pela mídia geral e foi justamente a causa de uma grande reviravolta na internet. Em especial, entre fãs de dinossauros (e, mais significativamente,  entre aqueles fanáticos por Jurassic Park).

Obviamente, esse foi mais um caso em que a mídia leiga deitou e rolou. Dinossauros… tiranossauro… e penas. Ingredientes mágicos pra escrever besteiras vender notícias/atrair leitores! Um monte de gente que simplesmente não entende nada desses assuntos resolveu escrever sobre isso e pipocaram manchetes como: “O Tiranossauro não tinha penas!”, “Tiranossauro era coberto de escamas, como um lagarto” ou “Jurassic Park estava certo!”. É claro que o corpo das notícias não foi melhor do que isso.

tyrannosaurus-rex-conway-1024x1024Um efeito em cadeia teve início e monte de outras pessoas prontamente compartilhou (sem ler, claro) nas redes sociais a notícia. Uma parte dessas mesmas pessoas, então, começou a advogar a manchete jornalística como a descoberta paleontológica do ano e a verdade definitiva sobre os tiranossauros.

Quando abri minha linha do tempo no Facebook, ela se parecia com isso:
dinowar-1

Depois de me inteirar sobre o assunto, mais uma vez lamentei sobre como uma divulgação mal feita de um resultado de estudo científico pode ser danosa. Um artigo tão legal, sendo mal compreendido e passando a ser usado quase como um “argumento bíblico” por algumas pessoas que não querem, de forma alguma, se desapegar de ideias ultrapassadas. Foi um verdadeiro desfile de falácias. E é por isso que viemos tentar esclarecer um pouquinho esse assunto!

Primeiramente, não podemos deixar de falar, que no mesmo dia que o artigo de Bell e colaboradores foi publicado, um outro artigo magnífico sobre um filhote de ave (Enanthiornithine) do Cretáceo preservado em âmbar de Myanmar saiu do prelo no periódico ‘Gondwana Research‘. Um artigo de grande impacto no meio paleontológico, que passou praticamente despercebido pela mídia e consequentemente, o público geral. Uma pena (me perdoe o trocadilho).

Para não propagar a injustiça, seguem aqui algumas fotos e o link do artigo para quem tiver interesse em ler sobre o assunto:

583561-1-s2.0-s1342937x17300527-gr1

close-up-of-the-feet-2-by-ming-bai

Agora, quanto às penas em tiranossauros, é importante começar desde já dizendo que, de tudo que o artigo diz, a única coisa que ele NÃO diz é que tiranossauros não tinham penas. Pronto, falei. Pois é, poderíamos encerrar a postagem aqui.

dinostudy

O que o artigo trás, na verdade, é a descrição formal de algumas impressões de pele com evidências de escamas em certas partes do corpo de diferentes espécies de tiranossaurídeos (incluindo Tyrannosaurus rex, Daspletosaurus, Tarbosaurus, Gorgosaurus e Albertosaurus) e, a partir disso, os autores discutem a possibilidade de uma evolução paralela dessas espécies gigantes mais tardias, em relação às espécies de tiranossauróides emplumados mais basais (considere aqui os penosos asiáticos Yutyrannus e Dilong – clique nos nomes para acessar os artigos originais com imagens dos fósseis). Basicamente, o que os autores argumentam, é que as espécies tardias  (a maior parte de depósitos da América do Norte) não teriam uma extensa cobertura  de penas como os tiranossauróides basais chineses (NÃO QUE ELES NÃO POSSUIAM PENAS!). A justificativa principal do artigo é que a evolução do gigantismo poderia ter desfavorecido a manutenção de uma extensa cobertura de penas em Tyrannosaurus rex, Daspletosaurus, Tarbosaurus, Gorgosaurus e Albertosaurus. Os autores justificam sua hipótese alegando uma suposta redução na importância das penas na manutenção de calor corpóreo devido à:

1) Homeotermia inercial por gigantismo (i.e. inércia térmica);

2) Uma hipotética atividade metabólica mais alta em algumas espécies tardias ou;

3) A ocupação de ambientes com pressões seletivas distintas. As espécies asiáticas mais basais, por exemplo, habitavam regiões mais florestadas.

Todas argumentações muito pertinentes, que implicam necessariamente na reversão (ou modificação) de um caráter basal do grupo, que É a presença de uma extensa cobertura de penas (veja a figura abaixo). Os autores deixam em aberto a questão sobre se as escamas de espécies mais derivadas seriam ou não produto de uma modificação das penas primitivas observadas em Yutyrannus e Dilong, já que as escamas em Aves atuais não são homólogas às escamas ‘reptilianas’ (ou seja, não têm a mesma origem embrionária), mas sim são resultado de penas modificadas.

Relações de parentesco entre Yutyrannus, Dilong e Tyranosauridae.
Relações de parentesco entre Yutyrannus, Dilong e Tyranosauridae.

Os autores concluem o artigo da seguinte forma:

“Our results, therefore, reveal an intriguing counterintuitive pattern between size and integumentary evolution within Tyrannosauroidea that can only be tested by future fossil discoveries.” – “Nossos resultados, portanto, revelam um intrigante padrão contraintuitivo entre tamanho e evolução tegumentar dentro de Tyrannosauroidea que só pode ser testado por futuras descobertas de fósseis.”

A última frase resume tudo. Uma proposta que somente poderá ser testada com futuras (e melhores ou mais completas) descobertas de fósseis.

Ótimo. Agora que ficou claro tudo o que o artigo quer dizer e aquilo que ele não quer dizer, existem algumas outras coisas que podem ter sido mal interpretadas nele. A primeira, e mais importante, é a imagem sobre as impressões de pele com escamas (figurada alguns parágrafos acima). A imagem dá a impressão – errada! – de que as regiões ‘escamosas’ sinalizadas foram encontradas todas em um mesmo indivíduo/espécime ou que foram encontradas em diferentes fósseis de uma mesma espécie (no caso, como amplamente argumentado por quem não leu o artigo direito: Tyrannosaurus rex). Mas não, ela reúne todas as evidências de impressões de peles das VÁRIAS espécies citadas no texto (veja esta imagem que demonstra mais honestamente o que conhecemos sobre o tegumento de Tyrannosaurus rex, Tarbosaurus e Albertosaurus, respectivamente – de cima para baixo).

2838737845_fa89d35c4a_zSão conhecidas apenas pequenas áreas preservadas de pele para cada espécie, o que nem de longe justifica que o padrão escamoso observado possa ser extrapolado para o corpo inteiro do animal/dos animais. Desde quando, por exemplo, a imagem ao lado seria uma justificativa para avestruzes serem escamosos?

A ausência de penas em algumas partes do corpo do animal não é uma evidência suficiente para afirmarmos que todo o animal era (ou a maior parte dele era) escamoso.

Agora, o oposto (ou seja, que penas estavam presentes nesses organismos, mesmo que ainda não tenhamos encontrado evidências diretas da sua presença) se pode afirmar com certo embasamento lógico. Por quê?!

É importante compreender um princípio básico da Ciência, aqui adaptado à Biologia Evolutiva: é mais parcimonioso supor que um caracter (no caso, penas) se manteve ao longo da evolução de um grupo de organismos, do que que ele tenha sido perdido, revertido ou alterado em linhagens sucessivas. Da mesma forma, por inferência com base nos parentes mais proximamente relacionados, – mais basais ou derivados – (phyllogenetic bracketing), é mais parcimonioso afirmar que as penas estavam presentes em Tyrannosauridae do que que estivessem ausentes.

Não vou nem me estender muito, mas ainda existem ainda outras questões não discutidas no artigo, como a ação de aspectos tafonômicos, que causam desvios preservacionais no registro fossilífero. Inúmeras adversidades naturais (ação de decompositores, exposição prolongada da carcaça, aspectos geoquímicos da fossilização, etc.) poderiam ter desfavorecido a preservação de penas. Os tipos de depósito em que as espécies mais tardias (de Tyrannosauridae) são encontradas, são bastante diferentes do de Dilong e Yutyrannus, que pelas condições de preservação excepcionais pode ser considerado um lagerstätte.

Aos paleobiólogos interessa ainda investigarem possíveis variações ontogenéticas (é provável que em estágios mais juvenis, Tyrannosauridae tivessem uma cobertura mais extensa de penas); e geográficas (espécies de latitudes mais altas apresentariam esse mesmo padrão sugerido no artigo?).

Mais uma vez: o que o artigo de Bell e colaboradores quis dizer, apenas, é que a cobertura de penas nas espécies de Tyrannosauridae citadas no artigo (Tyrannosaurus rex, Daspletosaurus, Tarbosaurus, Gorgosaurus e Albertosaurus) provavelmente seria mais restrita do que em espécies mais basais, de Tyrannosauroidea, e outros Coelurosauria. Não  que elas estivessem definitivamente ausentes! Aceitem: a presença de penas (seja lá em qual extensão pelo corpo) em Coelurosauria (Eumaniraptora, Oviraptorosauria, Therezinosauroidea, Alvarezsauridae, Ornithomimosauria, Compsognathidae e Tyrannosauroidea) já não é mais um assunto em discussão. É um fato amplamente aceito por paleontólogos especialistas em dinossauros.

Fãs de Jurassic Park, por favor, não deixem a emoção sobrepor a razão! E aos outros fãs de dinossauros: leiam sempre os artigos originais ou procurem fontes confiáveis de informação.

Fanboys, vocês ainda não se livraram do T. rex com penas...
Fanboys, vocês ainda não se livraram do T. rex com penas… Arte de Raul Martin.

Algumas leituras adicionais sobre essa questão:

T. rex, Feathers, Scales, and Science
Prejudices skin in the evolution of Tyrannosauridae
Those scales are scales?

Revenge of the scaly Tyrannosaurus 

Não deixe de assistir também o vídeo do nosso colega Pirulla sobre o assunto:

Município de Coração de Jesus, uma experiência além do tempo

Olá a todos! Seguindo a vertente de postagens relacionadas à divulgação científica e sua importância, temos aqui outra narrativa acerca da divulgação da descoberta do Tapuiasaurus macedoi em sua cidade natal, o município de Coração de Jesus! Este texto, redigido pelo Me. Natan Santos Brilhante, traz uma perspectiva complementar à postagem prévia sobre o assunto (veja aqui). Espero que gostem!


Sob a mira de olhares curiosos e intrigados, forasteiros em um veículo branco com logotipo (representado pela silhueta de um Tamanduá-bandeira) de uma instituição pública conduziram diversas expedições de coleta de fósseis no norte do estado de Minas Gerais. Os trabalhos na região duraram vários anos, mais precisamente de 2005 até 2012. Entretanto, na perspectiva dos habitantes, quais seriam os motivos que trariam por tanto tempo pesquisadores do Museu de Zoologia da Universidade de São Paulo (MZUSP)1 para uma cidade modesta e longínqua?

01 - Natan
Veículo oficial do MZUSP no afloramento. Fonte: Natan Santos Brilhante

Logo MZUSP Atualizado
Logo em evidência, o mesmo visto na porta dianteira do veículo oficial do MZUSP. Fonte: Arquivo Laboratório de Paleontologia-MZUSP

Talvez o município de Coração de Jesus seja considerado simples em comparação com as grandes metrópoles brasileiras. Contudo, é uma cidade extremamente rica em cultura, hospitalidade e vivacidade. Em meio a toda a sua diversidade, nunca faltaram pessoas com disposição e prontidão em ajudar, seja para desatolar o veículo quando este enfrentou chuvas torrenciais nas estradas de barro do município, ou para servir com capricho uma boa refeição para toda a equipe depois de um dia exaustivo de trabalho.
 
Outras situações inusitadas fazem parte das boas lembranças, e ocupam as páginas do diário de campo, como o deslocamento de um bloco de grandes dimensões e peso, localizado em área de difícil acesso. Esse material só pôde ser transportado para o alto do barranco graças ao auxílio de um “carro de boi” , gentilmente disponibilizado por José Adão Pereira de Souza, o “Zezinho”, responsável pela descoberta dos primeiros ossos fossilizados expostos na região por ação do intemperismo*.
03 - Natan
“Carro de boi”, comumente usado para auxiliar em atividades de zonas rurais. Fonte: Natan Santos Brilhante

04 - Natan
Moradores do município de Coração de Jesus ajudando a equipe de pesquisa do MZUSP a transportar os materiais. Fonte: Natan Santos Brilhante

05 - Natan
Fragmentos de ossos fossilizados (esbranquiçados) aflorando em meio aos sedimentos por ação do intemperismo. Fonte: Natan Santos Brilhante

E o que falar da amizade do Sr. Israel Cruz e da Sra. Marylene Ferreira que abriram as porteiras da Fazenda Santa Tereza para os pesquisadores trabalharem e que, no entardecer, os acolhia com tanto carinho em sua casa para oferecer um bolo caseiro acompanhado de suco de coquinho azedo***. Vale lembrar ainda do Sr. Amilcar, que nos recebeu em sua residência semelhante a uma “casa de taipa”, a alguns quilômetros dos afloramentos. Sua atitude cordial possibilitou o abastecimento de água para as etapas de coleta, resguardando o uso de recurso potável destinado ao nosso consumo e, consequentemente, evitando a nossa desidratação diante do sol forte e de temperaturas com médias diárias acima dos 40 graus (na sombra). Curiosamente, ele sempre lembrava com precisão o nome de integrantes da equipe que por lá passaram há anos (memória invejável para qualquer taxonomista, não?!).
06 - MZUSP
Um dos pontos de coleta de fósseis nos domínios da Fazenda Santa Tereza. Fonte: Arquivo Laboratório de Paleontologia-MZUSP

Estes foram apenas alguns dos eventos e personagens que fizeram parte das muitas histórias de bastidores que ocorreram durante os trabalhos de campo.
Tal empenho e esforço renderam frutos, ou melhor… fósseis, de dinossauros saurópodes e terópodes, que foram (e continuam sendo) dedicadamente estudados por pesquisadores nacionais e internacionais. Entre as descobertas mais emblemáticas está a espécie Tapuiasaurus macedoi, a partir de um exemplar que detém o mais bem preservado crânio de titanossauro da América do Sul. Essa descoberta recebeu destaque na comunidade científica e na mídia por meio da publicação de um artigo na PLoS ONE4 em 2011 e, mais recentemente, na Zoological Journal of the Linnean Society5 em 2016.
07 - MZUSP
Coleta de fósseis de dinossauros nos arredores do município de Coração de Jesus. Fonte: Arquivo Laboratório de Paleontologia-MZUSP

08 - MZUSP
Equipe de pesquisa do MZUSP protegendo e preparando a retirada dos fósseis no afloramento para serem transportados. Fonte: Arquivo Laboratório de Paleontologia-MZUSP

09 - MZUSP
Crânio do espécime MZSP-PV 807 (Tapuiasaurus macedoi). A barra de escala representa 10 cm. Fonte: Arquivo Laboratório de Paleontologia-MZUSP

Infelizmente, nem sempre cabem agradecimentos em uma revista científica a cada pessoa que, direta ou indiretamente, colaborou com o desenvolvimento da pesquisa. Eventualmente, estas serão retratadas em outros meios de comunicação, como internet, jornais e rádio. Outra questão recorrente é a falta de acesso e de linguagem adequada a este tipo de conteúdo por público o qual a vida acadêmica não faz parte da sua realidade.
Então, como retribuir o apoio tão caloroso? Como mostrar à população a importância e a seriedade do que está sendo realizado nos arredores da sua cidade? Ou o porquê de estar sendo realizado. Como resposta, cito a seguir alguns dos trabalhos promovidos por alunos, funcionários e professores do Museu de Zoologia da Universidade de São Paulo, em parceria com o Museu de Ciências da USP – Pró-Reitoria de Cultura e Extensão Universitária2 e o Instituto Butantan3.
As atividades contaram também com o apoio da Prefeitura local e ocorreram a partir de duas frentes principais:
(1) Montagem da exposição itinerante “Cabeça Dinossauro: o novo titã brasileiro”
Abordou temáticas como Paleontologia, Evolução e Dinâmica da Terra, e foi uma remontagem (e recontextualização) de uma exposição com o mesmo título, montada para o Museu de Zoologia da USP, em 2011.
A exposição permaneceu aberta de terça-feira a domingo, durante todo o dia, entre os meses de maio e agosto de 2012. Adentro, o público pôde contemplar fósseis originais e réplicas de diferentes regiões e contextos geológicos, assim como dioramas, vídeos informativos e “paleoarte”. Entre os vídeos, destaca-se um feito com os depoimentos de algumas pessoas da cidade, sobre suas impressões ou sua participação na descoberta dos fósseis.
10 - MZUSP
Vista geral da exposição “Cabeça Dinossauro: o novo titã brasileiro”, em sua primeira montagem itinerante. Fonte: Arquivo Laboratório de Paleontologia-MZUSP

11 - MZUSP
Painel com informes e material a respeito do vasto universo da Paleontologia. Fonte: Arquivo Laboratório de Paleontologia-MZUSP

Após poucos dias de abertura, a exposição já havia recebido milhares de visitantes, alcançando não apenas os Corjesuenses, mas também cidadãos de municípios próximos e de outros estados . Para se ter ideia em números, a exposição foi visitada por mais de 9 mil pessoas, em uma cidade de pouco mais de 20 mil habitantes!
12 - MZUSP
Dia de visita. Interação entre o público e a exposição. Fonte: Arquivo Laboratório de Paleontologia-MZUSP

Acreditamos que este tipo de realização estimule uma prática de grande importância para a região: o turismo. Afinal, a rotatividade intensa de pessoas pode ser uma importante fonte para a economia regional, uma vez que a cidade está distante de grandes centros urbanos e o comércio se restringe basicamente aos seus próprios habitantes.
(2) Projeto de extensão “Paleontologia sob a perspectiva da Educação Patrimonial: aproximando os fósseis da população de Coração de Jesus”
Foi de caráter educativo e teve o intuito de permitir o reconhecimento do patrimônio fossilífero da região, assim como apresentar questões científicas relacionadas à Paleontologia, relevância desta ciência para o mundo e valor do Patrimônio Geopaleontológico. Foram efetivadas as seguintes atividades:
I. Curso de Formação Continuada de Professores – visou um melhor entendimento do patrimônio fossilífero regional e do conteúdo da exposição itinerante por parte de professores, de modo que eles pudessem promover visitas direcionadas com seus alunos, utilizando ferramentas da Educação Patrimonial e o conhecimento obtido a partir de estudos regionais. Esse evento ocorreu em março de 2012, teve duração de uma semana (40 horas) e contou com a participação de 118 professores e funcionários de escolas públicas estaduais e municipais, tanto de áreas urbanas quanto rurais, divididos em duas turmas.
13 - MZUSP
Curso sendo ministrado para a formação continuada de professores. Fonte: Arquivo Laboratório de Paleontologia-MZUSP

II. Oficinas nas escolas – promoveu monitorias e oficinas para desenvolver dobraduras e desenhos relacionados à Paleontologia, assim como o contato com fósseis e réplicas. Essa etapa incluiu também a iniciativa “Converse com um Paleontólogo”, promovendo o diálogo direto entre alunos das escolas e profissionais e estudantes de pós-graduação em Paleontologia para discutir e esclarecer dúvidas a respeito da atuação do paleontólogo e a relevância da sua área de estudo. Participaram mais de 600 alunos de 10 escolas públicas (urbanas e rurais), em maio de 2012.
14 - MZUSP
Colaboradores do Laboratório de Paleontologia do MZUSP em diálogo aberto com alunos de escolas públicas. Fonte: Arquivo Laboratório de Paleontologia-MZUSP

III. Formação de Monitores – prestou treinamento técnico para o atendimento ao público na exposição citada acima, de maio a julho de 2012. Os mediadores eram alunos do Ensino Médio, selecionados a partir de uma parceira junto às escolas. O curso abordou conceitos relacionados à Museologia, Paleontologia e Patrimônio Geopaleontológico, totalizando 24 horas.
15 - MZUSP
Monitores atendendo o público na exposição “Cabeça Dinossauro: o novo titã brasileiro”. Fonte: Arquivo Laboratório de Paleontologia-MZUSP

IV. Curso de Extensão Universitária – foi ministrado para 16 graduandos em agosto de 2012. Para transmitir ideias gerais sobre o que é a Paleontologia, a sua importância, e o quão promissoras são as descobertas regionais.
Foram desenvolvidos também diversos materiais didáticos para complementar, ilustrar e relembrar muitas das informações transmitidas em sala de aula pelos colaboradores do projeto educativo, como o livreto “Cabeça DINOSSAURO – o novo titã brasileiro”.
16 - MZUSP
Material educativo. Fonte: Arquivo Laboratório de Paleontologia-MZUSP

Além dessas práticas, foram também doadas réplicas do “tapuiassauro” para o Centro Cultural José Alves Macedo, um núcleo histórico-cultural sediado na praça central da cidade. Essa instituição foi fundada e é administrada por Ubirajara Alves Macedo, personagem folclórico e um tanto excêntrico da região, que foi homenageado pela sua colaboração na descoberta e na divulgação inicial dos fósseis com o sobrenome da sua família posto no epíteto específico da espécie supracitada (Tapuiasaurus macedoi).
17 - Natan
A praça central da cidade pode ser facilmente reconhecida pela presença de uma icônica estátua, Sagrado Coração de Jesus, que remete ao nome herdado pelo município. Fonte: Natan Santos Brilhante

Por meio dessas ações de ensino e divulgação, foi possível mostrar à população da cidade de Coração de Jesus a importância dos trabalhos paleontológicos, conscientizando e educando os moradores em como proceder diante de novas descobertas, valorizando assim os ideais de preservação e valorização do patrimônio geopaleontológico. Esperamos com isso resgatar não somente o patrimônio fossilífero, mas também, com empenho, incentivar as futuras gerações de paleontólogos(as) e demais entusiastas da ciência.
18 - MZUSP
Monitores transmitindo conhecimento aos visitantes da exposição “Cabeça Dinossauro: o novo titã brasileiro”. Fonte: Arquivo Laboratório de Paleontologia-MZUSP

19 - MZUSP
Alunos de escolas públicas do município de Coração de Jesus durante uma visita à exposição “Cabeça Dinossauro: o novo titã brasileiro”. Nota-se a curiosidade e o entusiasmo em suas expressões faciais ao bordarem a temática Paleontologia. Fonte: Arquivo Laboratório de Paleontologia-MZUSP

* A história mais completa sobre a descoberta dos fósseis no município de Coração de Jesus foi relatada em uma matéria do Estadão, um jornal do estado de São Paulo, o qual, na época (2010), dedicou um caderno especial a essa temática. A reportagem contou também com uma série de entrevistas de alguns dos moradores e dos pesquisadores que estiveram à frente das descobertas na região.
*** Coquinho azedo (Butia capitata): planta típica do cerrado rica em vitamina A, C e potássio.
 
Endereço eletrônico de algumas das reportagens sobre o assunto:
I. http://ciencia.estadao.com.br/noticias/geral,um-dinossauro-no-coracao-de-jesus,609332
II. http://topicos.estadao.com.br/tapuiassauro
III. http://tv.estadao.com.br/geral,dinossauros-do-brasil-o-trabalho-dos-paleontologos,242506
IV. http://tv.estadao.com.br/geral,dinossauros-do-brasil-entrevista-com-alberto-carvalho,244709
Endereço eletrônico das instituições mencionadas:
1 – http://www.mz.usp.br
2 – http://biton.uspnet.usp.br/mc/
3 – http://www.butantan.gov.br
Endereço eletrônico dos artigos científicos a respeito do Tapuiasaurus:
4 – http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0016663
5 – http://onlinelibrary.wiley.com/doi/10.1111/zoj.12420/abstract


Natan Santos Brilhante

IMG_0858
Formação acadêmica: Graduado em Ciências Biológicas pela Universidade do Grande ABC, Licenciatura Plena e Bacharelado; Mestre e doutorando pelo Programa de Pós-Graduação em Zoologia do Museu Nacional, da Universidade Federal do Rio de Janeiro.
Experiência profissional: elaboração e execução de exposições, treinamento e medeio de monitores, atendimento ao público, expedições de campo (paleontologia e herpetologia) e outros trabalhos técnicos devido a sua colaboração junto ao Laboratório de Paleontologia e à Museologia do Museu de Zoologia da USP, de 2008 a 2013. Após esse período, ingressou no Museu Nacional/UFRJ e, desde então, segue como colaborador no Setor de Paleovertebrados do Departamento de Geologia e Paleontologia.
Área de estudo: Zoologia, com ênfase em Paleontologia de Vertebrados. Atua principalmente nos seguintes temas: Taxonomia de arcossauros fósseis e recentes, curadoria de coleções, coleta e preparação de fósseis de vertebrados.