ACS Synthetic Biology

A American Chemical Society anunciou o lançamento de uma nova
revista de artigos científicos (revisada por pares), a ACS Synthetic Biology. O editor-chefe será o Christopher A. Voigt, do MIT, e a revista publicará artigos de pesquisas de alta qualidade, cartas, notas técnicas, tutoriais e revisões que nos farão entender melhor a organização e a função das células, tecidos e organismos em seus sistemas. A revista é particularmente interessada em estudos do design e síntese de novos circuitos genéticos e produtos gênicos; métodos computacionais para o design de sistemas; e abordagens integrativas e aplicadas para o entendimento de doenças e metabolismo. A revista começará a aceitar submissões em julho deste ano.

Alguns dos tópicos incluem * :

  • Design e otimização de sistemas gênicos
  • Design de circuitos gênicos e seus princípios para sua organização em programas
  • Métodos computacionais para ajudar no design de sistemas gênicos
  • Métodos experimentais para quantificar partes genéticas, circuitos e fluxos metabólicos
  • Bibliotecas de partes genéticas: sua criação, análise, e representação ontológica
  • Engenharia de proteínas incluindo o design computacional
  • Engenharia metabólica e produção celular, incluindo conversão de biomassa
  • Engenharia e produção de produtos naturais
  • Aplicações inovadoras e criativas de programação celular
  • Aplicações médicas, engenharia de tecidos, e a programação de células terapêuticas
  • Design e construção da “célula mínima”
  • Engenharia viral
  • Metodologias de síntese de DNA
  • Biologia de Sistemas e métodos para integrar múltiplos dados

*(veja a lista completa no site, que não se limita aos tópicos mencionados)

[twitter-follow screen_name=’MnlimasBio’]

SB 5.0 – Encontro Internacional de Biologia Sintética e um breve histórico

Em julho do ano passado, cientistas do J. Craig Venter Institute “criaram” a primeira célula bacteriana sintética e auto-replicante, controlada por um genoma quimicamente sintetizado e o anúncio foi feito em maio (veja o vídeo abaixo). A equipe sintetizou um cromossomo de 1,08 milhões de pares de bases a partir de um genoma modificado de Mycoplasma mycoides. A célula sintética recebeu o nome de Mycoplasma mycoides JCVI-syn1.0 e é a prova de que genomas podem ser desenhados (no sentido de designed) em computadores, depois sintetizados quimicamente em um laboratório e inseridos em uma célula, de forma a produzir uma nova célula auto-replicante controlada apenas por um genoma sintético.

[youtube=http://www.youtube.com/watch?v=QHIocNOHd7A&feature=player_embedded]

A notícia se espalhou pelo mundo em pouco tempo, ganhando fama, criando polêmica e dividindo opiniões a respeito dos riscos e benefícios potenciais de sua descoberta. Em resposta, o Presidente Barack Obama pediu para a “Presidential Commission for the Study of Bioethical Issuesavaliar o desenvolvimento e a ética da biologia sintética e tecnologias emergentes, de forma a maximizar os benefícios e minimizar os riscos. A Comissão contou com o engajamento de cientistas, engenheiros, profissionais ligados à ética, ciências sociais.

Agora em junho, cerca de 700 pessoas de 30 países participaram do 5ª Encontro Internacional de Biologia Sintética na Universidade de Stanford, que pelo que me parece é o mais importante nessa área. Havia cientistas superstars, estudantes, biólogos DIY, engenheiros, biólogos tradicionais, entre outros. O pessoal que segue nosso twitter ou a página do facebook ficou sabendo que a conferência foi transmitida ao vivo pela internet e viu como esse pessoal está batalhando para dar os próximos passos na synbio.

A criação da célula sintética abre portas para um futuro no qual biólogos sintéticos poderão “redesenhar” (redesign) células vivas para realizarem quaisquer tarefas desejadas. A maior parte das pesquisas atuais tem focado em bactérias que executam atividades semelhantes àquelas que elas já fazem, por meio de processos e materiais que se parecem com aqueles utilizados naturalmente. Exemplos são bactérias produtoras de combustíveis.

Os cientistas têm as ferramentas necessárias para editar uma sequência genética existente em um computador, usar máquinas sintetizadoras de DNA para fabricar os fragmentos e uni-los em laboratório (Esse é só um de vários caminhos que biólogos sintéticos estão tomando.) Mas ainda é difícil predizer o que as células farão depois de serem alteradas. Pesquisadores enfrentam desafios porque as células tem um “desejo natural” de crescerem e viverem à sua maneira, mas elas precisam aprender a produzir algo útil de uma forma eficiente.

Um dos maiores obstáculos reside na criação e montagem dos fragmentos de DNA que codificam para uma função particular e são sintetizados no laboratório. Fabricar esse DNA ainda é caro e requer tempo, e qualquer outra mudança que seja necessária demanda ainda mais tempo e dinheiro.

“Algumas sequências são sintetizadas em dois meses”, enquanto outras podem nem mesmo serem feitas, por razões ainda não entendidas, disse Reshma Shetty, co-fundadora do Ginkgo Bioworks, uma companhia que monta partes de DNA.

Pamela Silver, uma professora de biologia de sistemas da Universidade de Harvard, acredita que os biólogos do futuro poderão sentar na frente de um computador, planejar um experimento, e ter o DNA no dia seguinte. Para que a biologia sintética cumpra sua promessa, a síntese de DNA deve ser barata, rápida, previsível e acurada, além de ser disponível a todos, incluindo pesquisadores cujos laboratórios não tem equipamentos ou recursos apropriados. Felizmente, o custo da síntese de DNA, assim como o do sequenciamento de DNA, vem caindo rapidamente.

Retirado e adaptado de: What’s the Future of Synthetic Biology? por Katherine Bourzac

Para Saber Mais:

The Promise of Syn Bio (version 5.0)

First Self-Replicating, Synthetic Bacterial Cell Constructed by J. Craig Venter Institute Researchers 

Immaculate creation: birth of the first synthetic cell

[twitter-follow screen_name=’MnlimasBio’]

Light Switches: Um Review

ResearchBlogging.orgJá tratamos nesse blog de um dispositivo simples, mas engenhoso, para a transdução de um sinal luminoso em uma resposta genética desejada, no caso um switch de luz vermelha. Mas podemos abranger o conceito de switch de luz para uma variada gama de mecanismos que a própria natureza esculpiu durante os milhares de anos que teve para se divertir sozinha antes que nós aprendêssemos a modificá-la.

Os mecanismos mais óbvios, que conhecemos bem antes de termos conhecimento da existência de uma célula, são os das plantas. Apesar de pensarmos nesses seres vivos como a fonte mais provável das ferramentas que precisamos para construir um light switch, a biologia sintética utilizou até agora principalmente os dispositivos fotossensíveis de microorganismos fototróficos e quimiotróficos, presentes em uma grande quantidade de bactérias.

As funções de muitos fotorreceptores ainda não são muito claras, mas alguns exemplos na natureza da atividade desses mecanismos vão desde a regulação da motilidade celular, formação de pigmentos, reparo de DNA, resposta ao stress , à até “comportamentos multicelulares”, como a formação de biofilmes e de corpos de frutificação, como por exemplo a Stigmantella aurantiaca.

Corpo de frutificação da Stigmantella aurantiaca.

Corpo de frutificação de Stigmantella aurantiaca. Retirado da publicação de van der Hornst et al, mencionada no final do post.

A grande maioria das proteínas fotossensíveis que a seleção natural pôde criar nesses milhões de anos, e que até agora conhecemos, pode ser classificada em seis famílias bem definidas, baseada na estrutura do cromóforo absorvedor de luz, que podem ser: as famosas rodopsinas, os aqui já conhecidos fitocromos, as xantopsinas, os criptocromos, as também famosas fotropinas e as proteínas de domínio BLUF (blue light sensing using flavin (FAD), domínio utilizador de flavina sensível à luz azul).

A natureza é sutil; ela parte de princípios básicos e com eles (utilizando um bocado de tempo) cria as mais variadas soluções para um mesmo problema. Com os fotorreceptores não é diferente. Uma procura de similaridade de sequências que codificam esses seis tipos de fotorreceptores no mecanismo de busca protein BLAST do NCBI revela uma grande quantidade de sequências similares nos genomas de diferentes espécies, indicando um vasto número de receptores ainda não caracterizados em diversos microorganismos. Um exemplo dessa busca pode ser visto da lista deste link: Chemotrophic organisms containing protein photoreceptor domains.

O princípio básico dos fotorreceptores é: uma estrutura molecular que contenha um ou mais domínios que captam a luz (input) e outro(s) que transforme(m) isso em um sinal intracelular (output). Os domínios de input ligam-se a cofatores ou cromóforos, resultando em uma molécula capaz de absorver luz UV ou visível. O domínio do output pode possuir uma atividade enzimática, proteína-ligante, ou DNA-ligante.  Vejamos alguns domínios de input e de output comumente encontrados in natura.

Domínios de Input Domínios de Output
AppA: Anti-repressor de pigmentos fotossintéticos. O AppA foi a primeira proteína com domínio BLUF caracterizada em Rhodobacter sphaeroides. Absorve na região dos 446 nm com o seu cromóforo FAD. Além de sensível à luz, está envolvida em reações redox.BLUF: Um domínio presente em várias proteínas fotoativas, sua estrutura é similar, mas com um mecanismo funcional totalmente diferente, ao domínio PAS.

LOV: Uma subclasse do domínio PAS, nomeado LOV devido ao tipo de sinal que esse domínio detecta: Luz-Oxigênio-Voltagem (light-oxygen-voltage). Esse tipo de domínio foi descoberto em fototropinas de plantas e mais recentemente em proteínas bacterianas. Um tipo de domínio bem “popular”.

PAS: De “Per-Arnt-Sim”, três reguladores transcricionais que contêm esse tipo de domínio. Outro tipo de domínio bem “popular” no quesito receptor de luz. Muitas proteínas com domínio PAS são conhecidas por transmitir o seu sinal associando-se a cofatores.

Fitocromo: Receptor de luz vermelha e infravermelho encontrado em plantas e bactérias, ligando-se em uma cromóforo de bilina (Lembra do red light switch? A Ficocianobilina é um desses cromóforos).

PYP: De photoactive yellow protein (proteína fotoativa amarela). Um receptor de luz citoplasmático que usa ácido p-coumárico como seu cromóforo. Sua absorção máxima é em 446 nm.

Rodopsina: Proteína composta por um conjunto de sete hélices intermembrana (ver imagem na tabela abaixo), ligando-se a um cofator retinal em seu centro hidrofóbico, absorvendo em maior parte luz verde. Há uma grande quantidade de estudo sobre ela.

YtvA: Um bem caracterizado domínio fotoreceptor de luz azul em Bacillus subitilis. Possui um domínio LOV que se liga ao cromóforo monoflavina (FMN), o que resulta numa absorção máxima em torno de 449 nm.

EAL: Domínio com atividade enzimática diguanilato-fosfodiesterase (traduzindo: envolvido na hidrólise de di-GMP cíclico, um importante sinalizador intracelular). Chama-se EAL por causa de sua sequência conservada de resíduos, mas também conhecido como DUF2.GAF: Domínio com atividade de adenilato-ciclase, guanilato-ciclase, e fosfodiesterase. Liga-se à um cofator bilina em alguns fitocromos.GGDEF: Similar ao EAL, possui atividade de ciclase em diguanilatos (di-GMP). Também possui seu nome devido à sua sequência conservada, conhecido também por DUF1.

HisKA: Domínio fosfoaceptor e dimerizador de proteínas histidina-quinases, importantes proteínas na sinalização intracelular.

HTH: Domínio de ligação ao DNA de reguladores de transcrição bacterianos. Eles se ligam ao DNA via seu motivo (sequência específica de aminoácidos) helix-turn-helix (hélice-dobra-hélice).

STAS: O domínio STAS, cujo nome significa domínio transportador de sulfato e antagonista de fatores anti-sigma (traduzindo: promove a atividade do tal fator de transcrição sigma), é o domínio de output do bem caracterizado YtvA, mas também encontrado em outros fotoreceptores.

Sabendo como as coisas são naturalmente, é possível juntar diferentes peças desse zoológico de domínios proteicos e formar diferentes light switches. Vejamos por exemplo o red light switch: basta juntar um domínio input de fitocromo e um output de ligação ao DNA, no caso o GAL4. Para sintetizar um switch de luz azul, verde, amarelo, e etc, o princípio fundamental é o mesmo: basta montar um input e um output desejados. O resto é pura metodologia e testes. Alguns exemplos de construções naturais podem ser:

Combinações naturais de diferentes domínios Input e Output.

Imagem modificada retirada da referência deste post (van der Hornst et al.).
 

Como se pode ver, o domínio de input LOV parece ser o mais versátil, o que talvez explique a sua “popularidade” no mundo bacteriano dos domínios fotossensíveis. Encontra-se um LOV input ligado à vários tipos diferentes de outputs.

Uma coisa interessante a se levar em conta nessas construções naturais é o tempo de alternância entre os diferentes estados dos fotorreceptores, que como vimos no red light switch, se resume (na maioria dos casos) a um estado “ativo” quando exposto a luz e um “inativo” quando no escuro ou quando passado certo tempo de exposição. Quando o ciclo de mudança do estado ativo para o inativo é um pouco lento, ele é geralmente compatível com regulações na expressão gênica, enquanto graus rápidos de mudança são relacionados com uma regulação comportamental (que não envolve diretamente uma regulação gênica, como por exemplo o aumento da taxa de motilidade de uma bactéria quando exposta à luz). Um ciclo de mudança ainda mais rápido sugere funções bioenergéticas para o fotoreceptor. Isso é um parâmetro importante a se levar em conta no design de dispositivos sintéticos fotossensíveis.

No fundo, talvez grande parte da própria biologia  sintética se resume ao que discutimos aqui: mudança de informação com recombinação. Caímos então no ponto recursivo da biologia. À diferentes níveis e abordagens sempre teremos  a mesma simples metáfora dos blocos de montar: os blocos sempre são os mesmos, o que muda é a informação que colocamos neles ao fazermos diferentes estruturas com diferentes combinações das unidades. Quer um light switch específico que ainda não foi feito? Já está pronto, só basta combinar informação.

Em posts futuros mostraremos como combinar inputs e outputs para criar light switches de outras cores, novamente, com as construções feitas pelos de times de edições passadas do iGEM. Para maiores e melhores informações sobre fotorreceptores, vale consultar o ótimo review de Michael van der Hornst et al:

van der Horst MA, Key J, & Hellingwerf KJ (2007). Photosensing in chemotrophic, non-phototrophic bacteria: let there be light sensing too. Trends in microbiology, 15 (12), 554-62 PMID: 18024131

Bionumbers


Olha aí um site bem legal: Bionumbers, um banco de dados numéricos biológicos!

Alguma vez vocês já se perguntaram: “Nossa, quantas moléculas de Glicose são necessárias para dobrar a massa de uma E. coli?!” ou “Poxa vida, seria ótimo saber o diâmetro de um neutrófilo…Qual será?!”. Nunca se perguntaram?! Não!?

Pois é, esse site tem os números que respondem a esses tipos de perguntas e a outras mais, citando as referências dos trabalhos científicos que embasam essas medições.

São dados importantes que podem ajudar a dar aquele argumento de prova concreta no seu trabalho escolar ou tese, sem que você precise gastar muito tempo com isso. É claro que não tem todas as informações que você procure: ainda nem todas as coisas foram medidas pela curiosidade humana. Há lacunas, mas isso não é problema, o Bionumbers deixa reservado espaços para que o avanço da ciência as vá preenchendo, citando as referências que pelo menos dêem algum tipo de detalhe do assunto.

O banco de dados foi criado em 2007 por pesquisadores do departamento de biologia de sistemas de Harvard e hoje é coordenado e desenvolvido por um dos criadores em seu laboratório no Instituto Weizmann, em Israel. Estão fazendo um trabalho muito legal.

Agora temos um pequeno desafio para você: Qual é a porcentagem de genes que codificam proteínas nos humanos? Hein!?

Vá lá e dê uma checada!

http://bionumbers.hms.harvard.edu/default.aspx