Calculadora para sítios de ligação com ribossomos (RBS)

RBSUm objetivo central da biologia sintética é programar células para desenvolver funções valiosas. À medida que se constroem sistemas genéticas maiores e mais complexos (como os de escala genômica), serão necessários modelos e técnicas para combinar as partes genéticas de maneira eficiente para se atingir um comportamento específico. Para isso, serão necessários modelos biofísicos que descrevam a relação de uma sequência de DNA que a sua função. Um passo muito importante nesse sentido foi dado pelo Grupo do Prof. Howard Salis, pesquisador que eu tenho o prazer de trabalhar dentro do Synberc, com o desenvolvimento da calculadora de RBS (ribossomal binding site ou sítio de ligação com o ribossomo). Engenharia genética de microrganismos é um processo tempo intensivo (por ex. o desenvolvimento de uma nova rota metabólica para a produção de um produto químico pode levar de 5 a 10 anos de P&D para chegar a etapa industrial) que normalmente requer múltiplas rodadas de tentativas e erro utilizando mutações aleatórias. À medida que se torna possível construir sistemas gênicos cada vez mais complexo (incluindo genomas completos), métodos automatizados para montagem desses sistemas e para otimização de vias metabólicas se tornam necessários para diminuir custos e tempo de desenvolvimento. Além disso, com o aumento da complexidade do sistema, a aplicação de métodos de tentativa e erro para sua otimização se torna cada mais difícil e ineficaz. Uma maneira de otimizar um sistema gênico é através da variação da sequencia de seus elementos regulatórios para controlar os níveis de expressão de suas proteínas codificadoras. Cada passo limitante na expressão de um gene oferece a oportunidade para modular racionalmente os níveis de expressão proteica. Em bactérias, sítios de ligação do ribossomo e outras sequencias regulatórias de RNA são elementos de controle eficientes para o início da tradução. Como consequência, essas sequências são comumente modificadas para a otimização de circuitos genéticos. Vias metabólicas e expressão de proteínas recombinantes. Assita um video bem interessante no Youtube sobre tradução. Não é mostrado no video (e não consegui encontrar um melhor) o RBS é uma sequencia do RNA que direciona o ribossomo para o start codon, ele complementar a região do rRNA 16S que é parte da subunidade pequena 30S do ribossomo. Basicamente, quando mais complementar o RBS é ao 16S rRNA, maior é a afinidade e maior é a taxa de tradução. Como foi descrito no video, a tradução em bactérias (procariotos) consiste em quatro fases: iniciação, elongamento, terminação e o turnover do ribossomo (na verdade, esta última fase não foi mostrada no video). Na maioria dos casos, o início da transcrição é o gargalo do processo inteiro. O taxa de iniciação de transcrição se dá pela combinação de diferentes efeitos moleculares: incluindo a hibridação do rRNA 16S com a sequencia do RBS, a ligação do tRNA formilmetionina ao start codon, a distância entre o síto de ligação do rRNA 16S e o start códon, e a presença de estruturas secundárias de RNA que podem obstruir o RBS ou o start codon. Para o otimização de expressão de genes, é muito comum o desenvolvimento de bibliotecas de sequencias de RBS com o objetivo de otimização de funções de sistemas gênicos. Porém, a construção e seleção de bibliotecas de sequências se torna impraticável com o aumento de proteínas no sistema. Por exemplo, para realizar mutações randômicas em 4 nucleotídeos para um RBS resulta em uma biblioteca de 256 sequencias. O tamanho da biblioteca aumenta combinatoriamente com o número de proteínas do sistema, ou seja, 16,7 milhões de sequências para um sistema com 3 proteínas e 2,8 x 1014 sequencias para um sistemas com 6 proteínas). Dessa maneira, se torna necessários processos mais racionais para avaliar sequencias de RBS. A calculadora de RBS utiliza um modelo estatístico termodinâmico para predizer a taxa de iniciação de tradução de uma proteína. Dado um RBS e a região codificadora da proteína, o modelo é capaz de calcular a mudança de energia livre durante a montagem do complexo ribossomal 30S no RNAm (ΔGTOT). Depois, o modelo estatístico é capaz de correlacionar a taxa de início de transcrição com o ΔGTOT. Dessa maneira, o modelo biofísico preenche uma lacuna de desenho racional de RBS, criando uma relação quantitativa entre um sequencia de letras (As, Gs, Cs e Us) e um número (taxa de iniciação de tradução). A calculadora de RBS, portanto, combina um modelo biofísico com otimização estocástica para identificar uma sequência sintética (não natural) de RBS que irá proporcionar a taxa de início de tradução desejada. É importante destacar que esta relação também depende dos 35 nucleotídeos iniciais da região codificadora da proteína e que o RBS sintético precisa ser desenhada com esta sequencia incluída. A calculadora de RBS está disponível do site do laboratório do Salis . E é muito simples de utilizar, basta criar uma conta de usuário, recortar e colar as sequências, e definir uma ou mais taxas de iniciação de transcrição. RBS calculator

Outras ferramentas para controle de transcrição também estão disponíveis como a Small RNA Calculator.

Bons experimentos!

Salis, H., Mirsky, E., & Voigt, C. (2009). Automated design of synthetic ribosome binding sites to control protein expression Nature Biotechnology, 27 (10), 946-950 DOI: 10.1038/nbt.1568

Problemas com PCR!

Após desenhar o seu primer,  montar a sua reação e programar o termociclador, você pode enfrentar problemas para otimizar as sua condições de PCR. Algumas simples ações podem resultar em um produto de PCR específico. Estas são as questões mais comuns aqui no laboratório:

1. Estou tendo (muitos) fragmentos inespecíficos maiores do que o esperado. O que fazer?

– Diminuir o tempo de anelamento da reação;

– Aumentar a temperatura de anelamento (aumento 2 graus a cada teste);

– Diminuir o tempo de extensão;

– Colocar menos primers;

– Checar e colocar menos DNA;

2. Estou obtendo fragmentos inespecíficos menores do que o esperado. O que fazer?

– Aumentar a temperatura de anelamento;

– Aumentar o tempo de anelamento;

– Aumentar a temperatura de extensão;

– Aumentar a temperatura de extensão para 74-78 oC;

– Colocar menos primers e/ou menos DNA.

3. A reação estava funcionando antes, mas agora eu não obtenho nenhum produto.

– Tenha certeza que todos os componentes estão na reação (tampão, DNA, primers…);

– Teste um novo Master Mix ou uma nova solução de dNTP (são sensíveis a descongelamentos consecutivos);

– Utilize um estoque novo de primers;

– Diminua sua temperatura de anelamento 6-10 oC, se não obtiver nenhum fragmento verifique todas os componentes.

Nos próximos posts vou comentar sobre técnicas de PCR: como RT-PCR, deleção de genes…