Computadores bacterianos
De acordo com o verbete da wikipedia, um computador é uma máquina programável desenhada para, automaticamente, realizar um sequência de operações aritiméticas ou lógicas. Um computador pode prover-se de inúmeros atributos, dentre eles armazenamento de dados, processamento de dados, cálculo em grande escala, desenho industrial, tratamento de imagens gráficas, realidade virtual, entretenimento e cultura. Os primeiros computadores analógicos surgiram no século XVII e eram capazes de realizar as funções básicas de somar, subtrair, multiplicar e dividir. Mas foi na II Guerra Mundial, em meados do século XX, que realmente nasceram os computadores atuais. A Marinha dos Estados Unidos, em conjunto com a Universidade de Harvard, desenvolveu o computador Harvard Mark I, projetado pelo professor Howard Aiken, com base no calculador analítico de Babbage. O Mark I ocupava 167m2 e pesada cerca de 30 tonelada aproximadamente, conseguindo multiplicar dois números de dez dígitos em três segundos.Seu funcionamente era parecido com uma calculadora simples de hoje em dia. Nem é preciso falar o quanto esta tecnologia se desenolveu até hoje, em que hoje se discuti processadores quânticos e se faz computação em nuvem. Uma plataforma diferente das “baseadas no silício”, que estamos acostumados, são os biocomputadores. Em 1994, em um experimento muito elegante, Leonard Adleman desenvolveu o primeiro experimento envolvendo um computador de DNA para resolver o problema do Caminho Hamiltoniano: um problema que envolve caminhos hamiltonianos é o problema do caixeiro viajante, em que um caixeiro deseja visitar um conjunto de N cidades (vértices), passando por cada cidade exatamente uma vez, fazendo o caminho de menor tamanho possível (Figura 1).
Figura 1. O grafo em vermelho é hamiltoniano.
Cada bola é um nó e cada flecha é uma aresta. Existem multiplas possibilidades de construir um computador baseado em DNA, em que cada um possui suas vantagens e desvantagens. A maioria deles funciona utilizando as portas lógicas (AND, OR, NOT) associadas a lógica digital utilizando como base o DNA, como por exemplo, o contador bacteriano . Porém os primeiros computadores moleculares baseados em DNA, são reações in vitro utilizando, por exemplo, enzimas de restrição, ligases, e DNA (Benenson et al. 2001). Através da mistura desse componentes e reações em cascada de digestão, ligação e hibridização, o output final é uma molécula detectável que representa o resultado computacional. Em 1994, Leonard Aldleman foi capaz desenvolver um computador in vitro baseado em DNA para solucionar o problema do Caminho Hamiltoniano (Figura 1), porém apenas em 2009, Baumgardner e colaboradores conseguiram resolver um problema complexo in vivo, em E. coli. Porém, para entender, é necessário uma série de abstrações para tornar sequências de DNA em vértices e arestas de um caminho hamiltoniano (ver Figura 2). A primeira abstração trata segmentos de DNA como as arestas de um determinado grafo. As arestas de DNA são flanqueados por sítios hixC que podem ser embaralhados por um recombinase Hin, criando diversas ordens e orientações randômicas para as arestas do grafo. A segunda abstração está relacionada com os nós, com exceção do nó terminal, em que um nó é um gene divido ao meio por uma sequência hixC. Os autores conseguiram construir enzimas funcionais portando essas sequências codificadas no DNA. Dessa maneira, a primeira metade (5´) de um nó é encontrada na aresta de DNA que termina em um nó, enquanto a segunda metade (3´) do gene é encontrado em uma aresta de DNA que se origina no nó. Calma, realmente não é fácil entender, é preciso pensar e abstrair, veja a figura 2.
Figura 2. Construção de DNA que codificam um problema do Caminho Hamiltoniano com três nós. a. O grafo contendo o caminho Hamiltoniando começa no nó RFP, procedendo para o nó GFP e terminando no nó TT. b. Construção ABC representam a solução para o problema dos três nós. Os três fragmentos de DNA flanqueado por hixC estão na ordem e orientação corretas, de maneira que os genes GFP e RFP estão intactos. ACB possui o gene RFP intacto, porém o gene GFP está errado, por fim, a construção BAC não possue nenhum gene intacto.
A Figura 2a mostra o grafo com os 3 nós e as 3 arestas que foram escolhidas para serem codificados no computador bacteriano. O gráfico contêm um único caminho hamiltoniano que começa no nó RFP, viajando pela aresta A até o nó GFP, e utilizando a aresta B até alcançar o nó final TT. A aresta C, the RFP até TT é um detrator. A Figura 2b ilustra como as construções de DNA foram utilizadas para solucionar o problema do Caminho Hamiltoniano com um controle positivo e duas configurações sem soluções. Já que as soluções precisam originar no nó RFP e terminar no nó GFP, a aresta A de DNA contêm na extremidade 3´a metade de RFP seguida por a extremidade 5´de GFP. A aresta B de DNA se origina em GFP e termina em TT, dessa maneira, esse fragmento de DNA possui 3´GFP seguido de um terminado de transcrição duplo. A aresta C se origina em uma metade 3´ de RFP e termina em TT. Finalmente, com os genes codificadores para RFP e GFP estão intactos, com promotores e RBS, e seguintes de um terminador de transcripção, colônias ABC expressam fluorescência vermelha e verde, dessa maneira, possuem aparência amarela.
Para concluir a abstração eu gosto de imaginar que a recombinase Hin é o caxeiro viajante que faz o seu caminho pelo DNA e a sequência de DNA contem o mapa do caminho realixado.
A programação de bacteria para computar soluções de problemas complexos podem oferecer as mesmas vantagens dos computadores atuais que estamos acostumados, porém, com as seguintes características adicionais: (i) sistemas bacterianos são autônomos, eliminando a necessidade de intervenção humana, (ii) computadores bacterianos podem se adaptar a condições flutuantes, evoluindo para resolver desafios de determinados problemas e (iii) o crescimento exponencial de bactérias continuamente aumente o número de processadores trabalhando em um problema (Baumgardner et al., 2009). Sem contar que eles ainda poderiam fazer fotossíntese…
Adleman LM: Molecular computation of solutions to combinatorial problems. Science 1994, 266:1021-1024.
Benenson Y, Paz-Elizur T, Adar R, Keinan E, Livneh Z, Shapiro E: Programmable and autonomous computing machine made of biomolecules. Nature 2001, 414:430-434.
Baumgardner , J et al. Solving a Hamiltonian Path Problem with a bacterial computer. J. Biol. Eng. 2009, 24;3:11.
Lâmpada verde da Philips produz luz com bactérias
A Philips lançou uma lâmpada que utiliza bactéria bioluminescentes. Mais interessante é que esses microrganismos se alimentam de metano produzido pela compostagem de restos de alimentos realizado em pequena escala na própria casa. Para a Philips esse é o primeiro passo para a utilização de microrganismos em sistemas de iluminação.
Veja a matéria na íntegra.
As 50 empresas mais quentes de bioenergia
Acabou de sair um ranking de empresas que reconhece a inovação e os avanços em bioenergia. Entre as 50, 37 são dos EUA, 15 são ativas no desenvolvimento do etanol celulósico, 5 desenvolvem algas para soluções energéticas e 16 produzem novos biocombustíveis avançados como o biobutanol, biodiesel, gasolina e combustíveis de jato renováveis.
Veja a reportagem completa:
The 50 Hottest Companies in Bioenergy for 2010-11 are:
Last year’s rank (2009-10)
1. Amyris 3
2. Solazyme 1
3. POET 2
4. LS9 8
5. Gevo 13
6. DuPont Danisco 7
7. Novozymes 11
8. Coskata 6
9. Codexis 35
10. Sapphire Energy 5
11. Virent 21
12. Mascoma 10
13. Ceres 28
14. Cobalt Technologies 30
15. Honeywell’s UOP 12
16. Enerkem 25
17. BP Biofuels 4
18. Genencor 26
19. Petrobras 18
20. Abengoa Energy 15
21. Qteros 22
22. Joule Unlimited 32
23. Shell 27
24. Bluefire Renewables 19
25. Rentech 38
26. Algenol 24
27. ZeaChem 20
28. PetroAlgae 16
29. Neste 29
30. Synthetic Genomics 17
31. LanzaTech 41
32. Iogen 23
33. OriginOil 42
34. RangeFuels 14
35. ExxonMobil 29
36. Cargill NR
37. SG Biofuels 49
38. Butamax 38
39. Terrabon 47
40. Cosan NR
41. Verenium 9
42. Waste Management 42
43. IneosBio 36
44. Dynamic Fuels NR
45. Fulcrum Bioenergy 48
46. KL Energy 34
47. KiOR NR
48. Chevron NR
49. Monsanto NR
50. Inbicon 50
Bio-Fiction videos – Please rate your favourite videos!
Vejam os vídeos do Synthetic Biology Science, Art and Film Festival que ocorreu em Viena nos dias 14 a 16 de maio!
Votem nos melhores vídeos numa escala de 1 a 5:
Produção de biodiesel por bactérias
Imagine uma plantação enorme de soja no interior do Mato Grosso e uma instalação para a extração do óleo de soja, que é composto por vários ácidos graxos. Agora imagine no interior de São Paulo, uma grande usina de etanol cercada por dezenas de quilômetros por cana-de-açúcar. Imagine o etanol e óleo de soja sendo transportados até uma usina de biodiesel para, utilizando um catalisador (normalmente hidróxido de sódio), serem esterificados em um éster (biodiesel) e em glicerina. Muito trabalho e muito recurso para produzir um biocombustível não acham?
Recentemente, um trabalho muito interessante foi publicado pelo Jbei Instute demonstrando a possibilidade de se utilizar uma bactéria para produzir biodiesel em apenas uma etapa, e ainda por cima, utilizando resíduos agroindustriais, como por exemplo, o bagaço de cana-de-açúcar. Essa bactéria modificada geneticamente é capaz de produzir ácidos graxos e etanol e enzimaticamente realizar a esterificação desses produtos em biodiesel. Bacana não é? Os detalhes da pesquisa serão descritos a seguir.
Ácidos graxos têm sido utilizados há séculos para a produção de combustíveis e produtos químicos, incluindo o biodiesel, surfactantes, solventes e lubrificantes. Porém a demanda crescente e a produção limitada de óleos vegetais têm causado questionamentos sobre o aumento dos preços dos alimentos, sobre a prática de utilização dos solos e os aspectos socioambientais relacionados com a sua produção. Uma alternativa é a produção desses derivados de ácidos graxos via conversão biológica utilizando microrganismos como levedura e bactérias. Dentro desses produtos, os etil-ésteres de ácidos graxos (o famoso biodiesel) têm despertado muito interesse. Só para ilustrar, a demanda mundial de diesel vem crescendo três vezes mais que a de gasolina.
Ácidos graxos são produzidos naturalmente por microrganismos, eles compõem, entre outras coisas, a membrana celular. Porém, Jay Keasling e seu grupo construíram uma E. coli geneticamente modificada capaz de produzir ácidos graxos livres (através da expressão de uma tioesterase citoplasmática e da deleção de genes responsáveis pela degradação de ácidos graxos) e etanol (expressando os genes de Zymomonas mobilis). Além disso, foi clonada uma enzima (Acr1) capaz de realizar a transesterificação em bioedisel, sendo que que a glicerina produzida é reabsorvida pela bactéria para a produção de mais biodiesel.
O tamanho e a saturação do ácido graxo influenciam diretamente nas propriedades químicas do biodiesel, como temperatura de fusão. Alguns trabalhos têm demonstrado que,
através da expressão de tioesterases de plantas, é possível produzir ácidos graxos sob medida para diferentes aplicações. Essa ferramenta genética possibilita a produção de biodiesel com composições definidas, dessa maneira, com performance e características desenvolvidas sob medida.
Por fim, essas bactérias foram modificadas para utilizar matérias-primas de baixo custo, como a hemicelulose presente no bagaço de cana-de-açúcar. É uma pesquisa pioneira que mostra bem o tipo de engenharia sistêmica de metabolismo microbiano que vem sido feita. Através de várias modificações genéticas foi possível aumentar a produção de 40 mg/l para quase 700 mg/l de biodiesel. Resultado este ainda baixo para se cogitar uma aplicação a curto-prazo, mas, sem sombra de dúvida, as perspectivas são muito animadoras.
Steen EJ, Kang Y, Bokinsky G, Hu Z, Schirmer A, McClure A, Del Cardayre SB, & Keasling JD (2010). Microbial production of fatty-acid-derived fuels and chemicals from plant biomass. Nature, 463 (7280), 559-62 PMID: 20111002
O que é Biologia Sintética?
Este post deveria ser um dos primeiros artigos para um site que se diz especializado em biologia sintética. Mas confesso para vocês que definir o que é biologia sintética, para mim, não foi (é) uma tarefa fácil. Como podem ser vistos nos posts no blog, existem vários aspectos da synbio que permitem diferentes definições de acordo com o ponto de vista de quem está fazendo biologia sintética. Por exemplo, um engenheiro interessado em criar dispositivos computacionais sintéticos em uma bactéria, ou um biotecnólogo interessado em produzir biocombustíveis ou um biólogo querendo montar uma bactéria a partir de simples elementos químicos. Claramente, todas estas áreas estão conectadas, mas criar uma definição que consiga embarcar todas as possibilidades não é trivial. Por isso, digo que este post é orgânico, que deve mudar à medida que o meu conhecimento sobre o assunto se aprofunda.
Uma característica que une todos os biológos sintéticos é a vontade de tornar o processo de engenharia de sistemas biológicos mais fácil e confiável. Dentro desse contexto, existem quatro diferentes níveis de atuação da biologia sintética:
(i) partes biológicas: sendo o DNA a linguagem de programação, as partes biológicas são uma sequência de dados (AGCTA…) que possuem funções determinadas. Por exemplo, uma sequência de DNA que faz a célula mudar a cor de verde para amarelo. Estas partes são descritas, catalogadas e respeitam determinado padrão físico de montagem (leia mais sobre os biobricks). Espera-se que com o tempo se possam descrever as características de inúmeras partes biológicas para serem utilizadas para a construção de dispositivos, sistemas,…. Essa é uma das funções da Secretária de Partes Biológicas Padrão do MIT.
(ii) dispositivos sintéticos: são compostos por partes biológicas capazes de processar sinais. Processam inputs em outputs. Para a construção de dispositivos robustos e eficientes são necessárias partes que funcionem de uma maneira previsível. Veja mais sobre dispositivos sintéticos.
(iii) sistemas sintéticos: são um conjunto dispositivos capazes de captar sinais, processar informações e realizar funções determinadas, como por exemplo, uma célula capaz de captar algum sinal do ambiente e decidir se irá realizar uma determinada função como combater uma célula tumoral, produzir determinado metabólito etc.
(iv) por útimo, existe a arquitetura sintética de populações em que, por ex, cada microrganismo possui um dispositivo diferente, sendo necessário que estes dispositivos trabalhem em conjunto para realizar determinada função. Trabalhar em conjunto, como uma população que precisa trabalhar com sincronismo, é o caso dos osciladores. Para isso, é necessário dominar mecanismos robustos de comunicação célula-célula.
A biologia sintética pode ser aplicada em praticamente todas áreas da biologia molecular, biotecnologia e engenharia genética. Porém existem algumas áreas que se destacam como sendo próprias da biologia sintética:
1. Construção de uma célula mínima: identificação das partes básicas para construção de uma célula.
2. Reconstrução de células: tendo como objetivo central a construção de formas de vida artificiais a partir de elementos químicos.
3. Construção de novos códigos genéticos.
5. Construção de células capazes de realizar funções diferentes daquelas encontradas na natureza, como a obtenção de novas rotas bioquímicas de produção de novos compostos. .
Essa última, talvez seja a que mais tenha impacto nas nossas vidas cotidianas a curto-prazo, através do desenvolvimento de remédios mais baratos e com a produção de combustíveis e químicos utilizando recursos renováveis.
Secretaria de Partes Biológicas Padrão
Já comentei em posts anteriores sobre os Biobricks, as partes biológicas padrão da biologia sintética. Dentro desse contexto, foi fundado em 2003, no MIT, a Secretaria de Partes Biológicas Padrão (Registry of Standard Biological Parts) para depositar as partes genéticas utilizadas na montagem de dispositivos e sistemas sintéticos. A secretaria contém mais de 3400 partes que podem ser trocadas por inúmeros laboratórios cadastrados e espera-se que todos contribuam com dados e novas partes para melhorar o repositório.
A secretaria oferece muitos tipos de partes biológicas, incluindo plasmídeos, primers, promotores, domínios de proteínas, sítios de ligação de ribossomos, riborreguladores, genes repórteres e etc… (veja a lista).
Entre os objetivos de criação do Registro estão: (i) possibilitar a engenharia sistemática da biologia, (ii) promover o desenvolvimento transparente e aberto de ferramentas de engenharia biológica e (iii) para construir uma sociedade que, produtivamente e democraticamente, possa aplicar tecnologias biológicas.
Atualmente mais de 120 laboratórios do mundo inteiro pertencem à comunidade dos Biobricks. Este ano, o Laboratório de Bioprodutos da USP foi o primeiro laboratório do país a fazer parte dessa comunidade. Algumas das nossas construções genéticas já estão sendo feitas em formato biobrick para que possamos receber partes e contribuir com partes também. Na próxima segunda, receberemos uma das responsáveis pela Secretária, Meagan Lizarazo que irá dar uma palestra sobre biologia sintética, biobricks, iGEM e outros assuntos relacionados.
Não percam esta oportunidade!
Palestra de pesquisadora do MIT sobre biologia sintética
Nesta segunda-feira, às 10:00 no anfiteatro 2 do ICBII (no centro didático anexo) teremos o grande prazer de receber a pesquisadora do MIT Meagan Lizarazo, que falará sobre Biologia Sintética, iGEM, Registro de Partes Padrão e outras coisas interessantes.
Não percam!
4.a reunião do synbiobrasil: processamento de sinais
Está confirmada a nossa próxima reunião, dia 24/03/2011 às 3 pm na sala 101 do ICBII. O tema será Processamento de sinais e se iniciará com uma palestra dos Prof. Vitor do Nascimento e Prof. Cássio Lopes do Departamento de Engenharia Elétrica da Poli. Será discutido um pouco de estimação e sistemas dinâmicos e pretende-se fazer um paralelo com o que já foi discutido sobre biologia sintética.
Até lá!