Arquivo da categoria: Evolução

Cara de Mamífero

Texto por Pedro H. Morais e Maurício Rodrigo Schmitt

Você já se perguntou “como era a cara dos nossos ancestrais, antes deles serem o que somos”? Por exemplo, que cara teria o primeiro hominídeo? Ou o primeiro primata?

Essa pergunta habita o nosso imaginário, principalmente quando diz respeito aos nosso ancestrais e, na maioria das vezes, quem pode nos ajudar a obter essas respostas são os pesquisadores que trabalham com o passado, como os paleontólogos.

Onde sua imaginação te levaria se eu te perguntasse: que cara tinha o primeiro mamífero? Muitos talvez tenham pensado nos grandes mamíferos do passado, como os mastodontes (como Stegomastodon waringi), ou os poderosos tigres-dentes-de-sabre (como Smilodon), ou ainda nas preguiças enormes (como Eremotherium laurillardi) e tatus gigantes (como Glyptodon clavipes). Porém, sinto lhe informar, que você viajou pouco no tempo. 

Uma preguiça gigante (Scelidodon sp.) e um tatu gigante (Doedicurus sp.), ambos encontrados na América do Sul em rochas datadas do Pleistoceno, entre 2,5 milhões e 11,7 mil anos atrás. Artes de Jorge Blanco (Forasiepi, Martinelli, 2007).

Quando pensamos em um mamífero, o grande grupo de animais ao qual nós, os seres humanos, pertencemos, fica difícil escolher um modelo que represente o todo. Vemos hoje em dia, a enorme diversidade do grupo, que foi capaz de ocupar praticamente todos os ambientes do nosso planeta, das savanas quentes do Brasil e da África, às geleiras mais frias do pólo-norte, das montanhas mais altas do Himalaia, às profundezas do oceano, dos céus, ao interior de cavernas e do solo. Em todos esses ambientes você encontra um exemplo diferente de mamífero. Este grupo de animais se diversificou de tal forma e foi tão moldado pelos ambientes que colonizaram, que é difícil considerar que um elefante, um morcego e um golfinho pertençam ao mesmo grupo e sejam parentes. Talvez, isso se deva ao fato de que a diversidade de formas dos mamíferos hoje é maior em relação aos outros grupos de tetrápodes viventes. Pense nas aves ou nos lagartos ou nos crocodilos, que apresentam, na atualidade, uma variedade bem menor de formas e tamanhos do que os mamíferos (no passado não foi assim, mas esta é outra história). Pensando em tudo isso, qual animal você escolheria para representar os mamíferos? Que mamífero vivo hoje você diria que se assemelha mais ao ancestral de todos os mamíferos, ao primeiro mamífero?

Temos certeza que sua imaginação te deu várias opções, mas, sem querer te decepcionar, a cara do primeiro mamífero seria mais parecida com a de um musaranho ou de uma cuíca (não, não estamos falando do instrumento! Estamos falando do marsupial… Colocamos uma foto abaixo pra ajudar). 

Filhote de cuíca (Didelphimorphia) – Foto dos autores.

O primeiro mamífero era um bicho pequeno, mais ou menos do tamanho de um pequeno gambá, correndo por entre as folhagens de uma floresta, durante uma noite quente do Jurássico (sim, a história dos mamíferos começa no Jurássico).

Atualmente, por consenso, o táxon apontado como o ‘primeiro mamífero’ é Morganucodon, um organismo fóssil encontrado nos EUA, Europa e China. Queremos chamar a atenção aqui para a expressão “atualmente apontado”, porque estes consensos taxonômicos podem mudar a luz de novos estudos, fósseis e evidências.

Reconstrução artísitica de Morganucodon. Seus fósseis são encontrados principalmente em Wales (Reino Unido) e na China, além de outras partes da Europa e América do Norte, em afloramentos Jurássicos. Imagem de FunkMonk (Michael B. H.).

O grupo chamado de ‘Mammalia’ (ou “mamíferos”, em bom português), é definido por um conjunto de características morfológicas compartilhadas por todos os seus membros. Colocando de forma mais simples: pra você ser um mamífero, você tem que ter, ou ter tido, um conjunto de características físicas apontadas como “coisa de mamíferos”. Mas tem um problema aqui. Vários organismos fósseis, muito próximos dos mamíferos já tinham algumas dessas “características típicas de mamíferos”. Isso é um pesadelo para muitos pesquisadores, que acabam por discutir e rediscutir definições…

A definição mais atual e com maior consenso, é a definição filogenética de mamífero, que englobaria Morganucodon e todas as espécies viventes de mamíferos (placentários, marsupiais e monotremados). Nessa definição, varias espécies de mamíferos extintos, que viveram durante a era Mesozoica, estão inclusas no grupo. Basicamente, isso significa que todos os animais que são agrupados numa árvore filogenética entre Morganucodon e os mamíferos atuais, são considerados mamíferos (calma, calma, a gente coloca uma figura, só olhar aí embaixo). Mas, essa definição também é bastante discutida, principalmente porque Morganucodon foi “eleito” como o primeiro mamífero, ou seja, essa é uma escolha arbitrária. Essa problemática de “eleger um primeiro” não é exclusiva dos mamíferos, esse é um conflito constante nos estudos sistemáticos e evolutivos, já que as formas biológicas formam um contínuo, quem tenta classificá-las em grupos artificiais somos nós.

No fim, cada novo achado acrescenta uma nova peça a esse quebra cabeça da evolução e as definições se atualizam com o tempo.

Filogenia simplificada dos cinodontes. Aqui estão apenas algumas poucas espécies da grande diversidade de cinodontes. Note que o grupo que Morganucodon é considerado o início do grupo dos mamíferos, portanto, todos que vierem depois deste grupo na árvore filogenética são considerados mamíferos. E um destaque para Brasilitherium, um fóssil brasileiro que é hoje tido como o fóssil mais relacionado ao grupo dos mamíferos. Modificado de Lautenschlager et al. 2016.

Quais são características presentes hoje nos mamíferos que definem o grupo como tal? Certamente você já ouviu que são as glândulas mamárias, os três ossículos do ouvido, entre outras. Mas para saber mais sobre elas, precisamos voltar no tempo. Mais precisamente, até os períodos Permiano e Triássico (entre cerca de 298 a 201 milhões de anos atrás), quando tais “características de mamífero” começam a ser observadas, gradualmente, em formas mais basais de animais aparentados dos mamíferos.

Durante a transição entre o Permiano e o Triássico, a Terra passou pelo seu maior evento de extinção, conhecido como a Extinção Permo-Triássica. Este evento foi bem maior do que a famosa extinção que dizimou os dinossauros. Essa tal Extinção Permo-Triássica foi tão grande, que causou um “reset” na fauna e na flora do planeta. Durante o final do Permiano (cerca de 255 milhões de anos atrás), os primeiros fósseis de criaturas conhecidas como cinodontes são registrados. Porém, é durante o Triássico que esses animais começam a brilhar no cenário biológico. Infelizmente, todos os holofotes acabam por se voltar para os dinossauros no final deste período, mas, o mundo dá voltas, como vocês verão.

Os cinodontes apresentavam uma grande diversidade de formas e tamanhos durante o Triássico e alguns já apresentavam algumas das tais “características mamalianas”. O curioso é que essas características não estavam presentes somente na linhagem que deu origem aos mamíferos. Alguns grupos de cinodontes completamente extintos, de uma linhagem paralela a nossa (mammaliana), também apresentavam algumas dessas características, que hoje, são consideradas como “coisa de mamífero”. Essa é a razão pela qual o debate sobre a origem dos mamíferos está sempre se modificando atualmente… Uma vez que vários grupos paralelos apresentam características mamalianas, é difícil associar com segurança, que determinado grupo de cinodontes deu origem aos mamíferos ou não. 

Voltando para o assunto “que cara teria o primeiro mamífero?”, você deve estar se perguntando agora “que cara teriam os cinodontes?”. Se você pensou no musaranho ali em cima… você não está de todo errado, porém se você prestou atenção neste texto, você já sacou que eles têm uma grande diversidade de formas, e pasmem, em termos fósseis, o Brasil é um dos países que apresentam a maior diversidade de cinodontes do mundo! Todos eles provenientes do Rio Grande do Sul, o local que apresenta as formações de idade triássica mais fossilíferas do país. O Brasil trouxe ao mundo, por exemplo, os Brasilodontideos, o atual grupo apontado como o clado de origem dos mamíferos. 

A Diversidade de Cinodontes Brasileiros

Antes de tudo, a gente precisa entender como são separados os cinodontes. Basicamente, existem dois grandes grupos dentro do grande grupo Cynodontia, os Cynognathia e os Probainognathia. Calma, a gente vai explicar um pouquinho de cada grupo abaixo: 

Cynognathia inclui organismos completamente extintos. Eles eram em sua maioria herbívoros/onívoros, com exceção de apenas uma espécie, que era carnívora. Eram bichos relativamente grandes, variando do tamanho de um cachorro pequeno até o maior de todos, que podia ter mais de 2 metros de comprimento e pesar cerca de 200kg. Neste grupo existem organismos que já apresentavam algumas características que podem ser interpretadas como “coisa de mamífero”, por exemplo, uma das principais características do grupo (e que pode ser comparável a mamíferos), é a enorme complexidade dos dentes pós-caninos. Os mamíferos possuem um padrão dentário altamente especializado, chamado de tribosfênico. Os Cynognathia, embora não tivessem padrão tribosfênico, possuíam especializações dentária até então não encontradas em outros grupos de Synapsidas. Além da grande especialização dos dentes, recentemente foi encontrado em um cinodonte Cynognathia, chamado de Menadon, com um padrão de dente hipsodonte, de crescimento contínuo, tipo os encontrado hoje em mamíferos como o cavalo e roedores (se você não sabia disso, aqui vai mais uma curiosidade, o dente do seu ratinho cresce pra sempre…por isso ele está sempre roendo algo. Não só ele, como vários outros animais). Essa ocorrência de dente hipsodonte no Menadon é única, e este é o único gênero além dos mamíferos com esse padrão de dente. O mais interessante, é que o grupo de Menadon foi completamente extinto, então a característica que era tida como exclusiva de mamíferos, já tinha aparecido na história dos cinodontes muito tempo antes! Infelizmente, toda a linhagem de Cynognathia foi extinta, então nunca teremos a oportunidade de ver um vivo e verificar como eles realmente seriam. 

Cynognathia, os fósseis desse grupo são muito abundantes na Argentina, como o Massetognathus pascuali, e no Brasil, onde encontramos várias espécies em abundância, como Menadon e Santacruzodon. Abaixo a reconstrução de duas espécies de Cynognathia em um típico ambiente do Triássico, com destaque pra aparência que já lembraria muito a de um mamífero atual. Imagens: Massetognathus (foto do autor) Menadon (Melo et al. 2019) e a reconstrução artística por Voltaire D. P. Neto.

O segundo grupo, Probainognathia, abrange uma variedade de formas gigantesca, já que Mammalia está inclusa neste grupo. Mas, levando apenas os fósseis em consideração, o grupo apresentava mesmo assim uma diversidade de tamanho e de hábitos enorme, variando de um bicho com o tamanho de um cachorro grande (como o Aleodon, que podia ter mais de 1,5 metros), até os Brasilodontídeos (que tinham o tamanho de um pequeno gambá, com cerca de 15cm). Os animais desse grupo são, em sua maioria, classificados como insetívoros ou seja, eles comiam insetos, porém, alguns pesquisadores apontam que eles poderiam ser oportunistas (onívoros, assim como os gambás atualmente), com alguns exclusivamente carnívoros, como o Trucidocynodon. Neste grupo estão incluídos os Brasilodontidae, atualmente tido como grupo irmão de mamíferos, mas que pode ter sido o grupo de cinodontes que deu origem a nós, os mamíferos. 

Probainognathia. Artes de Jorge Blanco (Martinelli et al. 2016; Guignard et al. 2019).

A parte mais fantástica disso tudo, é que muitos desses bichos faziam parte da fauna triássica do Brasil. Eles estão entre os achados fósseis do Rio Grande do Sul, onde é encontrada a maior diversidade de Cynognathia do mundo, além de alguns dos registros mais importantes de Probainognathia, como os já mencionados Brasilodontideos. Talvez, devido ao pequeno tamanho, os cinodontes acabem por perder espaço para os grandes dinossauros na mídia e também no imaginário das pessoas… Apesar disso, imaginar um “pequeno musaranho”, correndo de um dinossauro, numa noite quente do Triássico, está carregado de informações sobre como nós, os mamíferos, conseguimos nos tornar o que somos hoje. Enfim, agora você sabe como era “a cara dos primeiros mamíferos” e também como os fósseis do Brasil são importantes para contar essa história.

Referências

Forasiepi A, Martinelli A. Bestiario fósil: mamíferos del pleistoceno de la Argentina. Albatros; 2007.

Guignard ML, Martinelli AG, Soares MB. The postcranial anatomy of Brasilodon quadrangularis and the acquisition of mammaliaform traits among non-mammaliaform cynodonts. PloS one. 2019 May 10;14(5):e0216672.

Lautenschlager S, Gill PG, Luo ZX, Fagan MJ, Rayfield EJ. The role of miniaturization in the evolution of the mammalian jaw and middle ear. Nature. 2018 Sep;561(7724):533-7.

Martinelli AG, Soares MB, Schwanke C. Two new cynodonts (Therapsida) from the Middle-Early Late Triassic of Brazil and comments on South American probainognathians. PloS one. 2016 Oct 5;11(10):e0162945.

Melo TP, Ribeiro AM, Martinelli AG, Soares MB. Early evidence of molariform hypsodonty in a Triassic stem-mammal. Nature communications. 2019 Jun 28;10(1):1-8.

Hipóteses filogenéticas dos Amniotas e a importância dos fósseis na compreensão da evolução da vida

Olá caros leitores, depois de um breve período de pausa nas postagens, voltamos com grande estilo. Hoje apresento a vocês um interessante texto redigido pelo Mestrando em Zoologia do Museu Nacional/UFRJ Geovane Alves de Souza, O assunto abordado se refere as primeiras discussões históricas sobre as hipóteses filogenéticas dos Amniotas (grupo que tradicionalmente inclui os répteis, aves e mamíferos e suas formas relacionadas) e a importância dos fósseis para um melhor entendimento da evolução das espécies. Então,  sem mais delongas, vamos ao texto!
 
Editado em 19/08/2018.

Em plena Era da Filogenômica, na qual o DNA possui papel central na busca pela compreensão da evolução da vida na Terra, é comum pensarmos nos fósseis como uma fonte de dados um tanto quanto ultrapassada, trabalhosa e que demanda muito tempo para estudar. A diretora do Jurassic World, Claire Dearing (encenada pela atriz Bryce Dallas) enfatiza isso muito bem em sua fala: “Aprendemos mais com a genética em 10 anos do que em um século, escavando”. Hoje é consenso no meio acadêmico a importância dos vestígios da vida pretérita, os fósseis (para melhores detalhes acerca de sua definição veja aqui), quando inferimos relações de parentesco dos organismos viventes. Contudo, nem sempre os fósseis tiveram sua importância reconhecida e passando por momentos de glória e queda ao longo dos últimos séculos.


Após a publicação da obra A Origem das Espécies por Meio da Seleção Natural por Charles Darwin em 1859, no qual o autor defendia as teorias de Evolução Biológica, Seleção Natural e Ancestralidade Comum, os fósseis passaram a desempenhar um papel chave na compreensão de como a vida evoluiu. Contudo, foi na metade do século XX, que o registro fossilífero enfrentou uma queda brusca de sua supremacia. O responsável foi o advento de uma nova maneira de se estudar a evolução: a Sistemática Filogenética de Willi Hennig (1950). A nova metodologia e filosofia da sistemática nos seus primeiros anos de existência não exigia a necessidade de determinar uma dada espécie fóssil conhecida como ancestral entre duas linhagens. Podíamos estudar a evolução das espécies viventes, tratando o ancestral comum entre elas como uma espécie hipotética. Esse modo de vislumbrar as árvores filogenéticas (diagramas ramificados que representam a evolução de uma linhagem e que são gerados a partir de uma análise computacional ou análise filogenética), conhecido como Modelo Cladogenético, é antagônico ao antigo modelo vigente, o Anagenético. De fato, determinar em qual ponto exato da evolução de uma linhagem uma espécie fóssil esta inserida não é uma tarefa fácil, eu diria que um tanto quanto impossível, a menos que tenhamos uma máquina do tempo para voltarmos e acompanharmos o passo a passo da evolução de determinada linhagem ao longo dos milhares de anos. Muitas críticas contra o uso dos fósseis foram levantadas na época. O próprio Hennig reconhecia que os dados fósseis poderiam ser úteis na hora de conduzir uma análise filogenética. Contudo, devido à tamanha incompletude do registro fossilífero, ou seja, tanta informação biológica era perdida no processo de formação de um fóssil, que estes deveriam ser preferivelmente menos utilizados na hora de reconstruir as relações de parentesco.


Petterson (1981) mostrou, através de vários exemplos, o quanto os fósseis prejudicavam a compreensão sobre as hipóteses de evolução dos animais. Ax em 1987 defendeu em seu livro The Phylogenetic System que os dados fósseis são tão incompletos que as árvores deveriam ser construídas com base apenas nos grupos viventes e só depois que a análise computacional fosse feita é que se deveriam adicionar os fósseis. Dessa maneira e com muito sucesso, os críticos rapidamente conseguiram marginalizar o uso dos dados paleontológicos nos estudos da evolução das linhagens de organismos viventes.

A Hipótese Clássica da evolução dos Amniotas

Inúmeras árvores foram construídas ao longo dos anos seguintes, a maioria delas ignorando as informações provindas dos fósseis. O estudo que mais me chamou a atenção foi o trabalho clássico de Gardiner em 1982, no qual este autor tentou reconstruir a até então, pouco compreendida história evolutiva dos amniotas. Amniota é um grupo de animais vertebrados que possuem, dentre muitas características, uma membrana extraembrionária ao redor do feto chamada de amnion, membrana a qual é fundamental para a independência da água do ambiente durante o desenvolvimento do filhote no ovo, permitindo que estes animais colonizassem completamente o habitat terrestre. Estamos falando então da maioria esmagadora de vertebrados terrestres (e os que secundariamente retornaram ao ambiente aquático) que dominaram a Terra: desde as formas extintas famosas como dinossauros, pterossauros, ictiossauros, plesiossauros até as espécies contemporâneas de tartarugas, crocodil­os, lagartos, serpentes, aves e mamíferos.


Gardiner utilizou vários dados morfológicos dos cinco grupos de amniotas viventes em suas análises (tartarugas, lagartos, jacarés, mamíferos e aves). Gardiner observou que as aves e os mamíferos eram evolutivamente relacionados, sendo agrupados por uma série de características que eram adaptações às suas altas taxas metabólicas (metabolismo alto leva a uma temperatura corpórea alta, sendo estes animais equivocadamente chamados de animais de “sangue quente”).
Gardiner ressuscitou o antigo termo Haeomothermia para nomear o grupo de animais de “sangue quente” formado por aves e mamíferos (o termo vem de homeotermia, do grego homo: igual, thermia: temperatura; que é como chamamos os animais que possuem temperaturas corporais constantes). Haemothermia, por sua vez era relacionado evolutivamente com o Crocodylia (crocodilos, jacarés e gaviais) formando o grupo Thecodontia. Tartarugas, cágados e jabutis (Chelonia) eram mais aparentados com Thecodontia (Crocodylia+(Aves+Mammalia)). Por fim, o grupo mais basal de Amniota era Lepidosauria, o qual abrange tuataras, serpentes e lagartos (Figura 1).

Esta imagem possuí um atributo alt vazio; O nome do arquivo é Fig.1.-Árvore-Gardiner-recent.jpg
Fig. 1. Relações entre as cinco assembleias de amniotas viventes defendida por Gardiner (1982; ver também Lovtrup, 1985) modificado de Gauthier e colaboradores (1988)

 
O trabalho experimental de Gauthier


Os resultados de Gardiner se baseam exclusivamente em animais viventes, conforme já foi dito e ecoaram por quase uma década. Lovtrup (1985) publicou um trabalho no qual afirmou ter encontrado maior suporte à hipótese de Gardiner. Até que, em 1988, um célebre manuscrito chegou para revolucionar a visão que a comunidade científica da época tinha sobre os dados paleontológicos. Gauthier e seus colegas (1988), baseados na hipótese de filogenia dos amniotas proposto por Gardiner, publicaram o primeiro estudo demonstrando empiricamente (ou seja, através de experimentos práticos e não calcados apenas em conjecturas) que os fósseis poderiam contribuir e muito na elucidação das hipóteses de parentesco dos seres vivos atuais. Para isso, eles conduziram uma nova análise, só que dessa vez incluindo espécies extintas, obtendo uma árvore marcadamente diferente e depois a submeteram a alguns testes para confirmar sua validade. Para entendermos como os autores chegaram a suas conclusões precisamos compreender os experimentos que a equipe realizou. Gauthier partiu de uma pergunta: os Fósseis poderiam alterar as nossas hipóteses de parentesco entre as biotas recentes? Para responder isso, ele conduziu um estudo em três etapas.


(1) Primeiramente, antes de rodar uma nova análise incluindo os fósseis, os pesquisadores destrincharam e reviram todas as características utilizadas por Gardiner e perceberam que havia alguns equívocos e erros na interpretação dos caracteres. Gardiner afirmara, por exemplo, que um coração dividido em quatro câmaras é homólogo (mesma origem; para melhor entendimento desta terminologia veja aqui) em crocodilos, aves e mamíferos, o que reforçava a relação de parentesco entre eles. Contudo, quando acompanhamos o desenvolvimento embrionário do septo interventricular destes animais, vemos que nos mamíferos ele se desenvolve a partir de uma crista de tecido endocárdico na parede de trás do ventrículo, enquanto que nas aves e nos crocodilos o septo surge de varias protuberâncias musculares pouco recobertas por endocárdio na lateral do ventrículo. Apesar de serem estruturas semelhantes nos adultos, elas não possuem a mesma origem no embrião, ou seja, não são homólogas. Logo, os equívocos nas interpretações de Gardiner o levaram a estabelecer homologias entre mamíferos e aves que não condiziam com a realidade.


(2) Depois de corrigir a lista de características, Gauthier rodou duas análises, uma contendo apenas os dados morfológicos dos cinco grupos viventes de Gardiner e outra incorporando 29 espécies de amniotas extintos. Foi então que uma nova hipótese começou a tomar forma.


A análise com dados dos animais viventes


A árvore filogenética obtida utilizando apenas os cinco grupos de amniotas viventes se assemelhou à hipótese clássica de Gardiner de 1982, com apenas uma pequena diferença: os crocodilos e não os mamíferos eram mais relacionados com as aves, trazendo dúvidas quanto a validade do antigo grupo Haemothermia (Ver figura 2). Isso implica em inferências importantíssimas para nossa compreensão da evolução da homeotermia. Primeiro, que um jacaré é o parente mais próximo das aves do que qualquer outro animal vivo hoje. Além disso, muitas características que antes eram vistas como homólogas entre aves e mamíferos e que estariam presentes no suposto ancestral comum destas duas linhagens, na verdade surgiram duas vezes independentemente na árvore da vida dos vertebrados. Talvez em resposta provavelmente as mesmas pressões evolutivas.

Esta imagem possuí um atributo alt vazio; O nome do arquivo é Fig.-2.-Arvore-Gatuhier-recent.jpg
Fig. 2. Árvore obtida da análise de Gauthier (1988) apenas com amniotas viventes. Note que ela se assemelha à árvore anterior de Gardiner (1982), contudo as aves estão mais relacionadas com crocodilos do que com os mamíferos.

 
A análise com dados combinados (animais viventes + extintos)


Na segunda análise na qual Gauthier acrescentou os fósseis, uma árvore completamente diferente surgiu (ver figura 3). Não só aves e crocodilos estavam agrupados juntos, mas lagartos e serpentes (Lepidosauria) agora estavam mais relacionados a Aves + Crocodylia do que as tartarugas. O mais estranho foi que os mamíferos agora estavam na base da árvore, formando uma grande dicotomia inicial: Mamíferos e todos seus parentes extintos de um lado versus lepidossauros, quêlonios, crocodilos, aves e todos seus parentes extintos relacionados do outro. Ao primeiro grupo, chamamos de Synapsida (amniotas que apresentam uma fenestra temporal no crânio) e ao segundo, Reptillia (que compreende tanto amniotas que possuem duas ou nenhuma fenestra temporal, Diapisida e Anapsida, respectivamente). Contudo, não bastava obter uma árvore completamente diferente, ela precisava ser mais bem justificada.

Esta imagem possuí um atributo alt vazio; O nome do arquivo é Fig.-3.-Árvore-Gauthier-fossilrecent.jpg
Fig. 3. Árvore obtidida por Gauthier (1988) combinando tanto espécies fósseis quanto viventes. Note que há uma dicotomia basal, separando mamíferos e seus parentes extintos (Synapsida) de um lado versus todos os répteis atuais + Aves (Reptilia) do outro.

 
Análises posteriores – Esmiuçando a nova hipótese obtida


Na última etapa do estudo (3), uma série de experimentos computacionais foram conduzidos por Gauthier, alguns serão explicados mais adiante e que culminaram em um achado esperançoso, principalmente para nós paleontólogos: Fósseis são fundamentais para elaboração das hipóteses de relação entre as espécies viventes.
Gauthier e seus colegas queriam saber o porquê que as árvores diferiram tanto nas análises com e sem os fósseis. Para isso, eles fizeram algumas análises posteriores, contudo só irei detalhar três delas neste texto que acredito serem mais interessantes para nossa discussão. Primeiro, os autores compararam o índice de consistência de sua nova árvore com o índice da árvore de Gardiner. Este índice mostra o quão robusto e conciso estão seus resultados, no caso, sua hipótese de evolução de uma linhagem. O interessante foi que mesmo adicionando várias espécies fósseis na sua análise, Gauthier encontrou um valor de índice de consistência semelhante ao de Gardiner, mostrando que mesmo os fósseis alterando drasticamente a hipótese, a árvore continuava tão confiável quanto uma utilizando apenas espécies viventes.


Numa análise posterior, Gauthier e colaboradores removeram todos os grupos fósseis do lado “sinapsídeo” da árvore, deixando apenas os animais viventes desse ramo (mamíferos) junto com todos do lado “Reptillia” (viventes e extintos) e rodaram a análise. Paralelamente, foi feito o oposto, todas as linhagens extintas de Reptillia foram retiradas deixando apenas seus representantes viventes e o lado “sinapsídeo” da árvore (viventes e extintos) e rodaram a análise. Os autores viram que não importava qual fóssil de Reptillia fosse retirado, a árvore final não se alterava. Porém,  quando os fósseis de sinapsídeos eram retirados, a árvore adquiria o novo padrão proposto por Gardiner (1982; Figura 3).

Gauthier então percebeu que os principais responsáveis pela nova topologia da árvore eram os fósseis de sinapsídeos. Mas por que isso?
De acordo com os autores, quanto mais antiga é a origem de uma linhagem e quanto mais derivada for a morfologia de seus representantes atuais (como é o caso dos mamíferos), mais os fósseis serão importantes para elucidar sua evolução. Basta compararmos os mamíferos atuais com seus parentes extintos, os “pelicossauros” como Casea, Ophiacodon, Edaphosaurus, Sphenacodon (figura 4) para ver o “abismo morfológico” que separam essas linhagens. Quando observamos os mamíferos atuais, dificilmente conseguimos relaciona-los com outro grupo de animal vivente e quando tentamos, certamente estaremos fadados ao erro, assim como Gardiner, em 1982 equivocadamente agrupou Aves e Mammalia no antigo grupo Haeomothermia. Porém, quando olhamos para os fósseis vislumbramos um mundo completamente “novo”. As formas extintas possuem combinações únicas de características basais e derivadas que frequentemente se apresentam numa serie gradual de mudanças, que nos permitem acompanhar suas histórias evolutivas de maneira tal que possamos observar espécies diferentes ficando cada vez mais semelhantes conforme voltamos no tempo. Os fósseis são uma das poucas evidências diretas da evolução e é por isso, que os dados paleontológicos se tornam tão fundamentais para elucidar as relações evolutivas dos grupos viventes. Principalmente, quando o objeto de estudo são animais tão diferentes como seu cachorro e um pardal na janela de casa.


Outro experimento que a equipe de Gauthier conduziu consistiu basicamente em retirar todas as linhagens viventes da matriz de características e fazer uma nova análise. Apesar de ser um experimento simples, o resultado obtido foi revelador: a nova hipótese representada na figura 3 veio à tona novamente, porém sem os animais viventes. Este resultado, associado à análise inicial das características utilizadas no trabalho de Gardiner (1982), derruba os argumentos dos críticos a respeito da incompletude do registro fóssil. De fato a informação que provem dos fosseis é mais incompleta do que as que podemos retirar dos animais viventes, mas mesmo assim os fósseis estão longe de serem menos informativos em uma análise filogenética. Gauthier demonstrou isso quando retirou todas as espécies viventes da análise e mesmo assim alcançou a nova hipótese. Além disso, Gauthier enfatizou que incompletude não é exclusiva de fósseis. Ela pode ocorrer naturalmente nos animais. Quatro das características utilizadas na análise de Gardiner eram do osso quadrado, um osso na base do crânio dos vertebrados no qual se articula a mandíbula. Contudo, nos sinapsídeos mais derivados, os cinodontes (o qual mamíferos fazem parte), esse osso foi gradativamente sendo reduzido e alocado cada vez mais para trás do crânio junto com uma série de ossos da mandíbula. Esta condição alcançou o extremo nos mamíferos, onde o osso quadrado e um grupo de ossos que uma vez pertenceram à mandíbula, se reduziram e modificaram sua função ao ponto de formarem o que hoje são nossos ossículos do ouvido médio (o quadrado dos outros vertebrados é a bigorna nos mamíferos). Logo, aquelas quatro características baseadas na morfologia do osso quadrado, não se aplicam aos mamíferos, pois o quadrado deles se alterou tanto que fica difícil comparar com os outros animais, ou seja, este é um dado naturalmente faltante. Além disso, Gauthier percebeu que Casea (o fóssil mais basal e antigo de sinapsídeo e que consequentemente esperávamos maior incompletude) apresentava 26% de informação faltando, enquanto que os mamíferos atuais tinham em média 15% de dados morfológicos faltando ou difíceis de interpretar. Esses 11% de diferenças são realmente significantes? Gauthier não só provou que não há diferença significante como também nos mostrou que informação incompleta não é exclusiva dos fósseis.

Fig. 4. Outra árvore filogenética, dessa vez apenas com sinapsídeos. Note a variedade de formas desde as mais basais, como Casesauria (um “Pelicossauro”), até os parentes mais próximos dos mamíferos, um cinodonte não-mamífero.
Fig. 4. Outra árvore filogenética, dessa vez apenas com sinapsídeos. Note a variedade de formas desde as mais basais, como Casesauria (um “Pelicossauro”), até os parentes mais próximos dos mamíferos, um cinodonte não-mamífero.


A Renascença dos fósseis


Após demonstrar empiricamente quão importante os fósseis são para nossa compreensão da evolução das linhagens viventes, Gauthier deu um solavanco nos sistematas, convidando-os a se debruçarem no assunto. Desde então, estudos importantes vêm sendo conduzidos, cada vez mais enaltecendo o uso de dados paleontológicos em reconstruções filogenéticas e desenvolvendo metodologias para minimizar o efeito da incompletude dos dados de organismos tanto viventes quanto extintos, o famigerado missing data que os cladistas tanto abominam (veja Donoghue et al., 1989; Smith, 1998; Wilkinson; Benton, 1995).
Exemplos como estes de Gardiner e Gauthier nos mostram como a Ciência é dinâmica. O que antes era tido como verdade e que hoje é obsoleto, não necessariamente deixa de ser útil. Se Gardiner não tivesse se aventurado nas relações de Amniota, Gauthier e toda uma geração de sistematas não seriam impulsionadas a refletir sobre o assunto e talvez o reconhecimento da importância dos fósseis na reconstrução da evolução da vida na Terra poderia ser ainda mais postergada. Por fim, quando ignoramos as informações contidas no registro fóssil, estamos ferindo o princípio da Evidência Total (um tema que será abordado em postagens futuras do blog). Este princípio pode ser exemplificado com uma ótima analogia que um estimado amigo uma vez me fez: não usar os dados paleontológicos para inferir filogenia é como ter um bebê de colo e joga-lo pela janela só porque ele não é um adulto.


Referências:


AX, Peter. 1987. The phylogenetic system: the systematization of organisms on the basis of their phylogenesis.
DARWIN, C. A Origem das Espécies. Hemus – Livraria Editora Ltda, São Paulo, SP.


DONOGHUE, Michael J. 1989. Phylogenies and the analysis of evolutionary sequences, with examples from seed plants. Evolution, v. 43, n. 6, p. 1137-1156.


GARDINER, BRIAN G. 1982. Tetrapod classification. Zoological Journal of the Linnean Society, v. 74, n. 3, p. 207-232.


GAUTHIER, Jacques; KLUGE, Arnold G.; ROWE, Timothy. 1988. Amniote phylogeny and the importance of fossils. Cladistics, v. 4, n. 2, p. 105-209.
HENNIG, Willi. 1950. Grundzuge einer Theorie der phylogenetischen Systematik.


LOVTRUP, Soren. 1985. On the classification of the taxon Tetrapoda. Systematic Zoology, v. 34, n. 4, p. 463-470.


PATTERSON, Colin. 1981. Significance of fossils in determining evolutionary relationships. Annual Review of Ecology and Systematics, v. 12, n. 1, p. 195-223.


SMITH, Andrew B. 1998. What does palaeontology contribute to systematics in a molecular world?. Molecular phylogenetics and evolution, v. 9, n. 3, p. 437-447.


WILKINSON, Mark; BENTON, Michael J. 1995. Missing data and rhynchosaur phylogeny. Historical Biology, v. 10, n. 2, p. 137-150.

WhatsApp Image 2018-01-04 at 18.22.30

Geovane Alves de Souza, Graduado em licenciatura e bacharelado em Ciências Biológicas pela Universidade Estadual de Londrina. Atualmente é mestrando em Zoologia pelo Museu Nacional/UFRJ. Já desenvolveu pesquisas na área de parasitologia de animais silvestres, hoje conduz estudos de osteohistologia com titanossauros.


Cabeça de predador: dinossauro brasileiro ajuda a compreender a evolução do grupo

Novo estudo, liderado por pesquisador brasileiro e publicado hoje na revista científica ‘Scientific Reports‘ (UK), investigou o cérebro de um dos mais antigos dinossauros do mundo e revelou detalhes importantes sobre o comportamento desses animais. O dinossauro estudado foi Saturnalia tupiniquim, uma espécie brasileira, descoberta no Rio Grande do Sul, e proveniente de unidade geológica de relevância internacional, que tem fornecido peças chaves na compreensão da evolução dos primeiros dinossauros.

Captura de Tela 2017-09-19 às 21.00.50

Captura de Tela 2017-09-19 às 23.21.24
Reconstituição de Saturnalia tupiniquim, arte de Rodolfo Nogueira.

O estudo foi liderado pelo aluno de doutorado Mario Bronzati Filho, do Programa Ciência sem Fronteiras (CNPq), e contou ainda com a participação do pesquisador alemão Dr. Oliver W. M. Rauhut (Ludwig-Maximilians-Universität), supervisor do estudante na Alemanha, e também com professores de duas universidades brasileiras, Dr. Jonathas S. Bittencourt (UFMG) e Dr. Max C. Langer (FFCLRP-USP).

Os pesquisadores usaram microtomografia computadorizada para reconstruir o cérebro de Saturnalia e, assim, puderam entender em maior detalhe a sua estrutura. Com base nisso, foi possível realizar inferências sobre o comportamento desses animais. Esta foi a primeira vez que partes do cérebro de um dinossauro tão antigo foram reconstruídas. Os fósseis de Saturnalia foram encontrados em rochas de 230 milhões de anos da chamada Formação Caturrita, unidade geológica da Bacia Sedimentar do Paraná, que afloram no estado do Rio Grande do Sul.

SONY DSC
Afloramento rochoso da Formação Caturrita onde foram encontrados os fósseis de Saturnalia Tupiniquim.

Saturnalia tupiniquim foi um dinossauro de pequeno porte, com cerca de 1,5 m de comprimento e que pesava aproximadamente 10 kg. Seus fósseis foram encontrados há cerca de 20 anos, na área urbana de Santa Maria, RS. Muitos detalhes da anatomia do seu esqueleto pós-craniano (isto é, dos membros, coluna vertebral e cinturas escapular e pélvica) já eram conhecidos, mas essa foi a primeira vez que partes internas de seu crânio foram estudadas.

16877941
Reconstituição artística de Saturnalia tupiniquim, arte de Rodolfo Nogueira (http://rodolfonogueira.daportfolio.com).

SATURNALIA TUPINIQUIM escala
Reconstrução esqueletal e escala de tamanho de Saturnalia tupiniquim. Arte de Felipe A. Elias.

Saturnalia pertence ao grupo de dinossauros conhecido como ‘Sauropodomorpha’, uma linhagem de espécies essencialmente herbívoras, que inclui os famosos saurópodes, dinos de pescoço comprido, que estão entre alguns dos maiores animais que já caminharam sobre o planeta Terra, como os titanossauros, o apatossauro e o braquiossauro. A linhagem Sauropodomorpha viveu na Terra por cerca de 170 milhões de anos e os últimos representantes desse grupo foram extintos há cerca de 66 milhões, durante o evento de extinção em massa do final do Cretáceo, que extinguiu todos os dinossauros não-avianos (as Aves, que são dinossauros, continuam muito bem, obrigada).

flat,800x800,070,f.u1 (1)
Sauropodomorpha, arte de Franz Anthony.

Saturnalia é um dos mais antigos Sauropodomorpha conhecidos (no que diz respeito à tamanho, essa foi uma origem bastante humilde para um grupo de gigantes, não?). O resultado curioso do estudo de Bronzati e colegas é que, com base em análises comparativas, o cérebro de Saturnalia revela que ele – literalmente – tinha “a cabeça de um predador”. Isso é extremamente relevante do ponto de vista ecológico e evolutivo. A linhagem dos Sauropodomopha é conhecida pela evolução de formas muito bem adaptadas à herbivoria, porém o estudo com Saturnalia revela que a origem desse grupo de dinossauros estava longe de ser “vegana”…

A dieta de um dinossauro é geralmente inferida com base na morfologia dos dentes e de outras partes de seu esqueleto. Entretanto, a morfologia do cérebro também pode fornecer informações valiosas para o estudo do comportamento de animais extintos. Diferentemente dos gigantes saurópodes, que tinham uma dieta baseada somente em plantas, a dentição dos primeiros sauropodomorfos (incluindo Saturnalia tupiniquim) indica que esses animais tinham uma dieta onívora (baseada em plantas e outros animais) ou faunívora (baseada somente em outros animais). Agora, a nova pesquisa traz evidências adicionais de que os sauropodomorfos mais antigos eram animais predadores.

Captura de Tela 2017-09-19 às 23.21.53
A observação exclusiva dos dentes de Saturnalia não era muito conclusiva sobre a sua dieta. O novo estudo traz informações melhor embasadas. Frame do vídeo de divulgação do artigo, arte de Rodolfo Nogueira.

De acordo com a avaliação dos paleontólogos responsáveis pelo estudo, Saturnalia apresentava um grande volume do “flóculo e o paraflóculo do cerebelo”. Esqueça os nomes complicados… Estes tecidos fazem parte de sistemas neurológicos que operam no controle do movimento de cabeça e do pescoço do animal, e também no controle da visão. O grande volume destas estruturas indica um comportamento em que movimentos rápidos de pescoço e cabeça deveriam ser parte do repertório desse animal. Isso é observado, normalmente, em predadores, que usam essas habilidades para capturar presas pequenas e esquivas. Apesar do alongamento do pescoço e a redução do crânio representarem marcas registradas do plano corpóreo Sauropodomorpha mais derivados (i.e. os saurópodes), os primeiros passos na aquisição dessa morfologia única parecem ter surgido como adaptações para predação, um cenário evolutivo conhecido como exaptação, explicam os autores.

Exaptação é um processo em que uma característica surge com uma certa função, mas passa a ter outra função em um momento distinto da história evolutiva de uma linhagem.

Os saurópodes, herbívoros, não possuíam grandes volumes dos tecidos do cérebro ligados ao controle refinado do movimento da cabeça, pescoço e visão. Isto indica que a evolução da herbivoria nessa linhagem também se deu com mudanças na estrutura dos cérebros desses animais.

O estudo do comportamento de animais extintos é muito difícil e muitas vezes depende da observação de evidências indiretas, como os icnofósseis. Estudos de reconstruções digitais do cérebro são uma forma de se obter tal tipo de informação, mas eles sempre devem ser interpretados com cautela. Não obstante, o novo estudo é um importante primeiro passo na busca por uma melhor compreensão do comportamento dos primeiros dinossauros. Por fim, estudos futuros certamente trarão mais informações para entender em mais detalhes a evolução da linhagem dos sauropodomorfos, que começou com pequenos animais predadores e posteriormente deu origem aos gigantes herbívoros do passado.

Captura de Tela 2017-09-19 às 23.21.11
Reconstituição em vida de Saturnalia tupiniquim. Arte de Rodolfo Nogueira.

Veja o vídeo de divulgação do artigo:

Veja algumas informações exclusivas no bate-papo que tivemos com o Mario Bronzati, autor principal do estudo, em nosso canal (clique na imagem para ser redirecionado para o YouTube):

Captura de Tela 2017-09-20 às 12.34.05Agradecemos ao colega Mário Bronzati por ter compartilhado as informações desse maravilhoso estudo conosco antecipadamente. Ademais, não deixem de se inscrever em nosso canal (http://www.youtube.com.br/colecionadoresdeossos)!

Bronzati-Filho et al. 2017. Endocast of the Late Triassic (Carnian) dinosaur Saturnalia tupiniquim: implications for the evolution of brain tissue in Sauropodomorpha. Scientific Reports.

Município de Coração de Jesus, uma experiência além do tempo

Olá a todos! Seguindo a vertente de postagens relacionadas à divulgação científica e sua importância, temos aqui outra narrativa acerca da divulgação da descoberta do Tapuiasaurus macedoi em sua cidade natal, o município de Coração de Jesus! Este texto, redigido pelo Me. Natan Santos Brilhante, traz uma perspectiva complementar à postagem prévia sobre o assunto (veja aqui). Espero que gostem!


Sob a mira de olhares curiosos e intrigados, forasteiros em um veículo branco com logotipo (representado pela silhueta de um Tamanduá-bandeira) de uma instituição pública conduziram diversas expedições de coleta de fósseis no norte do estado de Minas Gerais. Os trabalhos na região duraram vários anos, mais precisamente de 2005 até 2012. Entretanto, na perspectiva dos habitantes, quais seriam os motivos que trariam por tanto tempo pesquisadores do Museu de Zoologia da Universidade de São Paulo (MZUSP)1 para uma cidade modesta e longínqua?

01 - Natan
Veículo oficial do MZUSP no afloramento. Fonte: Natan Santos Brilhante

Logo MZUSP Atualizado
Logo em evidência, o mesmo visto na porta dianteira do veículo oficial do MZUSP. Fonte: Arquivo Laboratório de Paleontologia-MZUSP

Talvez o município de Coração de Jesus seja considerado simples em comparação com as grandes metrópoles brasileiras. Contudo, é uma cidade extremamente rica em cultura, hospitalidade e vivacidade. Em meio a toda a sua diversidade, nunca faltaram pessoas com disposição e prontidão em ajudar, seja para desatolar o veículo quando este enfrentou chuvas torrenciais nas estradas de barro do município, ou para servir com capricho uma boa refeição para toda a equipe depois de um dia exaustivo de trabalho.
 
Outras situações inusitadas fazem parte das boas lembranças, e ocupam as páginas do diário de campo, como o deslocamento de um bloco de grandes dimensões e peso, localizado em área de difícil acesso. Esse material só pôde ser transportado para o alto do barranco graças ao auxílio de um “carro de boi” , gentilmente disponibilizado por José Adão Pereira de Souza, o “Zezinho”, responsável pela descoberta dos primeiros ossos fossilizados expostos na região por ação do intemperismo*.
03 - Natan
“Carro de boi”, comumente usado para auxiliar em atividades de zonas rurais. Fonte: Natan Santos Brilhante

04 - Natan
Moradores do município de Coração de Jesus ajudando a equipe de pesquisa do MZUSP a transportar os materiais. Fonte: Natan Santos Brilhante

05 - Natan
Fragmentos de ossos fossilizados (esbranquiçados) aflorando em meio aos sedimentos por ação do intemperismo. Fonte: Natan Santos Brilhante

E o que falar da amizade do Sr. Israel Cruz e da Sra. Marylene Ferreira que abriram as porteiras da Fazenda Santa Tereza para os pesquisadores trabalharem e que, no entardecer, os acolhia com tanto carinho em sua casa para oferecer um bolo caseiro acompanhado de suco de coquinho azedo***. Vale lembrar ainda do Sr. Amilcar, que nos recebeu em sua residência semelhante a uma “casa de taipa”, a alguns quilômetros dos afloramentos. Sua atitude cordial possibilitou o abastecimento de água para as etapas de coleta, resguardando o uso de recurso potável destinado ao nosso consumo e, consequentemente, evitando a nossa desidratação diante do sol forte e de temperaturas com médias diárias acima dos 40 graus (na sombra). Curiosamente, ele sempre lembrava com precisão o nome de integrantes da equipe que por lá passaram há anos (memória invejável para qualquer taxonomista, não?!).
06 - MZUSP
Um dos pontos de coleta de fósseis nos domínios da Fazenda Santa Tereza. Fonte: Arquivo Laboratório de Paleontologia-MZUSP

Estes foram apenas alguns dos eventos e personagens que fizeram parte das muitas histórias de bastidores que ocorreram durante os trabalhos de campo.
Tal empenho e esforço renderam frutos, ou melhor… fósseis, de dinossauros saurópodes e terópodes, que foram (e continuam sendo) dedicadamente estudados por pesquisadores nacionais e internacionais. Entre as descobertas mais emblemáticas está a espécie Tapuiasaurus macedoi, a partir de um exemplar que detém o mais bem preservado crânio de titanossauro da América do Sul. Essa descoberta recebeu destaque na comunidade científica e na mídia por meio da publicação de um artigo na PLoS ONE4 em 2011 e, mais recentemente, na Zoological Journal of the Linnean Society5 em 2016.
07 - MZUSP
Coleta de fósseis de dinossauros nos arredores do município de Coração de Jesus. Fonte: Arquivo Laboratório de Paleontologia-MZUSP

08 - MZUSP
Equipe de pesquisa do MZUSP protegendo e preparando a retirada dos fósseis no afloramento para serem transportados. Fonte: Arquivo Laboratório de Paleontologia-MZUSP

09 - MZUSP
Crânio do espécime MZSP-PV 807 (Tapuiasaurus macedoi). A barra de escala representa 10 cm. Fonte: Arquivo Laboratório de Paleontologia-MZUSP

Infelizmente, nem sempre cabem agradecimentos em uma revista científica a cada pessoa que, direta ou indiretamente, colaborou com o desenvolvimento da pesquisa. Eventualmente, estas serão retratadas em outros meios de comunicação, como internet, jornais e rádio. Outra questão recorrente é a falta de acesso e de linguagem adequada a este tipo de conteúdo por público o qual a vida acadêmica não faz parte da sua realidade.
Então, como retribuir o apoio tão caloroso? Como mostrar à população a importância e a seriedade do que está sendo realizado nos arredores da sua cidade? Ou o porquê de estar sendo realizado. Como resposta, cito a seguir alguns dos trabalhos promovidos por alunos, funcionários e professores do Museu de Zoologia da Universidade de São Paulo, em parceria com o Museu de Ciências da USP – Pró-Reitoria de Cultura e Extensão Universitária2 e o Instituto Butantan3.
As atividades contaram também com o apoio da Prefeitura local e ocorreram a partir de duas frentes principais:
(1) Montagem da exposição itinerante “Cabeça Dinossauro: o novo titã brasileiro”
Abordou temáticas como Paleontologia, Evolução e Dinâmica da Terra, e foi uma remontagem (e recontextualização) de uma exposição com o mesmo título, montada para o Museu de Zoologia da USP, em 2011.
A exposição permaneceu aberta de terça-feira a domingo, durante todo o dia, entre os meses de maio e agosto de 2012. Adentro, o público pôde contemplar fósseis originais e réplicas de diferentes regiões e contextos geológicos, assim como dioramas, vídeos informativos e “paleoarte”. Entre os vídeos, destaca-se um feito com os depoimentos de algumas pessoas da cidade, sobre suas impressões ou sua participação na descoberta dos fósseis.
10 - MZUSP
Vista geral da exposição “Cabeça Dinossauro: o novo titã brasileiro”, em sua primeira montagem itinerante. Fonte: Arquivo Laboratório de Paleontologia-MZUSP

11 - MZUSP
Painel com informes e material a respeito do vasto universo da Paleontologia. Fonte: Arquivo Laboratório de Paleontologia-MZUSP

Após poucos dias de abertura, a exposição já havia recebido milhares de visitantes, alcançando não apenas os Corjesuenses, mas também cidadãos de municípios próximos e de outros estados . Para se ter ideia em números, a exposição foi visitada por mais de 9 mil pessoas, em uma cidade de pouco mais de 20 mil habitantes!
12 - MZUSP
Dia de visita. Interação entre o público e a exposição. Fonte: Arquivo Laboratório de Paleontologia-MZUSP

Acreditamos que este tipo de realização estimule uma prática de grande importância para a região: o turismo. Afinal, a rotatividade intensa de pessoas pode ser uma importante fonte para a economia regional, uma vez que a cidade está distante de grandes centros urbanos e o comércio se restringe basicamente aos seus próprios habitantes.
(2) Projeto de extensão “Paleontologia sob a perspectiva da Educação Patrimonial: aproximando os fósseis da população de Coração de Jesus”
Foi de caráter educativo e teve o intuito de permitir o reconhecimento do patrimônio fossilífero da região, assim como apresentar questões científicas relacionadas à Paleontologia, relevância desta ciência para o mundo e valor do Patrimônio Geopaleontológico. Foram efetivadas as seguintes atividades:
I. Curso de Formação Continuada de Professores – visou um melhor entendimento do patrimônio fossilífero regional e do conteúdo da exposição itinerante por parte de professores, de modo que eles pudessem promover visitas direcionadas com seus alunos, utilizando ferramentas da Educação Patrimonial e o conhecimento obtido a partir de estudos regionais. Esse evento ocorreu em março de 2012, teve duração de uma semana (40 horas) e contou com a participação de 118 professores e funcionários de escolas públicas estaduais e municipais, tanto de áreas urbanas quanto rurais, divididos em duas turmas.
13 - MZUSP
Curso sendo ministrado para a formação continuada de professores. Fonte: Arquivo Laboratório de Paleontologia-MZUSP

II. Oficinas nas escolas – promoveu monitorias e oficinas para desenvolver dobraduras e desenhos relacionados à Paleontologia, assim como o contato com fósseis e réplicas. Essa etapa incluiu também a iniciativa “Converse com um Paleontólogo”, promovendo o diálogo direto entre alunos das escolas e profissionais e estudantes de pós-graduação em Paleontologia para discutir e esclarecer dúvidas a respeito da atuação do paleontólogo e a relevância da sua área de estudo. Participaram mais de 600 alunos de 10 escolas públicas (urbanas e rurais), em maio de 2012.
14 - MZUSP
Colaboradores do Laboratório de Paleontologia do MZUSP em diálogo aberto com alunos de escolas públicas. Fonte: Arquivo Laboratório de Paleontologia-MZUSP

III. Formação de Monitores – prestou treinamento técnico para o atendimento ao público na exposição citada acima, de maio a julho de 2012. Os mediadores eram alunos do Ensino Médio, selecionados a partir de uma parceira junto às escolas. O curso abordou conceitos relacionados à Museologia, Paleontologia e Patrimônio Geopaleontológico, totalizando 24 horas.
15 - MZUSP
Monitores atendendo o público na exposição “Cabeça Dinossauro: o novo titã brasileiro”. Fonte: Arquivo Laboratório de Paleontologia-MZUSP

IV. Curso de Extensão Universitária – foi ministrado para 16 graduandos em agosto de 2012. Para transmitir ideias gerais sobre o que é a Paleontologia, a sua importância, e o quão promissoras são as descobertas regionais.
Foram desenvolvidos também diversos materiais didáticos para complementar, ilustrar e relembrar muitas das informações transmitidas em sala de aula pelos colaboradores do projeto educativo, como o livreto “Cabeça DINOSSAURO – o novo titã brasileiro”.
16 - MZUSP
Material educativo. Fonte: Arquivo Laboratório de Paleontologia-MZUSP

Além dessas práticas, foram também doadas réplicas do “tapuiassauro” para o Centro Cultural José Alves Macedo, um núcleo histórico-cultural sediado na praça central da cidade. Essa instituição foi fundada e é administrada por Ubirajara Alves Macedo, personagem folclórico e um tanto excêntrico da região, que foi homenageado pela sua colaboração na descoberta e na divulgação inicial dos fósseis com o sobrenome da sua família posto no epíteto específico da espécie supracitada (Tapuiasaurus macedoi).
17 - Natan
A praça central da cidade pode ser facilmente reconhecida pela presença de uma icônica estátua, Sagrado Coração de Jesus, que remete ao nome herdado pelo município. Fonte: Natan Santos Brilhante

Por meio dessas ações de ensino e divulgação, foi possível mostrar à população da cidade de Coração de Jesus a importância dos trabalhos paleontológicos, conscientizando e educando os moradores em como proceder diante de novas descobertas, valorizando assim os ideais de preservação e valorização do patrimônio geopaleontológico. Esperamos com isso resgatar não somente o patrimônio fossilífero, mas também, com empenho, incentivar as futuras gerações de paleontólogos(as) e demais entusiastas da ciência.
18 - MZUSP
Monitores transmitindo conhecimento aos visitantes da exposição “Cabeça Dinossauro: o novo titã brasileiro”. Fonte: Arquivo Laboratório de Paleontologia-MZUSP

19 - MZUSP
Alunos de escolas públicas do município de Coração de Jesus durante uma visita à exposição “Cabeça Dinossauro: o novo titã brasileiro”. Nota-se a curiosidade e o entusiasmo em suas expressões faciais ao bordarem a temática Paleontologia. Fonte: Arquivo Laboratório de Paleontologia-MZUSP

* A história mais completa sobre a descoberta dos fósseis no município de Coração de Jesus foi relatada em uma matéria do Estadão, um jornal do estado de São Paulo, o qual, na época (2010), dedicou um caderno especial a essa temática. A reportagem contou também com uma série de entrevistas de alguns dos moradores e dos pesquisadores que estiveram à frente das descobertas na região.
*** Coquinho azedo (Butia capitata): planta típica do cerrado rica em vitamina A, C e potássio.
 
Endereço eletrônico de algumas das reportagens sobre o assunto:
I. http://ciencia.estadao.com.br/noticias/geral,um-dinossauro-no-coracao-de-jesus,609332
II. http://topicos.estadao.com.br/tapuiassauro
III. http://tv.estadao.com.br/geral,dinossauros-do-brasil-o-trabalho-dos-paleontologos,242506
IV. http://tv.estadao.com.br/geral,dinossauros-do-brasil-entrevista-com-alberto-carvalho,244709
Endereço eletrônico das instituições mencionadas:
1 – http://www.mz.usp.br
2 – http://biton.uspnet.usp.br/mc/
3 – http://www.butantan.gov.br
Endereço eletrônico dos artigos científicos a respeito do Tapuiasaurus:
4 – http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0016663
5 – http://onlinelibrary.wiley.com/doi/10.1111/zoj.12420/abstract


Natan Santos Brilhante

IMG_0858
Formação acadêmica: Graduado em Ciências Biológicas pela Universidade do Grande ABC, Licenciatura Plena e Bacharelado; Mestre e doutorando pelo Programa de Pós-Graduação em Zoologia do Museu Nacional, da Universidade Federal do Rio de Janeiro.
Experiência profissional: elaboração e execução de exposições, treinamento e medeio de monitores, atendimento ao público, expedições de campo (paleontologia e herpetologia) e outros trabalhos técnicos devido a sua colaboração junto ao Laboratório de Paleontologia e à Museologia do Museu de Zoologia da USP, de 2008 a 2013. Após esse período, ingressou no Museu Nacional/UFRJ e, desde então, segue como colaborador no Setor de Paleovertebrados do Departamento de Geologia e Paleontologia.
Área de estudo: Zoologia, com ênfase em Paleontologia de Vertebrados. Atua principalmente nos seguintes temas: Taxonomia de arcossauros fósseis e recentes, curadoria de coleções, coleta e preparação de fósseis de vertebrados.

Discutindo a nova filogenia dos dinossauros

Há algumas semanas, um estudo publicado na prestigiosa revista ‘Nature’ chamou a atenção do mundo e veio abalar as estruturas de um consenso secular na paleontologia de dinossauros. O estudo publicado na revista Nature foi desenvolvido por Baron (Universidade de Cambridge) e colaboradores, e contou com uma amostragem abrangente de espécies basais de dinossauros e outros Dinosauromorpha.

A novidade do estudo de Baron e colegas é que uma nova topologia para a árvore evolutiva dos dinossauros foi obtida, onde os dinossauros ornitísquios (que incluem desde os estegossauros até os dinossauros “bico de pato”, veja imagem a seguir) caem como grupo irmão dos dinossauros terópodes (grupo de dinossauros que inclui basicamente todos os dinossauros carnívoros), formando um clado denominado de ‘Ornithoscelida’. Esse resultado altera completamente o consenso tradicional sobre a evolução dos dinossauros, que colocava os dinossauros terópodes e sauropodomorfos (grupo dos dinossauros herbívoros de pescoço e cauda longa)  juntos, formando o clado clássico conhecido como Saurischia.

flat,800x800,070,f.u1
Dinossauros ornitísquios. Arte de Franz Anthony (http://franzanth.com/).
Dinossauros terópodes. Arte de Franz Anthony.
Dinossauros terópodes. Arte de Franz Anthony.
Dinossauros sauropodomorfos. Arte de Franz Anthony.
Dinossauros sauropodomorfos. Arte de Franz Anthony.
Cladograma de acordo com a filogenia clássica dos dinossauros. Imagem por Darren Naish.
Cladograma de acordo com a filogenia clássica ou mais convencional dos dinossauros. Imagem por Darren Naish.
Cladograma ilustrando a filogenia proposta por Baron et al. (2017), separando os dinossauros terópodes e sauropodomorfos e sustentando o clado denominado de 'Ornithoscelida'. Imagem por Darren Naish.
Cladograma ilustrando a filogenia proposta por Baron et al. (2017), separando os dinossauros terópodes e sauropodomorfos e sustentando o clado denominado de ‘Ornithoscelida’ (Theropoda + Ornitischia). Imagem por Darren Naish.

A filogenia  tradicional dos dinossauros, que se sustenta há quase 130 anos, sempre partiu do princípio de que dinossauros terópodes e sauropodomorfos formavam um grupo monofilético, ou seja, que consistiam de um agrupamento verdadeiro, que reunia uma espécie ancestral e todos os seus descendentes.

Apesar do trabalho de Baron desafiar a proposta convencional das relações evolutivas dos dinossauros, o ordenamento que ele propõe em seu artigo não é muita novidade. Propostas alternativas, incluindo essa de Ornithoscelida, sempre existiram e foram consecutivamente testadas ao longo do tempo.  O que acontece é que, nos últimos anos, novas espécies de dinossauros basais foram descobertas e descritas e pudemos ter acesso a novas informações sobre como se deu o seu processo evolutivo  de certos aspectos morfológicos dos dinossauros. Isso deu mais resolução à nossa compreensão sobre a evolução desse grupo. O que Baron fez foi reunir essa informação em uma ampla matriz de dados morfológicos e testá-la. O resultado foi que, com a nova amostragem de táxons basais de dinossauros, o arranjo filogenético que melhor explica o que observamos é a união de Theropoda e Ornithischia em um mesmo grupo: Ornithoscelida.

As grandes propostas alternativas sobre a evolução de Dinosauria.
As grandes propostas alternativas sobre a evolução de Dinosauria.
Já posso queimar toda a minha bibliografia sobre dinossauros? Foto de Darren Naish.

Não preciso nem dizer que isso causou um reboliço na paleontologia e uma acalorada discussão entre paleontólogos, né?

Mas, calma, você não precisa sair por aí queimando todos os seus livros sobre dinossauros. Toda nova proposta que muda drasticamente uma ideia merece ser testada e reavaliada antes de definitivamente adotada.

Com a ascensão desse trabalho, vários paleontólogos do mundo todo se reuniram para analisar minuciosamente a matriz de dados morfológicos usada por Baron e colegas. Há muito tempo precisávamos de uma amostragem abrangente, incluindo mais táxons basais de Ornithischia e isso o trabalho de Baron tem de positivo! Porém, onde aparentemente o trabalho de Baron falha, é na matriz de dados em si. Muitos colegas paleontólogos do mundo têm apontado falhas na codificação da matriz filogenética apresentada no estudo publicado na Nature, e eles já estão trabalhando em uma réplica. Nos próximos meses, uma publicação reunindo paleontólogos de diversas nacionalidades deverá ser publicada reavaliando a matriz de dados de Baron.

“Alegações extraordinárias exigem evidências extraordinárias” Carl Sagan

A hipótese de Ornithoscelida não pode ser totalmente desconsiderada, já que a topologia filogenética obtida por Baron e colaboradores explica muito bem a distribuição de alguns caracteres morfológicos em dinossauros. O caracter mais claro para exemplificar essa questão talvez seja a presença de estruturas tegumentárias (i.e. penas e estruturas similares à penas) tanto em Ornithischia quanto em Theropoda. Estruturas as quais ainda não foram encontrada em fósseis de Sauropodomorpha (o que não significa que eles definitivamente não as possuíam!!!).

Fóssil de Psittacosaurus, um dinossauro Ornithischia, com estruturas tegumentárias possivelmente homólogas às penas.
Fóssil de Psittacosaurus, um dinossauro Ornithischia, com estruturas tegumentárias possivelmente homólogas às penas encontradas em dinossauros terópodes.

Alguns paleontólogos argumentam que, apesar de explicar bem a distribuição de alguns caracteres, essa proposta filogenética não sustenta tão bem outras questões anatômicas muito importantes, como a pneumaticidade nos ossos, observada tanto em Theropoda como em Sauropodomorpha – mas não em Ornithischia -, ou mesmo o clássico formato do quadril trirradiado.

A questão, pelo visto, continuará sendo quais caracteres morfológicos evoluíram independentemente ou não…

Presença/ausência de pneumaticidade óssea em Ornithodira.
Presença/ausência de pneumaticidade óssea em Ornithodira.
Pneumticidade em vértebra de um dinossauro terópode. Característica também presente em Sauropodomorpha.
Pneumticidade em vértebra de um dinossauro terópode. Característica também presente em Sauropodomorpha.

Outra grande crítica ao trabalho de Baron foi que a sua proposta filogenética aponta a origem dos dinossauros como sendo europeia, o que para a grande maioria dos paleontólogos não faz sentido algum.

A lição maior do trabalho de Baron é que ainda temos muito o que investir no estudo de dinossauros basais. Vamos aguardar o trabalho sobre a revisão da matriz de dados que sustenta Ornithoscelida ser publicado e torcer para novas descobertas de dinossauros basais sejam feitas!

Assista o vídeo sobre essa questão em nosso canal. Entrevistamos o paleontólogo argentino Diego Pol, um dos especialistas envolvidos na re-avaliação da matriz de dados do trabalho de Baron:

Captura de Tela 2017-05-01 às 14.21.54

Leia mais sobre o assunto:

TetZoo: https://blogs.scientificamerican.com/tetrapod-zoology/ornithoscelida-rises-a-new-family-tree-for-dinosaurs/
Theropoda Blog: http://theropoda.blogspot.com.br/2017/03/ornithoscelida-20-saurischian-paraphyly.html
The Theropoda Database Blog:
1)https://theropoddatabase.blogspot.com.br/2017/03/ornithoscelida-lives.html
2) https://theropoddatabase.blogspot.com.br/2017/03/ornithoscelida-tested-adding-taxa-and.html

Referências:

Baron, M. G., Norman, D. B. & Barrett, P. M. 2017. A new hypothesis of dinosaur relationships and early dinosaur evolution. Nature doi:10.1038/nature21700