Híbridos de nanodispositivos e sistemas biológicos existem?

ResearchBlogging.org

Como já comentei aqui, nanochips cerebrais cyberpunk ainda estão muito longe de existir. Mas isso não quer dizer que esforços não tem sido feitos para tentar integrar sistemas biológicos com dispositivos construídos pelo homem na escala nanométrica. Há cerca de 1 mês atrás a Tati Nahas me enviou um link muito interessante e, enrolada que sou, ainda não tinha escrito nada a respeito.

Pois bem, o link em questão é da Nature News – pesquisadores dos Estados Unidos construíram uma plataforma híbrida de nanofibras de silício mergulhadas em uma bicamada lipídica. Essa plataforma é capaz de converter sinais elétricos em sinais iônicos.

Sinais iônicos…. como assim? É que os sistemas biológicos (inclusive você, pequeno gafanhoto) usam uma combinação de gradientes iônicos e potenciais elétricos de membrana como forma de sinalizar coisas de uma célula para outra – é como uma complexa linguagem, que envolve receptores de membrana altamente específicos e fluxos de íons para dentro e para fora das células através de canais iônicos e bombas de prótons.

[Quer um exemplo corriqueiro disso? Certas células de nosso corpo passam a vida jogando íons sódio para fora e íons potássio para dentro – para cada 3 íons sódio transportados para fora, 2 íons potássios são transportados para dentro. Isso cria um gradiente elétrico na membrana celular, porque há mais íons fora do que dentro da célula e, portanto, a parte externa da membrana tem mais cargas positivas que a parte interna da membrana. O resultado disso? Um potencial de membrana! Quando esse potencial se inverte por algum motivo (de forma que a parte interna fica mais positiva que a externa), ocorrem eventos fisiológicos tais como a transmissão de impulsos elétricos entre os neurônios e a movimentação dos músculos. Essa inversão de cargas é o que chamamos de potencial de ação.]

Mas como ocorreu a conversão de sinais elétricos em sinais iônicos? Foi assim: os pesquisadores incorporaram um peptídeo na bicamada lipídica, chamado alameticina (que atua como um poro para íons) e aplicaram um campo elétrico às nanofibras de silício mergulhadas nessa bicamada. Conforme o campo elétrico aplicado, os poros de alameticina na bicamada lipídica que reveste as nanofibras se abriram ou se fecharam. Dessa forma, o fluxo de íons de um lado para outro da membrana foi controlado – o que por tabela resultou no controle do potencial de membrana.

Ainda não há aplicação prática para esse estudo, mas convenhamos que a ideia é bem promissora e faz a imaginação voar…

Uptade 11/09/2009: o tema desse post acabou de sair na última Pesquisa FAPESP Online.

Misra, N., Martinez, J., Huang, S., Wang, Y., Stroeve, P., Grigoropoulos, C., & Noy, A. (2009). From the Cover: Bioelectronic silicon nanowire devices using functional membrane proteins Proceedings of the National Academy of Sciences, 106 (33), 13780-13784 DOI: 10.1073/pnas.0904850106

Uma fria manhã de inverno

Imagine uma fria manhã de inverno. Você acorda, olha pela janela e vê tudo branquinho lá fora (pelo menos aqui no sul….). Aí você acha tão lindo que tira uma foto! Ela vai se parecer muito com essa aí em cima, embora uma coisa não tenha nada a ver com a outra…. Essa imagem na verdade corresponde a nanofibras de SnO2 – a técnica para sua obtenção foi a microscopia eletrônica de varredura, e o artista chama-se Suresh Donthu, da Northwestern University. Essa imagem ganhou o primeiro lugar do prêmio Science as Art de 2007, promovido pela MRS.

P.S.: Se eu mesma não tivesse lido no site que se trata de imagem de nanofibras, não teria acreditado.

P.S.: Essa brincadeira de descobrir o que são as imagens obtidas por microscopia eletrônica está sendo feita pelo pessoal da Globo na série de reportagens sobre nanotecnologia do Jornal Bom Dia Brasil, que passa às 7h30 – se quiser ver as imagens, clique aqui. Até o momento, nenhum absurdo foi dito – só acho que poderia ter sido traçado um panorama mais amplo sobre as pesquisas brasileiras na área, há muita gente boa trabalhando com o assunto nesse Brasilzão e é legal valorizar isso.

Um campo de girassóis poético

(primeiro lugar do prêmio “Science as Art” de 2008, da MRS, de autoria de K. Hark, Chinese University of Hong Kong – “Field of Sunflowers”)

Linda foto de girassóis, não é mesmo?

Hummm, girassóis? Parece… mas não é !
Essa é mais uma daquelas imagens obtidas por microscopia eletrônica e colorizada depois com fins artísticos. Também há arte e poesia no nano(bio)mundo!

Nanofibras de óxidos de silício possuem a habilidade de se organizar de várias formas, inclusive como essa, que se assemelha de forma impressionante a girassóis. Gálio e ouro atuaram como catalisadores da reação entre silício e oxigênio que resultou nessas lindas nanofibras, cada uma com cerca de 10 nm de diâmetro.

Não acha a reação das nanofibras poética? Pois bem, para ninguém dizer que não há poesia nesse post, transcrevo abaixo um dos meus poetas favoritos, no seu melhor heterônimo (na minha humilde opinião):

“O meu olhar é nítido como um girassol.
Tenho o costume de andar pelas estradas
Olhando para a direita e para a esquerda,
E de vez em quando olhando para trás…
E o que vejo a cada momento
É aquilo que nunca antes eu tinha visto,
E eu sei dar por isso muito bem…
Sei ter o pasmo essencial
Que tem uma criança se, ao nascer,
Reparasse que nascera deveras…
Sinto-me nascido a cada momento
Para a eterna novidade do Mundo…”

(Alberto Caeiro)

Uma esperança para os portadores de osteoartrite

Rocky Tuan, chefe do Cartilage Biology and Orthopaedics Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases (fonte: NIAMS)

ResearchBlogging.org

As articulações estão entre as primeiras partes do corpo que indicam para você que a idade do “condor” (conhecem essa?) já está chegando. Desportistas também podem apresentar desgastes nas articulações pelo seu uso intenso. Os danos às cartilagens podem levar à osteoartrite, uma doença articular degenerativa que costuma atingir pessoas com mais de 65 anos. Não se sabe ao certo quais são as causas da osteoartrite, porém suas conseqüências são altamente debilitantes: dor na junta, dificuldade de movimentos e inflamação dos tecidos próximos. Um dos tratamentos para essa doença consiste no transplante de células denominadas condrócitos, naturalmente presentes nas cartilagens. Essas células são obtidas de uma articulação sadia, cultivadas em laboratório e injetadas no local afetado. O resultado é o desenvolvimento de um novo tecido na área desgastada – porém esse novo tecido é mais fibroso que a cartilagem normal e geralmente tem uma durabilidade baixa.
Em uma tentativa de realmente regenerar as cartilagens, Rocky S. Tuan (Musculoskeletal and Skin Diseases of the National Institutes of Health, USA) e colaboradores desenvolveram nanofibras feitas de um polímero biodegradável e biocompatível e células-tronco mesenquimais. Após ser introduzidas no corpo, essas nanofibras servem como moldes que permitem que a estrutura do tecido se regenere no formato adequado – as células-tronco se transformam em condrócitos, o polímero é consumido pelo organismo e a função da junta é restabelecida. Ainda há muito estudo a ser feito antes de essa tecnologia chegar com força no mercado. No entanto, as perspectivas são bem promissoras.

Para saber mais sobre células-tronco mesenquimais e artrite, leia também o artigo de revisão Mesenchymal stem cells in arthritic diseases, do grupo do R.S. Tuan- doi: 10.1186/ar2514

Glossário:

Células-tronco mesenquimais: são células-tronco retiradas de tecidos adultos, capazes de se diferenciar em células ósseas, das cartilagens, de gordura e musculares.

Referencia:

JANJANIN, S., LI, W., MORGAN, M., SHANTI, R., & TUAN, R. (2008). Mold-Shaped, Nanofiber Scaffold-Based Cartilage Engineering Using Human Mesenchymal Stem Cells and Bioreactor Journal of Surgical Research, 149 (1), 47-56 DOI: 10.1016/j.jss.2007.12.788

Sobre ScienceBlogs Brasil | Anuncie com ScienceBlogs Brasil | Política de Privacidade | Termos e Condições | Contato


ScienceBlogs por Seed Media Group. Group. ©2006-2011 Seed Media Group LLC. Todos direitos garantidos.


Páginas da Seed Media Group Seed Media Group | ScienceBlogs | SEEDMAGAZINE.COM