Para que Bala Mágica? Use logo uma ARMA mágica, oras!

ResearchBlogging.org

Já me disse alguém que eu adoro um clichê. De fato, bala mágica é um dos cinco clichês científicos abomináveis que devemos jogar num buraco negro (hehehe). Então, que tal fazer um upgrade na expressão (e no conceito) e usar logo de uma vez… uma arma mágica! (Cuidado, hein leitor incauto! Estou bélica hoje)
A proposta do nome Arma Mágica é recente, embora a ideia em si seja mais antiga. Seu argumento é baseado no fato de que o acúmulo do fármaco na região de vascularização do tumor em comparação com as demais regiões do corpo não significa necessariamente que ocorrerá uma distribuição eficiente do fármaco DENTRO do tumor. Note que esses conceitos realmente são diferentes. Lembra do efeito EPR? Se você tem fármaco encapsulado dentro de nanopartículas, e essas nanopartículas que circulam pelo sangue passam por uma região de tumor, elas se acumulam nesse local porque “escapam” da corrente sanguínea devido ao aumento dos espaços entre as células dos vasos da região tumoral – esse aumento localizado da permeabilidade dos vasos sanguíneos garante o acúmulo na superfície do tumor, mas não garante que as nanopartículas penetrarão profundamente nele.
É nesse ponto da história que entram peptídeos contendo a seqüência de aminoácidos arginina-glicina-aspartato. Tais peptídeos são capazes de se ligarem a integrinas (uma família de receptores celulares) presentes tanto no endotélio quanto no parênquima da região tumoral. Há dois tipos, o RGD e o iRGD. Cada letra corresponde a um aminoácido. O i do nome quer dizer que o peptídeo é quebrado depois de se ligar à integrina de um jeito tal que resulta na perda da sua afinidade com a dita integrina e ganho da afinidade por um outro receptor de membrana chamado neuropilina-1 (NRP-1). Quando uma molécula se liga à NRP-1, vai para dentro da célula. Nesse caso, a NRP-1 é como uma porta – para entrar é preciso se ligar a ela, ou melhor, girar a maçaneta. Dessa forma, o RGD pode ser usado para direcionar o fármaco para o local do tumor, mas o iRGD tem a vantagem de direcioná-lo E internalizá-lo.
Fármacos quimicamente ligados a peptídeos iRGD podem ser internalizados no tecido do tumor através desse um mecanismo ativo de endocitose, garantindo uma maior eficácia do tratamento (que ainda está em fase de estudo, não há tal tratamento disponível para a população ainda). Mas o mais interessante na minha humilde opinião é que o fármaco pode ser internalizado sem estar quimicamente ligado ao iRDG. Basta que ambos sejam administrados ao mesmo tempo. Isso é vantajoso porque às vezes modificações químicas na estrutura do fármaco podem comprometer sua atividade biológica. A co-administração do iRGD com nanopartículas contendo o fármaco também teve o mesmo efeito de aumento da eficácia biológica. O nanoencapsulamento se justifica no caso de fármacos com baixa afinidade pela água, pois pode reduzir efeitos adversos do tratamento por evitar o uso de co-solventes. Embora a ideia pareça realmente bastante promissora, ainda há muitas perguntas a serem respondidas quanto ao uso de seqüências iRGD para esse fim. Afinal, testes clínicos ainda não foram feitos, e o que vale para animais de laboratório pode não se repetir tão bem em humanos. É preciso verificar, a partir de estudos clínicos, se efeitos tóxicos não poderiam ser exacerbados pela ligação do iRGD a locais não-tumorais contendo integrinas. E isso não vale só para estudos envolvendo iRGD, mas para todos aqueles que utilizam a estratégia ligante-receptor (também conhecida como vetorização ativa).
Moral da história: renomear uma ideia que não é completamente nova com um nome chamativo e descolado dá o maior ibope.
OBS.: O tema foi dica do Takata

Feron, O. (2010). Tumor-Penetrating Peptides: A Shift from Magic Bullets to Magic Guns Science Translational Medicine, 2 (34), 34-34 DOI: 10.1126/scitranslmed.3001174
Sugahara, K., Teesalu, T., Karmali, P., Kotamraju, V., Agemy, L., Girard, O., Hanahan, D., Mattrey, R., & Ruoslahti, E. (2009). Tissue-Penetrating Delivery of Compounds and Nanoparticles into Tumors Cancer Cell, 16 (6), 510-520 DOI: 10.1016/j.ccr.2009.10.013
Sugahara, K., Teesalu, T., Karmali, P., Kotamraju, V., Agemy, L., Greenwald, D., & Ruoslahti, E. (2010). Coadministration of a Tumor-Penetrating Peptide Enhances the Efficacy of Cancer Drugs Science, 328 (5981), 1031-1035 DOI: 10.1126/science.1183057

Quando a desunião pode ajudar a salvar vidas

Intrigado com o título do post?

Antes que elucubrações filosóficas surjam na sua mente, esclareço que a desunião à qual me refiro é de células. Células? Sim, das células que recobrem a parede dos vasos sanguíneos. O conjunto dessas células é chamado de epitélio endotélio (update 10/11/09: termo gentil e devidamente corrigido pelo Gabriel). Em tecidos sadios, essas células são bem próximas umas das outras. Apenas pequenas moléculas podem atravessar os espaços entre elas, passando do sangue para os tecidos vizinhos. No entanto, em regiões inflamadas ou mesmo em regiões atacadas por tumores, essas células estão menos unidas entre si que aquelas de regiões sadias.

E por que essa “desunião” pode ajudar a salvar vidas?

Os fármacos em geral são pequenos o suficiente para atravessar o endotélio em todas (ou quase todas) as regiões do corpo, chegando tanto nas regiões-alvo quanto em outras regiões que não estão relacionadas à doença. Isso origina muitos dos efeitos adversos dos medicamentos, porque os fármacos acabam atuando onde devem e onde “não devem”. No entanto, se esses fármacos estiverem encapsulados dentro de nanopartículas de 50 a 300 nm (em média), eles não serão capazes de atravessar a parede dos vasos de regiões sadias do organismo (o espaço entre essas células é de apenas 15 a 30 nm). Seria como tentar fazer um elefante passar pela porta da cozinha! No entanto, os espaços entre as células de regiões inflamadas ou tumorais é grande o suficiente para permitir a passagem dos elef.. ops, das nanopartículas.

(Origem da imagem: aqui)

Pense comigo: se as nanopartículas passam apenas pela parede dos vasos nas regiões com tumor, a consequência é um acúmulo das nanopartículas no tecido tumoral vizinho ao vaso sanguíneo, certo? O pessoal da área de nanobiotecnologia chama essa estratégia de vetorização de efeito EPR (sigla em inglês que significa permeabilidade e retenção aumentados). A ilustração acima mostra como ocorre acúmulo de nanopartículas em regiões tumorais devido ao efeito EPR.

Quer um exemplo? Pesquisadores da Duke University encapsularam doxorrubicina (um fármaco usado na terapia do câncer) em nanopartículas e observaram uma completa regressão de tumores em ratos, após uma única injeção. O mesmo não foi observado para a doxorrubicina não-encapsulada. Além disso, os ratos toleraram uma dose quatro vezes maior de doxorrubicina quando esta estava encapsulada nas nanopartículas. Essas duas observações (aumento da efetividade e redução da toxicidade do fármaco) são consequência direta da vetorização do fármaco nanoencapsulado por meio do efeito EPR. Embora este ainda seja um estudo em andamento, já há produtos disponíveis no mercado para tratamento do câncer através desse princípio, tal como o Doxil(R).
Fonte sobre o estudo: EurekAlert! (assim que sair o DOI do artigo na página da Nature Materials, publicarei aqui).

Glossário:

Vetorização: promoção do acúmulo de fármaco em um órgão ou tecido específico de forma quantitativa e seletiva, independentemente da via e método de administração.
Vi um link sobre o estudo citado acima via @ciencianamidia (Siga a Tati Nahas no Twitter e fique por dentro de tudo o que a mídia veicula sobre ciência e tecnologia)


Nano-kit de análises clínicas

ResearchBlogging.org

Analistas clínicos e biomédicos de todo o mundo, temei! Logo, logo a nanotecnologia invadirá os laboratórios! Que tal um kit de reação nanométrico muito mais sensível que os kits convencionais e que faz tudo praticamente sozinho?

Pois bem, foi pensando nisso que cientistas desenvolveram um método de imunoensaio por quimioluminescência para diagnosticar câncer baseado em nanotubos de carbono de múltiplas camadas contendo enzimas em sua superfície. Ufa! Parece complicado? Imagine o nanotubo com camadas tal qual uma cebola, onde enzimas estariam ligadas na superfície de cada uma das camadas. Foi mais ou menos isso que os cientistas construíram. A enzima depositada na superfície dessas camadas é chamada peroxidase (que é capaz de quebrar peróxidos, como a água oxigenada, cuja fórmula é H2O2). Em seguida, em cima disso tudo, foram depositados anticorpos (que corresponde ao Y da figura abaixo). Eis um esquema bem ilustrativo da coisa toda:

(créditos: Bi e col., 2009 – Biosensors and Bioelectronics)

Anticorpos também foram ligados na superfície de nanopartículas magnéticas. Na presença de uma proteína no soro que só existe quando a pessoa tem câncer (é o que chamamos de biomarcador), o nanotubo e a nanopartícula magnética se juntam e reações químicas passam a acontecer nesse sanduíche nanotecnológico. O nanotubo e a nanopartícula magnética são capazes de se juntar porque os anticorpos de ambos se ligam nessa proteína biomarcadora

No estudo em questão, os autores usaram como proteína marcadora a alfa-fetoproteína (AFP), que corresponde à bolinha azul no esquema acima. Quando uma mistura de H2O2, azul de bromofenol (um tipo de corante) e luminol (aquele mesmo, do seriado CSI) é adicionada ao soro do paciente com câncer e, nessa mistura, os nanotubos e as nanopartículas magnéticas são adicionados também, ocorre luminescência devido à ação da enzima peroxidase na superfície do nanotubo, que quebra a H2O2. Os produtos da quebra da H2O2 reagem com o luminol e o azul de bromofenol emitindo luz, mas só na presença de metal – no caso, a nanopartícula magnética. Se o paciente não tem câncer, seu soro não terá a proteína biomarcadora. Sem proteína biomarcadora não ocorre ligação da nanopartícula magnética com o nanotubo que contém a peroxidase. Portanto, sem proteína marcadora no soro não há emissão de luz.

Esse sanduíche nanotecnológico conseguiu detectar quantidades de proteína marcadora de câncer no soro que outros testes padrão (como o ELISA) não conseguiram. Pequeno tamanho, grande sensibilidade!

Bi, S., Zhou, H., & Zhang, S. (2009). Multilayers enzyme-coated carbon nanotubes as biolabel for ultrasensitive chemiluminescence immunoassay of cancer biomarker Biosensors and Bioelectronics, 24 (10), 2961-2966 DOI: 10.1016/j.bios.2009.03.002

Gregos e troianos no nano(bio)mundo

ResearchBlogging.org

Diz a lenda que a mulher mais bela do mundo era Helena, esposa de Menelau, rei de Esparta. Quando Páris, príncipe de Tróia, foi a Esparta em missão diplomática, apaixonou-se por Helena e ambos fugiram para Tróia, enfurecendo Menelau (quem não se enfureceria no lugar dele, não é mesmo?). Para pegá-la de volta, os gregos resolveram atacar Tróia. Porem, a cidade só foi tomada graças a um artifício bolado por Ulisses, que fazia parte do exército grego: fingindo ter desistido da guerra, os gregos deixaram “para trás” um enorme cavalo de madeira, que os troianos decidiram levar para o interior de sua cidade, como símbolo de sua vitória. À noite, quando todos dormiam, os soldados gregos que se escondiam dentro da estrutura oca de madeira do cavalo saíram e abriram os portões para que todo o exército invadisse a cidade. Apanhados de surpresa, os troianos foram vencidos e a cidade incendiada.
(história contada na Ilíada, de Homero)

No nano(bio)mundo, também podemos ter soldados, Tróia e um cavalo oco que pode ser um presente de grego… Acha que eu agitei demais no fim-de-semana e estou escrevendo delírios aqui? Na, na, não… Provo para você! Pesquisadores nos Estados Unidos deram uma de Ulisses e usaram um cavalo de Tróia celular para liberar nanopartículas (os soldados) em tumores. Os cavalos foram os monócitos, que são células brancas do sangue responsáveis por eliminar corpos estranhos do organismo. Quando há tumores malignos, os monócitos correm para lá. Passando do sangue ao tumor, os monócitos se transformam em macrófagos e são “educados” a promover a progressão do tumor (é o que chamamos de infiltrado, e que leva a um prognóstico que não é dos melhores). Como ficou evidente, o tumor é Tróia nessa história toda.

Os autores prepararam nanopartículas de cerca de 60 nm, compostas por um núcleo de sílica revestido com ouro. Essas nanopartículas podem absorver luz no infravermelho próximo, gerando calor que mata as células (um efeito semelhante à hipertermia magnética). Um tumor esferóide de células mamárias malignas foi usado como modelo in vitro do estudo. Esse tumor foi incubado com macrófagos e com nanopartículas de ouro. Paralelamente, um tumor incubado apenas com macrófagos foi usado como controle. A fagocitose das nanopartículas de ouro pelos macrófagos, bem como a infiltração dos macrófagos para dentro do tumor foram monitorados por microscopia de transmissão de luz. Os tumores foram irradiados com luz infravermelha e os macrófagos (contendo as nanopartículas) que chegaram no microambiente hipóxico do tumor foram mortos, juntamente com células tumorais das redondezas. Nada aconteceu com o tumor controle. Esse resultado foi visualizado através de uma técnica chamada microscopia confocal, onde imagens tridimensionais de materiais contendo corantes fluorescentes são obtidas. Na figura abaixo, fica fácil entender a analogia da estratégia explicada acima com a história que Homero escreveu por volta do séc. VIII a.C.

(CRÉDITO: Choi e colaboradores, Nano Letters, 7, 3759-3765, 2007)

De acordo com os autores, essa estratégia pode ser útil para uma série de sistemas de liberação de fármacos, e não apenas nanopartículas de ouro. O mais interessante nessa guerra de Tróia biológica é que o ativo (nesse caso, as nanopartículas) não é tóxico para o organismo até chegar no tumor, o que reduz drasticamente os seus efeitos adversos sem comprometer sua eficácia.

Choi, M., Stanton-Maxey, K., Stanley, J., Levin, C., Bardhan, R., Akin, D., Badve, S., Sturgis, J., Robinson, J., Bashir, R., Halas, N., & Clare, S. (2007). A Cellular Trojan Horse for Delivery of Therapeutic Nanoparticles into Tumors Nano Letters, 7 (12), 3759-3765 DOI: 10.1021/nl072209h

Os aviões Stealth do nano(bio)mundo

(fonte: http://www.atfx.org/photos/f117a.jpg)

Aeronaves Stealth são aquelas capazes de refletir ou absorver ondas eletromagnéticas, o que as torna virtualmente invisíveis nos radares. Essa tecnologia foi muito importante durante a guerra do Golfo em 1991. E o que isso tem a ver com nanobiotecnologia? A princípio, nada. Mas os aviões Stealth (ou aviões furtivos, como quiserem) são uma boa ilustração para uma tecnologia de mesmo nome empregada para entregar fármacos no organismo. São as nanopartículas furtivas.
Nanopartículas “não-furtivas” são rapidamente atacadas pelo nosso sistema imunológico através de um processo chamado opsonização. Após esse ataque, elas são rapidamente eliminadas do organismo, como se fossem invasores perigosos (tais como bactérias, fungos, etc). Porém, as nanopartículas furtivas ficam invisíveis aos “radares” do sistema imunológico. O resultado é que elas ficam mais tempo circulando no sangue e, por isso, têm tempo de se acumular em certos alvos do organismo antes da sua eliminação. Alvos muito visados por razões óbvias são tumores. A estratégia Stealth é boa porque pode tornar o fármaco mais efetivo e pode reduzir os seus efeitos adversos. Para que uma nanopartícula seja furtiva, ela precisa ter polímeros hidrofílicos (com alta afinidade pela água) na sua superfície – se fossemos desenhá-las, elas seriam como “escovas” esféricas, onde esses polímeros hidrofílicos seriam as cerdas.
Isso tudo pode parecer algo de uma galáxia muito, muito distante…. Mas a realidade é que essas nanopartículas furtivas já estão disponíveis para quem quiser comprá-las! Um exemplo é o Doxil(R), indicado para tratar câncer de ovário e sarcoma de Kaposi, e comercializado pela Johnson&Johnson; com a seguinte propaganda: “First marketed product to incorporate STEALTH® technology“. O produto é composto por doxorrubicina (fármaco anticancerígeno) incorporado dentro de lipossomas com o polímero hidrofílico poli(etilenoglicol) na sua superfície. A empresa faturou U$ 82 milhões em 2000 com a venda do Doxil(R). Essa cifra subiu para U$ 533 milhões depois de apenas 5 anos !!!!
Nanopartículas furtivas podem ser uma grande viagem, mas também são um ótimo negócio.


(para quem quiser saber mais sobre nanopartículas furtivas e sua interação com o sistema imunológico, recomendo esse artigo publicado na Langmuir em 2006, por Zahr e col.)

Saiba o que é hipertermia magnética

Hipertemia significa elevação de temperatura. Essa estratégia vem sendo empregada há algumas décadas como alternativa para combater o câncer. Na hipertermia, o tumor é aquecido até cerca de 42oC, para que seja literalmente “queimado” porque as células tumorais são menos resistentes a aumentos bruscos de temperatura do que as células normais. O problema é que, mesmo assim, o tecido saudável ao redor do tumor pode ser queimado também – isso é um problema principalmente em locais de difícil acesso e, por isso, um controle fino do local a ser aquecido seria fundamental.
A possibilidade desse controle fino tornou-se mais concreta a partir dos anos 1980 devido a uma área aparentemente não-relacionada: a física de nanopartículas paramagnéticas. Essas nanopartículas respondem a um campo magnético externo, atuando como se fossem nanoímas. Surgiu daí a idéia de hipertermia magnética para combater o câncer. Nessa técnica, são utilizadas nanopartículas (em geral de magnetita) revestidas por materiais biocompatíveis, o que evita sua rejeição pelo organismo. Na superfície das nanopartículas são grudados anticorpos capazes de se ligar apenas ao tumor – dessa forma, as nanopartículas não se prendem a outras regiões do corpo, mas apenas ao tumor. O sujeito recebe uma injeção dessas nanopartículas na veia e entra numa câmara (no mesmo estilo daquelas de tomografia) onde é aplicado um campo magnético externo de frequência alternada. O campo magnético faz com que as nanopartículas presas às células cancerosas vibrem, criando um atrito que aumenta a temperatura e mata apenas as células cancerosas, sem prejuízo às células saudáveis.
É ou não é uma estratégia engenhosa para o combate ao câncer? Para saber mais sobre o assunto, recomendo a coluna do professor Carlos Alberto dos Santos, na Ciência Hoje, aqui e aqui.

Melanoma: um alerta a todos (PARTE II)

ResearchBlogging.org

Como eu já havia contado no post anterior, o melanoma é um câncer de pele dos mais letais e seu tratamento nas fases iniciais é cirúrgico. Nos seus estágios avançados, o tratamento é limitado à quimioterapia e à radioterapia. A quimioterapia em particular tem limitações devido à sua falta de seletividade e toxicidade severa. Isso remete à uma frase dita pelo pesquisador Chun Li , do University of Texas M.D. Anderson Cancer Center:
A vetorização ativa de nanopartículas em tumores é o santo graal da nanotecnologia terapêutica para o câncer“.
Eu concordo com ele. A vetorização ativa de nanopartículas é uma das estratégias que mais se aproxima do ideal da Bala Mágica de Paul Erlich. Nessa estratégia, a nanopartícula é decorada (é esse mesmo o termo) com anticorpos, pequenas moléculas, etc, na sua superfície. Depois de administradas no organismo, essas nanopartículas se acumulam no sítio-alvo (no caso, o tumor), liberando o fármaco apenas ali, tal como um míssil teleguiado. Imaginem o impacto disso: se o fármaco fica apenas no tumor e não se espalha por outras regiões do organismo (como a quimioterapia usual), os efeitos colaterais que o paciente sofre são grandemente diminuídos.
Chun Li e colaboradoradores construíram nanopartículas de ouro e equiparam-nas com um peptídeo na sua superfície capaz de encontrar células de melanoma. Ao encontrar a célula de melanoma, a partícula é engolida pela célula e (literalmente) cozinha o tumor quando esse é exposto à luz infravermelha (que pode ser sentida como calor). O estudo foi feito em camundongos.
Um estudo menos recente, mas nem por isso menos interessante, foi realizado por pesquisadores do mesmo centro. Eles mostraram que um receptor particular de trombina (uma proteína do sangue) está presente em grande quantidade em células de melanoma. Quando ativado, esse receptor facilita as coisas para que ocorra metástase. Os pesquisadores prepararam lipossomas contendo um tipo de RNA capaz de impedir que a célula produza esse receptor (para saber mais sobre lipossomas, clique aqui). O lipossoma serviu ao seu propósito e liberou o RNA são e salvo no local do tumor. O crescimento do melanoma foi inibido e a incidência de metástases foi reduzida. Esse estudo também foi feito em camundongos.

Aliás, já disse alguém que se fossemos camundongos não morreríamos nunca, de tanto que já se estudou a cura de doenças nesses animais…..

É claro que esses ainda são só dois exemplos de estudos acadêmicos, mas quem sabe a próxima geração possa aproveitar os frutos da nanobiotecnologia e não precise passar por uma cirurgia de remoção do melanoma como a que me submeti, ou mesmo à severidade da quimioterapia tradicional em casos mais graves.

Lu, W., Xiong, C., Zhang, G., Huang, Q., Zhang, R., Zhang, J., & Li, C. (2009). Targeted Photothermal Ablation of Murine Melanomas with Melanocyte-Stimulating Hormone Analog-Conjugated Hollow Gold Nanospheres Clinical Cancer Research, 15 (3), 876-886 DOI: 10.1158/1078-0432.CCR-08-1480

Villares, G., Zigler, M., Wang, H., Melnikova, V., Wu, H., Friedman, R., Leslie, M., Vivas-Mejia, P., Lopez-Berestein, G., Sood, A., & Bar-Eli, M. (2008). Targeting Melanoma Growth and Metastasis with Systemic Delivery of Liposome-Incorporated Protease-Activated Receptor-1 Small Interfering RNA Cancer Research, 68 (21), 9078-9086 DOI: 10.1158/0008-5472.CAN-08-2397

Melanoma: um alerta a todos (PARTE I)

(fonte: http://www.ilhagrande.org/Praia-Camiranga)


Eu faço parte daquele grupo de pessoas que vai à praia e o máximo de cor que pega é o vermelho-pimenta…. Nunca liguei muito para o fato até que, no início desse ano, recebi um diagnóstico que me fez cair pra trás:
“A Sra. tem melanoma maligno, está indicado aqui na biópsia”.
“Caramba! Mas eu só tenho 28 anos, nem pego tanto sol assim, como é que pode?”
Tanto pode que aconteceu. E eu tive muita sorte de detectá-lo no início, porque o melanoma é o câncer de pele mais grave devido à sua alta possibilidade de metástase. E eu que achava que era só uma pinta….
O melanoma tem origem em células da pele chamadas melanócitos. A função dos melanócitos é produzir melanina, o pigmento que dá à pele sua cor natural. Quando a pele é exposta ao sol, os melanócitos produzem mais pigmento para protegê-la dos raios ultravioleta. A melanina é uma espécie de filtro químico natural. É por isso que a exposição ao sol nos deixa bronzeados (quanto mais melanina a pessoa tem, mais bronzeada ela fica – o que não quer dizer que só as pessoas muito claras correm risco de desenvolver melanoma). O incrível é que o melanoma pode surgir em áreas de pele não-expostas ao sol (aliás, esse foi o meu caso).
De acordo com o site do INCA, órgão do Ministério da Saúde do Brasil, deve-se suspeitar da transformação de uma pinta em melanoma quando ocorre um aumento no seu tamanho e uma alteração na sua coloração e forma (ela passa a ter bordas irregulares). Quando há metástase, o melanoma é incurável na maioria dos casos. Porém, quando os melanomas são detectados no início, são curáveis. A cirurgia é o tratamento mais indicado. Nessa cirurgia, retira-se não só a lesão, mas um bom pedaço de pele ao redor, para garantir. É como queijo com fungo em uma das bordas. Para aproveitar o resto bom, tira-se o pedaço com fungos mais uma “margem de segurança”.
Fiquei pensando se não haveria alguma alternativa à cirurgia (imaginem, por exemplo, se o melanoma aparece no rosto – a cicatriz resultante não é nada legal) ou tratamentos mais efetivos para os casos mais graves e encontrei alguns estudos (ainda em fase inicial) interessantes sobre o uso de nanobiotecnologia para a cura do melanoma.


(Continua no próximo post)


Adendo em 08/06/2009: para quem quiser saber mais sobre os efeitos do sol na pele, sugiro um post do excelente O Médico e o Paciente, da Iara Grisi

O pulo-do-gato que permitiu curar câncer usando remédio para artrite

ResearchBlogging.org

O trabalho ainda está no prelo, mas os resultados são tão bacanas que gostaria de dividir com vocês aqui no Bala Mágica. Não, essa não é uma ego trip. Os resultados são de uma colega de laboratório, a Andressa. O trabalho em questão junta gliomas (que são um tipo de câncer maligno do sistema nervoso central que atinge em geral adultos jovens e pode matar em poucos meses) e indometacina (uma molécula antiinflamatória indicada para artrite, presente em medicamentos como o Indocid). Essas duas coisas não tinham nada a ver uma com a outra in vivo. Até agora.
Já havia sido demonstrado antes que a indometacina poderia matar as células cancerosas responsáveis pelo glioma em plaquinhas no lab. No entanto, nunca se soube de ninguém que tenha tomado indometacina até hoje e tenha se curado dessa doença, que pode causar convulsões, dor de cabeça, vômitos em jato, parestesias e hemianospia.
O estudo em questão mostrou que, quando a indometacina é incorporada nessas nanocápsulas, ela adquire a capacidade de atravessar a barreira entre o sangue e o cérebro. Esse foi o pulo-do-gato. Ao chegar no cérebro de ratos, a indometacina nanoencapsulada causou uma redução no tamanho dos tumores cerebrais. A indometacina pura, ao contrário, não fez nem cócegas. O primeiro grupo de ratos, que recebeu as nanocápsulas, viveu muito mais tempo que os outros grupos. Hoje em dia, o tratamento quimioterápico de gliomas causa muito sofrimento aos pacientes e seus benefícios são mínimos. O que se faz é retirar o tumor com cirurgia para descomprimir o cérebro e aliviar a hipertensão intracraniana. O problema é que quase sempre é impossível retirar todas as células afetadas e o câncer volta. Esse estudo abre uma nova perspectiva de tratamento quimioterápico de gliomas sem efeitos colaterais mais graves (os efeitos colaterais seriam os mesmos que os de outros remédios contendo indometacina).
Parabéns aos autores pelo excelente trabalho!

P.S.: Saliento que esse é um estudo em fase pré-clínica (ou seja, em animais). Ainda há muito chão antes de um medicamento como esse chegar ao mercado.

Glossário

Parestesias: são sensações subjetivas da pele (ex., frio, calor, formigamento, pressão, etc.) que são vivenciadas espontaneamente na ausência de qualquer estímulo externo.
Hemianospia: perda da visão em metade ou um quarto do campo visual.

Referencia:

Bernardi, A., Braganhol, E., Jäger, E., Figueiró, F., Edelweiss, M., Pohlmann, A., Guterres, S., & Battastini, A. (2009). Indomethacin-loaded nanocapsules treatment reduces in vivo glioblastoma growth in a rat glioma model Cancer Letters, 281 (1), 53-63 DOI: 10.1016/j.canlet.2009.02.018

Uma diferença que pode auxiliar na cura e diagnóstico do câncer

ResearchBlogging.org

Pesquisadores da Clarkson University (New York, USA) identificaram uma diferença importante nas propriedades de superfície de células normais e cancerosas. As células epiteliais humanas apresentam uma superfície “enrugada” devido às suas microvilosidades, lembrando uma escova. Os pesquisadores descobriram que o comprimento dessas microvilosidades nas células cancerosas é o dobro que nas células normais. Isso significa que células cancerosas e normais podem interagir de maneira diferente com nanopartículas, algo que poderia ser explorado para detecção e tratamento do câncer via drug delivery.

Créditos: Sokolov Group, Clarkson University

Os resultados dessa pesquisa foram obtidos empregando-se uma técnica chamada microscopia de força atômica (AFM, na sigla em inglês). Nessa técnica, um microcantilever com um probe faz a varredura de uma amostra submetida a um campo elétrico, o que permite determinar sua topografia. A resolução da AFM é de frações de um nanometro, podendo-se “visualizar” estruturas com dimensões atômicas.

Iyer, S., Gaikwad, R., Subba-Rao, V., Woodworth, C., & Sokolov, I. (2009). Atomic force microscopy detects differences in the surface brush of normal and cancerous cells Nature Nanotechnology, 4 (6), 389-393 DOI: 10.1038/nnano.2009.77

Sobre ScienceBlogs Brasil | Anuncie com ScienceBlogs Brasil | Política de Privacidade | Termos e Condições | Contato


ScienceBlogs por Seed Media Group. Group. ©2006-2011 Seed Media Group LLC. Todos direitos garantidos.


Páginas da Seed Media Group Seed Media Group | ScienceBlogs | SEEDMAGAZINE.COM