Nanobiotecnologia no ENEM
A nanotecnologia está ligada à manipulação da matéria em escala nanométrica, ou seja, uma escala tão pequena quanto a de um bilionésimo do metro. Quando aplicada às ciências da vida, recebe o nome de nanobiotecnologia. No fantástico mundo da nanobiotecnologia, será possível a invenção de dispositivos ultrapequenos que, usando conhecimentos da biologia e da engenharia, permitirão examinar, manipular ou imitar os sistemas biológicos. LACAVA, Z.; MORAIS, P. Nanobiotecnologia e saúde. Com Ciência. Reportagens. Nanociência & Nanotecnologia. Disponível em: http://www.comciencia.br/reportagens/nanotecnologia/nano15.htm. Acesso em: 4 maio 2009.
Como exemplo da utilização dessa tecnologia na Medicina, pode-se citar a utilização de nanopartículas magnéticas (nanoimãs) em terapias contra o câncer. Considerando-se que o campo magnético não age diretamente sobre os tecidos, o uso dessa tecnologia em relação às terapias convencionais é
(A) de eficácia duvidosa, já que não é possível manipular nanopartículas para serem usadas na medicina com a tecnologia atual.
(B) vantajoso, uma vez que o campo magnético gerado por essas partículas apresenta propriedades terapêuticas associadas ao desaparecimento do câncer.
(C) desvantajoso, devido à radioatividade gerada pela movimentação de partículas magnéticas, o que, em organismos vivos, poderia causar o aparecimento de tumores.
(D) desvantajoso, porque o magnetismo está associado ao aparecimento de alguns tipos de câncer no organismo feminino como, por exemplo, o câncer de mama e o de colo de útero.
(E) vantajoso, pois se os nanoimãs forem ligados a drogas quimioterápicas, permitem que estas sejam fixadas diretamente em um tumor por meio de um campo magnético externo, diminuindo-se a chance de que áreas saudáveis sejam afetadas.
E aí? Você sabe qual é a resposta?
Os mistérios da água na nanoescala
Grandes personalidades da nanociência e nanotecnologia: Norio Taniguchi
Il nome della rosa
Nanomáquinas: ficção científica ou realidade?
O problema nem é tanto construir a estrutura em si, mas fazê-la andar de forma autônoma. Isso exige que um combustível seja convertido em energia mecânica para que a máquina possa realizar trabalho. O combustível das nossas células é uma molécula chamada trifosfato de adenosina (ou ATP, na sigla em inglês). A quebra de uma das ligações fosfato no ATP libera energia química. Essa energia química é utilizada, por exemplo, para contrair os nossos músculos, movimentar os flagelos de bactérias e espermatozóides e até realizar sinapses no cérebro (é daí que vem a expressão queimar fosfato, usada quando “pensamos muito”). A idéia do ATP como combustível inspirou pesquisadores da Pennsylvania State University, que desenvolveram nanomotores simples capazes de converter energia química – estocada em moléculas que atuam como “combustíveis” – em energia mecânica que gera movimento.
De forma resumida, eles construíram um cilindro feito de platina e outro, com dimensões de 2 micrômetros de altura por 370 nanometros de largura. Os cilindros usados eram assimétricos, ou seja, uma metade era composta por platina e a outra metade era de ouro. Os cilindros foram colocados em um tanque com água e peróxido de hidrogênio (ou água oxigenada, para os íntimos) e aí uma reação interessante aconteceu: na ponta do cilindro composta por platina, cada molécula de peróxido de hidrogênio foi quebrada em 1 molécula de oxigênio, 2 elétrons e 2 prótons; na outra ponta composta por ouro, os elétrons e prótons (que se moveram do lado platina para o lado ouro) se combinaram com uma molécula de peróxido de hidrogênio para formar 2 moléculas de água.
O oxigênio formado no lado de platina interrompeu a rede de ligações de hidrogênio da água, reduzindo sua tensão interfacial líquido-vapor. Como o oxigênio foi gerado apenas em um dos lados do cilindro, um gradiente de tensão interfacial foi criado , gerando uma turbulência na água que estava ao redor do cilindro (ou seja, a diferença de tensão interfacial entre a água ao redor de uma ponta e da outra do cilindro fez com que a água fluísse de um lado para o outro). O fluxo da água foi empurrando o cilindro – no fim das contas, a energia química liberada na quebra do peróxido de hidrogênio em oxigênio, prótons e elétrons foi a fonte energética da propulsão dessa nanomáquina. Conforme o cilindro se movia, o gradiente era continuamente restabelecido porque mais oxigênio era continuamente formado a partir de novas moléculas de peróxido de hidrogênio – e a cada geração de oxigênio, o cilindro era empurrado mais um pouco. É claro que o movimento resultante foi aleatório, mas o estudo já é um ponto de partida interessante para desenvolvermos nanomáquinas capazes de movimento autônomo para finalidades específicas. No futuro, a molécula usada como “combustível” provavelmente não será peróxido de hidrogênio, se pensarmos em aplicações biológicas – mas a glicose pode muito bem ser utilizada, tal qual já é pelas nossas células. Quanto à não-aleatoriedade do movimento, o próprio grupo vem estudando alternativas, como o uso do magnetismo.
Paxton, W., Kistler, K., Olmeda, C., Sen, A., St. Angelo, S., Cao, Y., Mallouk, T., Lammert, P., & Crespi, V. (2004). Catalytic Nanomotors: Autonomous Movement of Striped Nanorods Journal of the American Chemical Society, 126 (41), 13424-13431 DOI: 10.1021/ja047697z
Os nanorrobôs vão dominar o mundo?
Mas será que corremos o sério risco de virar comida de nanorrobô um dia? Embora o cenário acima seja aterrorizante, há alguns “poréns” que justificam a existência dos grey goo apenas na ficção e garantem nossa segurança contra esse trágico destino (ufa).
Um grey goo teria tarefas muito mais complicadas do que simplesmente se auto-replicar. Ele precisaria sobreviver e se mover no ambiente, além de converter o que encontrasse no caminho em matéria-prima para obtenção de energia. Um nanorrobô grey goo também precisaria de uma capacidade computacional relativamente considerável para processar todas essas funções e harmonizá-las conforme a necessidade. ISSO REQUER UMA QUÍMICA MUITO, MAS MUITO SOFISTICADA. Coisa difícil de se conseguir na nossa escala de tamanho, que se dirá na escala nano. E um nanorrobô sem uma dessas funcionalidades sequer não poderia ser de fato um grey goo. Será que conseguiremos construir nanorrobôs que reúnam todas essas características? Acho bastante improvável.
P.S.: Obrigada ao Eduardo Bender pela ótima sugestão desse tema, e ao Luis por perguntar.
Poesia numa hora dessas?
Quem sabe?
Diz a mecânica quântica
que as partículas atômicas
se comportam de um jeito
quando são observadas
e de outro quando estão sós
(como, aliás, todos nós).
E quem nos assegura
que o Universo que está aí
não é como aí está
quando ninguém está olhando?
E que quando os atrônomos
se viram do telescópio
para a prancheta
o Universo não faz
uma careta?
———————
Hahaha, quem sabe?
Nanopartículas que emitem luz – parte III
Pode não parecer, mas estudos in vivo envolvendo quantum dots são coisa rara e por isso justificam esse post à parte. Há certas controvérsias sobre o assunto que talvez expliquem essa escassez de estudos:
I. Os complexos de quantum dots podem causar reações alérgicas perigosas.
II. Os materiais usados na sua composição podem ser tóxicos.
III. O tamanho dos complexos de quantum dots é superior ao necessário para a eliminação pelos rins – isso faz com que eles sejam eliminados pelo fígado, que é particularmente sensível à toxicidade do cádmio (um dos elementos mais comuns na fabricação de quantum dots).
Ainda há muitos testes a se fazer antes de considerar os quantum dots passíveis de uso em larga escala para diagnóstico in vivo. E eles precisam ser feitos, porque a idéia é boa. Um exemplo é um estudo publicado no PNAS em 2002. Os autores avaliaram a possibilidade de direcionar quantum dots para um alvo específico no organismo in vivo. Para isso, quantum dots de seleneto de cádmio recoberto com sulfeto de zinco foram revestidos com três diferentes peptídeos e injetados em camundongos. Um dos três peptídeos levou os quantum dots aos pulmões de camundongos em maior quantidade que em outros locais do organismo. Os outros dois peptídeos direcionaram os quantum dots a sítios vasculares contendo tumores (tais como veias sanguíneas e rede linfática). No entanto, além desses alvos, os quantum dots também se acumularam no fígado e no baço dos animais devido à captura pelo sistema monocítico fagocitário, que é responsável por eliminar qualquer corpo estranho que se introduza no organismo. Uma forma de “enganar” o sistema monocítico fagocitário é revestir a nanopartícula com PEG (olha aí novamente os aviões Stealth do nanobiomundo!). O revestimento com PEG reduziu bastante o acúmulo dos quantum dots no fígado e baço sem alterar o acúmulo nos sítios-alvo desejados.
(fonte: Akerman e col., 2002)
Embora o assunto possa render ainda muitos posts por ser bastante amplo, encerro por aqui essa trilogia sobre o uso de quantum dots na área médica. Provavelmente ainda falarei deles no futuro. Obrigada por ter me acompanhado até aqui.
Abraços quânticos!
Referências:
Jamieson, T., Bakhshi, R., Petrova, D., Pocock, R., Imani, M., & Seifalian, A. (2007). Biological applications of quantum dots Biomaterials, 28 (31), 4717-4732 DOI: 10.1016/j.biomaterials.2007.07.014
Akerman, M. (2002). Nanocrystal targeting in vivo Proceedings of the Nati
onal Academy of Sciences, 99 (20), 12617-12621 DOI: 10.1073/pnas.152463399
Kim, S., Lim, Y., Soltesz, E., De Grand, A., Lee, J., Nakayama, A., Parker, J., Mihaljevic, T., Laurence, R., Dor, D., Cohn, L., Bawendi, M., & Frangioni, J. (2003). Near-infrared fluorescent type II quantum dots for sentinel lymph node mapping Nature Biotechnology, 22 (1), 93-97 DOI: 10.1038/nbt920
Nanopartículas que emitem luz – parte II
EMISSÃO DE LUMINESCÊNCIA DE SOLUÇÕES DE QUANTUM DOTS DE CdSe/ZnS. O TAMANHO AUMENTA DE 2 A 6 nm DA ESQUERDA PARA A DIREITA
(Fonte: Tomzak e colaboradores, 2009).
Quantum dots podem ser utilizados como sensores químicos para detectar microrganismos patogênicos e toxinas. Quantum dots ligados a anticorpos foram capazes de detectar os microrganismos Cryptosporidium parvum e Giardia lamblia em água. A figura abaixo mostra a cor verde emitida pelos quantum dots ligados a C. parvum e a cor vermelha emitida por aqueles ligados a G. lamblia. A vantagem desses quantum dots frente aos corantes tradicionais é que eles podem ser empregados para qualquer tipo de microrganismo com alta especificidade e são menos susceptíveis a interferentes.
(Fonte: Zhu e colaboradores, 2004)
Quantum dots ligados a oligonucleotídeos podem reconhecer sequências-alvo no DNA. Dessa forma, a identificação de sequências-alvo específicas no material genético foi feita empregando-se combinações de quantum dots de diferentes cores e com capacidade de emitir luz em diferentes intensidades para cada cor. Usando 6 cores e 10 intensidades, é possível obter um milhão de combinações! A identificação de certos alvos na estrutura do material genético poderia permitir o diagnóstico de doenças decorrentes de mutações, tais como certos cânceres. Há potencial na idéia, mas para isso é fundamental ter à disposição uma biblioteca de ligantes (oligonucleotídeos ou anticorpos) capazes de reconhecer os alvos específicos na estrutura do DNA.
O uso dos quantum dots para medir a atividade de certas enzimas é outra aplicação interessante na área de diagnóstico. Quantum dots foram ligados a um oligopeptídeo, que por sua vez foi marcado com rodamina (um corante fluorescente tradicional). Na presença de proteases (enzimas que quebram peptídeos) ocorreu a quebra do oligopeptídeo que unia o quantum dot e a rodamina. Isso alterou a cor do quantum dot, que passou de laranja a verde. Se não houvesse proteases na amostra, a cor do quantum dot não se alteraria. Quanto maior a concentração de protease, maior a intensidade da cor verde. O tipo de oligopeptídeo usado é escolhido em função da enzima específica que se quer detectar (porque essa quebra é altamente seletiva). Com esse teste, os autores puderam diferenciar células normais de células de câncer de mama in vitro em menos de 15 min, porque a atividade de proteases em células cancerosas é maior que em células normais.
Achou bacana? Pois saiba que ainda não acabou. Tem mais sobre quantum dots aplicados à área médica no próximo post!
(Continua no próximo post)
Referências:
Tomczak, N., Jańczewski, D., Han, M., & Vancso, G. (2009). Designer polymer-quantum dot architectures Progress in Polymer Science, 34 (5), 393-430 DOI: 10.1016/j.progpolymsci.2008.11.004
Han, M., Gao, X., Su, J., & Nie, S. (2001). Quantum-dot-tagged microbeads for multiplexed optical coding of biomolecules Nature Biotechnology, 19 (7), 631-635 DOI: 10.1038/90228
Zhu, L., Ang, S., & Liu, W. (2004). Quantum Dots as a Novel Immunofluorescent Detection System for Cryptosporidium parvum and Giardia lamblia Applied and Environmental Microbiology, 70 (1), 597-598 DOI: 10.1128/AEM.70.1.597-598.2004
Shi, L., De Paoli, V., Rosenzweig, N., & Rosenzweig, Z. (2006). Synthesis and Application of Quantum Dots FRET-Based Protease Sensors Journal of the American Chemical Society, 128 (32), 10378-10379 DOI: 10.1021/ja063509o