Arquivo da categoria: Dinossauros

Prehistoric Planet, o guia de episódios

Breves considerações sobre cada capítulo, do litoral da Zelândia às florestas congeladas do Polo Norte.

Ainda dá pra falar da série? Depois de discorrer sobre as expectativas da produção e minhas primeiras impressões, chegou a hora de revisitar os cinco episódios de Prehistoric Planet. A série da AppleTV+ possui uma abordagem padrão dos documentários de natureza atuais, com cada episódio focado num ecossistema, o que garante uma salada de diversidade para a tela, tanto de criaturas como de seus habitats e condições climáticas. Somadas, elas perfazem o mais assombroso esforço paleoartístico conjunto já realizado.

Resolvi rever toda a série e fazer comentários breves, apenas minhas impressões, a respeito de cada episódio. Para deixar a leitura mais dinâmica, decidi trazer uma referência aos documentários prévios da BBC para cada capítulo. Em alguns casos, esses momentos claramente serviram de inspiração à algumas sequências de Prehistoric Planet (ou a coincidência é muito braba, quem garante?). Cabe a você identificá-las enquanto assiste (e depois dizer se concorda comigo!)

Sem mais delongas, Prehistoric Planet, capítulo por capítulo:

Episódio 1 – Costas (Coasts)

Prehistoric Planet não é uma série sobre dinossauros, é uma série sobre a fauna de nosso planeta durante o Maastrichtiano, o finalzinho do período Cretáceo. “Costas” deixa isso claro desde o princípio: os Tyrannosaurus são os únicos dinossauros num episódio que está cheio de pterossauros, plesiossauros e tartarugas.
Um episódio que se destaca por ser simplesmente o primeiro, aquele que, se assistirmos a série na ordem, representa o início da nossa viagem ao tempo. Tudo é novo, você não sabe o que esperar. Quem veio pelos clichês do gênero se surpreende com peixinhos limpando a pele de um mosassauro, amonites bioluminescentes, Tuarangisaurus engolindo pedra, e por aí vai. Prehistoric Planet não apenas almeja mostrar a vida do Cretáceo como nunca antes vista, mas se orgulha em fazer isso.

Amonite bioluminescente do episódio 1, “Costas”.

Sequência favorita: no Norte da África, bebês Alcione (A Voz do Samba) precisam fazer um voo dos rochedos onde eclodiram às florestas seguras, passando por um verdadeiro corredor aéreo de predadores. Tudo aqui funciona: as paisagens são lindas, a diversidade de pterossauros impressiona, os comportamentos especulativos são sensacionais (os filhotes “caindo” durante o voo é o ponto alto) e, principalmente, o trabalho dos cinegrafistas é, no mínimo, realista. Filmar aves em voo não é tarefa fácil, ainda mais durante perseguições, e essa dificuldade é transposta em Prehistoric Planet: perceba como as imagens do Barbaridactylus em voo são tremidas, como eles saem e entram do enquadramento, às vezes fora de foco, tal qual um falcão seria filmado hoje em dia. Sublime.

O que não gostei: aqui temos os únicos momentos de toda a série em que o CGI claramente me pareceu CGI. Alguns movimentos dos répteis marinhos não me soaram naturais, especialmente a ausência de qualquer mudança de direção da cabeça dos mosassauros. Mas nada foi mais artificial do que quando as imagens de recifes de corais reais deram lugar, abruptamente, a recifes de CGI.

Parece que, enquanto assistia a Blue Planet, alguém mudou de canal e colocou em Procurando Nemo.

Momento “já vi isso na BBC”:

Episódio 2 – Desertos (Deserts)

O episódio sobre as regiões desérticas do planeta vem como um perfeito antídoto pra quem sentiu falta de dinossauros no episódio anterior: temos aqui o maior número de cabeças por minuto de projeção – só a sequência do oásis asiático tem mais figurantes que uns 3 episódios juntos. Lawrence da Arábia, versão cretácea.

Hadrossauros nômades (duas vezes!), pequenos especialistas do deserto, duelos de saurópodes e até mesmo lagartinhos garantem uma sequência mais impressionante que a outra, ainda que, como de costume, pouco seja explicado para além do que os dinossauros estão fazendo. Prehistoric Planet não almeja ser o tipo de documentário didático cheio de informações sobre o mundo, daqueles que a professora passava pra gente na escola. É uma obra muito mais contemplativa, artística. E, nesse quesito, a série acerta em cheio.

Mononykus retratato no episódio “Desertos”.

Sequência favorita: mais uma vez, temos a prova da qualidade audiovisual de Prehistoric Planet logo de cara. No meio do deserto, Dreadnoughtus se reúnem para disputar acesso às fêmeas de maneira extremamente violenta, praticamente uma versão terrestre de elefantes-marinhos. O grande macho líder está sujo de areia; no inevitável embate com um concorrente, a gente consegue enxergar o pó lançado ao ar a cada tranco que o bicho dá, um detalhe mínimo, mas que nos lembra do altíssimo nível da animação. Sem falar os efeitos sonoros bizarríssimos usados durante toda a sequência. Fino, coisa fina.

O que não gostei: embora seja um comportamento notável (e visto e revisto em outros documentários com o caso das sépias-gigantes do sul da Austrália), a cena das estratégias reprodutivas peculiares do Barbaridactylus perde ponto pelo antropomorfismo exagerado, em minha opinião (mais sobre isso, abaixo).

Momento “já vi isso na BBC”:

Episódio 3 – Água Doce (Freshwater)

Após rever a série inteira, confirmei minhas impressões iniciais: esse é meu episódio favorito. Acredito que aqui temos um ótimo equilíbrio entre criaturas “wtf?!” pulando (literalmente) na tela e bichos mais conhecidos vistos sob uma nova perspectiva. Se, por um lado, os famosos Velociraptor e Tyrannosaurus fazem uma reprise, somos brindados com um Deinocheirus flatulento e um grupinho fofo de Masiakasaurus (talvez um dos únicos bichos que não foi exibido na divulgação prévia do documentário).

Mas preciso dizer, o tema do episódio é ainda mais vago que os demais: apesar de se referir como “água doce”, a tal da água só tá ali pra servir de plano de fundo e conectar frouxamente minidramas do mundo natural. A ausência de crocodilos, um grupo extremamente diverso durante o Cretáceo, também não faz muito sentido.

Mãe Quetzalcoatlus e seu ninho, no episódio “Água Doce”.

Sequência favorita: os pterossauros em Prehistoric Planet roubam todas as cenas. Mesmo com uma bela sequência envolvendo uma mãe Quetzalcoatlus, porém, nada bate a arrepiante descida de três Velociraptor num desfiladeiro, atrás de… mais pterossauros, disparada minha cena favorita de toda a série. O negócio é tão bem feito que realmente parece algo filmado hoje em dia; o fato de o “ataque final” ter sido filmado numa tomada longa em plano aberto, com os bichinhos bem pequeninos e distantes, é só uma pequena parte disso. Quem já viu as inúmeras cenas de leopardos-das-neves em documentários sabe que não é fácil filmar caçadas completas em escarpas e penhascos, e a emulação dessa limitação técnica em Prehistoric Planet foi só mais uma nota do seu primor técnico.

E, convenhamos, ver os Velociraptor usando suas penas como vantagem para saltos mais longos é simplesmente impagável.

O que não gostei: a sequência dos Elasmosaurus, que fecha o episódio, é um tanto confusa geograficamente (ora parece que eles sobem o rio, ora que estão descendo), e não chega no mesmo nível de tudo o que foi mostrado antes. Não é necessariamente ruim, mas, para mim, serviu como um anticlímax.

Momento “já vi isso na BBC”:

Episódio 4 – Mundos Congelados (Ice Worlds)

Ainda hoje, mesmo dentro da academia (experiência própria), muitas pessoas vivem sob o antigo dogma de que dinossauros são lagartões de sangue frio, limitados a uma existência em áreas tropicais, úmidas e quentes. Um episódio inteiro dedicado à fauna cretácica das altas latitudes joga um banho de água fria (RÁ!) nessa visão, nos apresentando uma coleção extraordinária de dinossauros na neve. Como padrão quando o tema é regiões sazonais, o quarto episódio se desenrola no ritmo das estações, começando no início da primavera e terminando com as nevascas de inverno.

E sim, aqui temos o recorde de ornitísquios de Prehistoric Planet, com cinco formas diferentes dando as caras. O Olorotitan provavelmente reina soberano, e sua sequência é facilmente uma das mais bonitas de toda a série.

Troodontídeo usando fogo para caçar durante o episódio “Mundos congelados”.

Sequência favorita: embora o duelo final entre Pachyrhinosaurus e Nanuqsaurus seja o clímax perfeito, em termos técnicos e narrativos, para mim, toda e qualquer coisa que envolva a Antártida já é um destaque, então fico com o jovem Australopelta em busca de um refúgio no inverno. Além de possuir ecos diretos de Espíritos da Floresta de Gelo, meu episódio favorito de Caminhando com Dinossauros, acho que devemos lembrar que sempre é bom ver representações dos raríssimos anquilossauros gondwânicos.

O que não gostei: nada realmente problemático, mas achei a sequência original envolvendo Edmontosaurus e Dromaeosauridae um tanto genérica e previsível. Os Dromeosaurídae, por outro lado, são os Maniraptora mais bonitos da série (desculpa, Corythoraptor).

Momento “já vi isso na BBC”:

Episódio 5 – Florestas (Forests)

Das selvas do que é hoje a Argentina às florestas decíduas autunais do Extremo Oriente, o Planeta Pré-histórico era um Planeta Verde (Green Planet, ah lá o Attenborough fazendo jabá pra ele mesmo). Ao tratar de florestas, esse talvez seja o mais didático dos episódios, com brevíssimas menções à sucessão ecológica, papel ecológico do fogo e mudança de estações.

Mesmo assim, esse foi o com o qual menos me identifiquei (e veja abaixo o porquê). Pelo menos temos o Brasil, representado aqui pelo belíssimo Austroposeidon, da região de Presidente Prudente, SP.

Anquilossaurídeo que aparece no episódeo “Florestas”.

Sequência favorita: eu tenho uma queda por Abelisauridae, posso passar horas vendo as proporções bizarras de bichos como o Majungasaurus, Aucasaurus e, claro, o Carnotaurus. Mas também posso fazer isso com os Azhdarchidae, e como torci o nariz pra um pequeno detalhe envolvendo o Carnotaurus, minha sequência favorita ficou com o gigante Hatzegopteryx dando um rolê pelas florestas pré-históricas da Transilvânia. Os pequenos Zalmoxes são um detalhe à parte. O único contra é essa cena ter acabado tão rápido!

O que não gostei: criaturas antropomorfizadas têm sido comuns (infelizmente) em boa parte dos documentários atuais, e em Prehistoric Planet, não poderia ser diferente. Na minha interpretação, esse episódio traz mais momentos emotivos do que todos os outros. É o Carnotaurus visivelmente frustrado, o bebê Therizinosaurus admirado com o adulto e a mãe Triceratops apreensiva com sua filhote perdida na caverna. Passa a impressão de que o simples fato de os Triceratops adentrarem uma caverna não seja espetacular o bastante, precisa ser inserido um drama narrativo (e que nos distrai do que realmente é importante). Ainda que não chegue a um nível Disney de bobose, esses artifícios narrativos soam um bocado exagerados (e a trilha sonora contribui muito com isso), caminhando na contra mão do realismo proposto pela série.

Momento “já vi isso na BBC”:

Um breve adendo: a música da série

Eu sou um grande reclamão das trilhas sonoras dos documentários atuais. Para mim, elas são altas, onipresentes e sem inspiração, músicas compostas com o claro e único intuito de gerar emoções. Logo, já esperava que ia encontrar esse problema aqui, mas fui surpreendido positivamente: em algumas sequências, é possível apreciar o silêncio, o som do ambiente e dos animais.

Mas, quando presente, a trilha soa genérica demais. Em alguns casos, até lembra as de um filme de super-herói (a própria música título pode ter saído de um filme da Marvel). Essas características negativas ficaram ainda mais claras quando me lembrei da música de Caminhando com Dinossauros, que de genérica não tem nada, e percebi como ela foi importante para deixar a série de 1999 tão atmosférica, até meio sombria.

Felizmente alguém também notou isso, pois descobri uma sequência de Prehistoric Planet com a música de Caminhando com Dinossauros substituindo a original. Olha a diferença!

_______________________________________________________________________________

Link para meu texto sobre expectativa da série: https://www.blogs.unicamp.br/colecionadores/2022/04/20/de-caminhando-com-dinossauros-ate-prehistoric-planet/

Link para meu texto sobre primeiras impressões da série, e sua inspiração: https://www.blogs.unicamp.br/colecionadores/2022/06/05/prehistoric-planet-um-baita-exercicio-de-especulacao/ 

Prehistoric Planet está na Apple TV+: https://tv.apple.com/us/show/prehistoric-planet/umc.cmc.4lh4bmztauvkooqz400akxav

Descrição do Austroposeidon magnificus: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0163373

Sépias espertas: https://www.youtube.com/watch?v=KT1-JQTiZGc&ab_channel=BBCEarth

Leopardo-das-neves: https://www.youtube.com/watch?v=GgDHvl1wD20&ab_channel=WildFilmsIndia

The Green Planet: https://www.youtube.com/watch?v=3G1arGl8RvA&ab_channel=BBC

Prehistoric Planet: um (baita) exercício de especulação

A semana é boa quando você acaba sendo agraciado com 40 minutos diários de Mesozóico. Agora que terminamos de ver Prehistoric Planet, a série mais do que hypada da Apple TV+, que tal refletirmos sobre a origem do estilo especulativo da série?

Quando saíram os primeiros sinais do que era Prehistoric Planet, escrevi um texto a respeito de como a nova série de documental viera para repaginar (e talvez até substituir) a clássica ‘Caminhando com Dinossauros’. Era uma aposta óbvia: em mais de 20 anos, nenhuma outra produção sobre dinossauros conseguiu atingir o mesmo nível e impacto, e Prehistoric Planet parecia estar aqui exatamente para isso. E, embora muita gente siga comparando as duas séries, percebi que a grande inspiração da produção da Apple TV+ não era o clássico de 1999, mas sim um… livro.

Capa do livro “All Yesterdays” – A melhor dica de livro que você vai receber hoje.

All Yesterdays é um livrinho simpático e aparentemente inofensivo. Creditado aos paleoartistas John Conway e C.M. Kosemen e ao paleontólogo Darren Naish. A proposta da obra é realizar uma releitura das representações paleoartísticas do Mesozoico, assumindo dinossauros como seres vivos e não gigantes sanguinários com tendência a berrar e mostrar os dentes 24 horas por dia. Sentiu uma semelhança com Prehistoric Planet? Calma que é só metade da história.

Um Allosaurus e um Camptosaurus apenas se encarando, sem segundas intenções. Porque o predador não precisa estar caçando e a presa não precisa estar fugindo 100% do tempo.

Desde o chamado “Renascimento dos Dinossauros”, nos anos 1970-80, uma tendência dos paleoartistas foi representar esses animais como organismos complexos e atléticos, mas magrelões secos, verdadeiros sacos de ossos. Isso não é de se surpreender, uma vez que tecidos moles raramente são preservados, restando aos paleoartistas reimaginar essas criaturas tendo apenas os ossos como base.

Greg Paul é um dos maiores nomes da paleoarte e do Renascimento dos Dinossauros, e suas representações hiper-atléticas e zero gordura destes animais seguem sendo uma das mais influentes e reproduzidas nos últimos 40 anos. Por esse motivo que dinossauros magros são tão comuns na paleoarte. Aqui, um Tyrannosaurus apelão apostando corrida.

Em All Yesterdays, os autores reforçam que os dados científicos publicados devem ser utilizados ao máximo na reconstrução de tecidos moles, incluindo aí músculos, tecidos conjuntivos, penas, chifres e escamas. Com isso, temos uma nova interpretação dessas criaturas, reforçando ainda mais a visão dos mesmos como animais, e não monstros. Um exemplo que ilustra bem o caso é o dos bracinhos dos abelissaurídeos.

Um Majungasaurus agita seus bracinhos num claro sinal de comunicação. Já viu um abelissaurídeo fazendo isso em algum lugar?

Se existem evidências de que os diminutos braços dos abelissaurídeos possuem uma articulação que permite a rotação do membro em vários ângulos e, ainda por cima, cicatrizes musculares que indicam uma alta possibilidade de movimentos, por que não imaginá-los como órgãos de comunicação? E, seguindo essa lógica, porque não reconstruí-los com cores chamativas? Esse é o espírito de All Yesterdays, que foi muito bem encarnado em Prehistoric Planet

O jeito Carnotaurus de dizer “Oi gata, tá afim de ver uma Netflix?”. Cena do episódio 5.

Aliás, qualquer semelhança entre essas obras está longe de ser coincidência: o já citado paleontólogo Darren Naish é o principal consultor científico da série, e John Conway e outros paleontólogos/paleoartistas fortemente ligados ao “movimento” também deram assistência em sua criação.

Confia.

E é exatamente por isso, por conta dessa pegada “especulativa mas baseada no maior número possível de trabalhos científicos”, que Prehistoric Planet está sendo considerada a produção mais fidedigna sobre a vida no Mesozoico (e essa constatação não é apenas minha, mas a de muitos paleontólogos de respeito). Nada de dinossauros se matando como kaijus saídos do quinto dos infernos, mas sim animais bem adaptados ao seu ambiente.

Inclua no balaio da especulação mosassauros utilizando “estações de limpeza” em recifes de corais, Dreadnoughtus disputando direitos reprodutivos com sacos infláveis a la fragata, Quetzalcoatlus fazendo voos intercontinentais, um “Troodon” ateando fogo na floresta para tirar suas presas de seus esconderijos, Triceratops buscando minerais dentro de cavernas, e por aí vai.

Outro momento All Yesterdays: elasmossaurídeos fazendo display com o pescoço fora d’água, presente tanto na série como no livro. Cena do episódio 1.

Nenhum comportamento exibido na série “veio do nada”: com uma equipe de consultores tão grande e experiente, tais suposições foram baseadas ou em evidências fósseis ou por “phylogenetic bracketing“, um maneira de inferir traços em organismos a partir de sua posição num cladograma. Um assunto muito interessante que renderia horas e horas de discussão e, no mínimo, um novo post sobre.

Um exemplo resumido de phylogenetic bracketing: é de se assumir que cuidado parental seja uma condição ancestral em dinossauros, uma vez que tanto as aves (dinossauros modernos) quanto os crocodilos (parentes vivos mais próximos) possuem esse traço. Cena do episódio 4.

Pra cimentar esse jeitão “tão real que parece até de verdade”, temos o estilo documental. Cinegrafistas gravaram as tomadas de paisagens nos quatro cantos do planeta, para então inserirem os dinosauros de CGI nelas (e que CGI, senhoras e senhores… os efeitos são, no mínimo, ABSURDOS). Esse trabalho de câmera (que, inclusive, foi utilizado 23 anos atrás em Caminhando com Dinossauros) resultou numa abordagem muito mais realista, sem os maneirismos permitidos e artificiais de produções 100% animadas (como o caso de Planet Dinosaur).

Dinossauros de CGI em meio a cavalinhas de CGI fugindo de pterossauros de CGI. Ao fundo, nuvens de CGI. Planet Dinosaur pode parecer ser tudo, menos realista.

E, por fim, temos o estilo narrativo. Cada episódio é focado num ecossistema, com vinhetas que mostram como bicho X lida com a vida no ambiente Y: no fim das contas, um episódio se resume a sequências dramáticas sem muita conexão umas com as outras. Essa pegada tornou-se meio que um padrão nas produções recentes, como Planeta Terra II e Nosso Planeta, para citar apenas dois exemplos.

E é exatamente aqui que encontro o calcanhar de Aquiles de Prehistoric Planet (e devo ressaltar que essa é apenas a minha opinião). Ao assistir a série, notei que não existem praticamente nenhuma explicação de como as especulações foram feitas: elas simplesmente estão lá, assumidas como verdade absoluta. Isso é uma falha grave num documentário cuja intenção é transmitir conhecimento. Para entender melhor qualquer comportamento exibido, você ou deve ter conhecimento prévio sobre o assunto ou precisa pesquisar um bocado na internet.

Existe evidência fóssil da língua-pegajosa-armadilha-de-cupim do Mononychus? Não, embora a gente pode supor sua existência por outros detalhes anatômicos. Sei disso por ter visto o documentário? Não. É porque dei um Google depois de assistir. Cena do episódio 2.

O jeitão polido que Prehistoric Planet emula das outras séries de peso da BBC impede um maior teor científico ou mesmo um jargão mais pesado em cada episódio. Isso podia ter sido evitado se houvessem maiores explicações ao longo da narração, ou no mínimo um episódio especial apenas sobre a “ciência da série”. Ou ainda, imitando outros documentários modernos, colocando um “making of” de 10 minutos após a exibição, para deixar claro como foi feita a reconstrução. Infelizmente, o mais próximo disso foram vídeos de 4-5 minutos, lançados como bônus no serviço de streaming e também no canal da Apple TV+, explicando um único caso por episódio. Complicado.

Mesmo com essa ressalva (que considero bem relevante), estou com a maioria: Prehistoric Planet é uma obra excepcional, digna de ser considerada uma das maiores, senão a maior, produção do tipo já feita. O simples fato de trazer essas especulações tão bem baseadas em evidências ao público amplo através de uma produção de altíssimo nível já é louvável e garante um destaque. Na verdade, eu gostei tanto que já estou me preparando para reassisti-la e trabalhar em análises de cada episódio, porque tem pano pra gente discutir aqui!

Porque não é todo dia que somos brindados com Tarbosaurus tirando uma sonequinha <3 Cena do episódio 2.

Link para meu texto anterior: https://www.blogs.unicamp.br/colecionadores/2022/04/20/de-caminhando-com-dinossauros-ate-prehistoric-planet/

Prehistoric Planet está na Apple TV+: https://tv.apple.com/us/show/prehistoric-planet/umc.cmc.4lh4bmztauvkooqz400akxav

O conteúdo bônus da série pode ser visto aqui: https://www.youtube.com/watch?v=FIeCzBCLJww&list=PLx-VtE7KiW8zKg7VkRGBV5gguBncOPe-a

Você pode adquirir o ebook de All Yesterdays na amazon.com.br por R$ 20,00: https://www.amazon.com.br/All-Yesterdays-Speculative-Dinosaurs-Prehistoric-ebook/dp/B00A2VS55O/ref=sr_1_1?keywords=all+yesterdays&qid=1653761942&sprefix=all+yester%2Caps%2C227&sr=8-1&ufe=app_do%3Aamzn1.fos.4bb5663b-6f7d-4772-84fa-7c7f565ec65b

Novidades sobre as relações evolutivas dos dinossauros

Uma nova e interessante proposta para explicar as relações evolutivas dos dinossauros e principalmente, a origem dos dinossauros ornitísquios, grupo que inclui o Triceratops e os famosos dinossauros “bico de pato”, acaba de ser apresentada por dois pesquisadores brasileiros da Universidade Federal de Santa Maria (UFSM), RS, Rodrigo Temp Müller e Maurício Garcia. O estudo foi publicado na revista científica Biology Letters e agita ainda mais a discussão sobre as relações evolutivas dos dinossauros.

Arte de Márcio Castro

Não faz muito tempo que um estudo liderado por um pesquisador britânico chamado Matthew Baron, sacudiu a comunidade paleontológica e abriu espaço para novas discussões sobre uma questão fundamental no estudo de dinossauros: a relação evolutiva entre os grandes grupos desses animais.

Em 2017, Baron e colaboradores ressuscitaram uma antiga hipótese sobre a relação dos dinossauros, que propunha que o grupo que inclui os dinossauros carnívoros, como o Tyrannosaurus, era mais proximamente relacionado ao grupo dos dinossauros ornitísquios, aquele que reune Triceratops, Stegosaurus e os chamados “dinos bico de pato”. A hipótese de Baron e colegas veio com algumas novidades, mas já havia sido considerada no passado, tendo sido descartada por diversos estudos em detrimento da proposta mais clássica, que reúne dinossauros carnívoros e os grandes dinossauros “pescoçudos ” em um mesmo grupo chamado Saurischia.

Se quiser ler mais sobre essa história, clique aqui.

O agito causado por esse artigo foi tanto, que, na época, muito se falou na mídia popular, inclusive, como se tudo que sabíamos sobre dinossauros tivesse que ser reescrito. Pouco tempo passou, todavia, até a publicação de um outro estudo, rebatendo a proposta de Baron e colaboradores. Estudo esse, liderado por um pesquisador brasileiro, da USP de Ribeirão Preto, Prof. Max Langer. O estudo liderado por Langer apontava inconsistências no trabalho de Baron e concluía que a hipótese clássica da divisão dos dinossauros ainda se sustentava com prioridade, apesar de a proposta de Baron não poder ser totalmente descartada, já que era somente “um pouco menos provável que a hipótese tradicional”. Leia mais sobre isso aqui.

A história é longa e a disputa continuou em alguns estudos subsequentes, mas aonde eu quero chegar é que, toda essa discussão ressaltou novamente uma verdade muito incômoda para os estudiosos de dinossauros: nós conhecemos muito pouco sobre os primeiros ornitísquios e não conseguimos dizer com certeza como eles se relacionam com os outros dinossauros. E é aí, finalmente, que o trabalho recém-publicado pelos colegas da UFSM pode ajudar. 

Os “caçadores de dinossauros” da UFSM

Rodrigo Temp Müller e Maurício Garcia são dois pesquisadores muito privilegiados, pois têm a honra de estar justamente no local que provavelmente foi o berço dos dinossauros, há aproximadamente 230 milhões de anos. Os fósseis de dinossauros mais antigos conhecidos no mundo são encontrados em rochas dessa idade na Argentina, no sul do Brasil e na porção sul do continente africano. Justamente por estarem trabalhando sobre essas rochas, esses pesquisadores têm acesso direto a fósseis fantástico, que contam a história da aurora desse grupo tão fascinante de animais.

Rodrigo Temp Müller e Maurício Garcia

Atualmente, Rodrigo T. Müller e Maurício Garcia, junto a outros pesquisadores, trabalham vinculados ao Centro de Apoio à Pesquisa Paleontológica (CAPPA-UFSM), em São João do Polêsine, RS, onde se dedicam a estudar a história dos primeiros dinossauros.

A nova hipótese de Müller e Garcia

Verdade seja dita, a origem dos dinossauros ornitísquios é um grande mistério. Enquanto os fósseis mais antigos de dinossauros saurísquios datam de estratos do meio do Período Triássico, entre 245 e 230 milhões de anos, os fósseis mais antigos de ornitísquios são um pouco mais recentes, da transição Triássico-Jurássico, e têm aproximadamente 200 milhões de anos. Explicar esta ocorrência usando a hipótese tradicional sobre da relação dos dinossauros é um pouco constrangedor, pois implica na existência de “linhagens fantasmas” de ornitísquios, que teriam existido entre ‘pouco tempo depois da origem dos dinossauros’, por volta de 240-230 milhões de anos, até cerca de 206 milhões de anos atrás, idade do fóssil mais antigo de ornitísquio conhecido. Resumindo: ornitísquios necessariamente teriam que ter existido entre ~240 e 206 milhões de anos, mas não temos evidências dos fósseis deles.

A nova hipótese proposta por Müller e Garcia solucionaria esse problema de maneira muito elegante, com algo que sempre esteve bem debaixo do nariz dos pesquisadores: os “Silesauridae”.

As criaturas conhecidas como ‘silessaurídeos’ compõe um grupo de organismos extintos normalmente considerados como parentes muito próximos dos dinossauros. De fato, eles e os primeiros dinossauros são extremamente parecidos, tanto em forma, hábitos, quanto em tamanho (imagem).

Fósseis de ‘silessaurídeos’ são encontrados no Brasil, como é o caso de Sacisaurus agudoensis, um pequeno animal, com cerca de 1,5m de comprimento, que viveu há 225 milhões de anos onde hoje é o Rio Grande do Sul.

Reconstituição artística de Sacisaurus agudoensis por Rodolfo Nogueira.

O que Müller e Garcia fizeram em seu estudo foi testar as relações evolutivas dos grandes grupos de dinossauros, incluindo uma ampla amostragem de silessaurídeos (até então tidos como grupo irmão de Dinosauria) e diversas espécies de dinossauros basais. Eles fizeram uma análise filogenética abrangente, que juntou, pela primeira, vez os dados de espécies há tempos conhecidas, com as espécies mais recentemente descritas. Os resultados encontrados por eles foram surpreendentes…

O que uma análise filogenética faz, basicamente, é testar as relações evolutivas dos organismos por meio da comparação de uma extensa matriz de dados sobre eles. Estes dados podem ser genéticos ou morfológicos, ou os dois, por exemplo. No caso dos fósseis, os pesquisadores normalmente usam dados morfológicos (da forma) para realizá-las, pois informações genéticas só ficam preservadas em materiais relativamente recentes (de até algumas centenas de milhares de anos). O produto de uma análise filogenética são um conjunto de “árvores evolutivas” possíveis, mostrando todas as relações prováveis entre os organismos analisados. Algumas árvores são estatisticamente mais plausíveis que outras e, normalmente são essas as consideradas mais atentamente pelos pesquisadores.

Uma incrível descoberta

O que Müller e Garcia recuperaram em suas análises foi algo diferente de tudo antes proposto e muito excitante para os estudiosos de dinossauros, já que tem o potencial de explicar várias questões sobre o início da história evolutiva do grupo. Em especial, o tal mistério das “linhagens fantasmas” de ornitísquios.

De acordo com os resultados do estudo, os chamados ‘silessaurídeos’ seriam, na verdade, uma série de espécies ordenadas sucessivamente na base de Ornithischia. Ou seja, linhagens que teriam gradualmente acumulado características típicas de ornitísquios ao longo de milhões de anos. Essa hipótese preencheria o intervalo evolutivo antes “assombrado” pela ideia de “linhagens fantasmas”.

Os “silessaurídeos” seriam os dinossauros ornitísquios basais “que faltavam”! De acordo com a hipótese recuperada na análise de Müller e Garcia (2020), ‘Silesauridae’ seriam um grupo parafilético, na base de Ornithiscia. Sob esta perspectiva, Sacisaurus voltaria a ser um dinossauro.

Imagem do artigo de Müller e Garcia (2020).

Outros autores já haviam apontado uma possível relação entre silessaurídeos e ornitísquios, mas o cenário evolutivo encontrado por Müller e Garcia é inédito. Os ornitísquios clássicos, segundo o novo estudo, teriam evoluído a partir de formas típicas de silessaurídeos por meio de mudanças graduais ao longo do tempo, partindo inclusive, de uma possível forma carnívora. O que assemelharia o cenário evolutivo dos ornitísquios ao dos saurísquios sauropodomorfos (veja este vídeo aqui para entender).

Todos os ornitísquios conhecidos até o momento apresentam características que os vinculam a uma dieta herbívora, todavia os mais antigos ‘silessaurídeos’ tinham dentes pontiagudos e afiados, possivelmente adaptados para uma dieta carnívora.

Os pesquisadores responsáveis pela pesquisa reconhecem que ainda é cedo para que a questão relacionada a origem dos dinossauros ornitísquios possa ser considerada totalmente respondida. A nova hipótese de Müller e Garcia agora deverá continuar sendo testada à medida que novos fósseis foram descobertos e novas interpretações realizadas.

Nós aqui também estamos de olho.

A nova proposta de Müller e Garcia (2020). Arte de Márcio Castro.
Como ficaria a configuração da nova árvore evolutiva dos dinossauros de acordo com o estudo de Müller e Garcia (2020). Arte de Márcio Castro.

Se você se interessou pelo estudo, você pode ler ele na íntegra AQUI.

Leia também a postagem no blog do parceiro ‘Coelho Pré-Cambriano’: AQUI.

Referência:

Müller, R.T. & Garcia, M. 2020. A paraphyletic ‘Silesauridae’ as an alternative hypothesis for the initial radiation of ornithischian dinosaurs. Biology Letters, https://doi.org/10.1098/rsbl.2020.0417

Vespersaurus: Um novo dino brasileiro

Estudo publicado nesta quarta-feira (26/06/19) na revista Scientific Reports, do grupo Nature, apresenta uma nova espécie de dinossauro brasileiro, que viveu no Período Cretáceo, há cerca de 90 milhões de anos.

Figura-4
Reconstrução em vida de Vespersaurus paranensis. Crédito da imagem: Rodolfo Nogueira.

O fóssil foi encontrado no município de Cruzeiro do Oeste, PR, e foi estudado por paleontólogos das universidades de São Paulo (USP) e Estadual de Maringá (UEM), além de pesquisadores do Museo Argentino de Ciências Naturales e do Museu de Paleontologia de Cruzeiro do Oeste. A nova espécie foi nomeada Vespersaurus paranaensis.

Vesper (do latim) significa oeste/entardecer, em referência ao nome da cidade onde foi descoberto o fóssil, e paranaensis faz uma homenagem ao Estado do Paraná, já que este é o primeiro dinossauro paranaense descrito.

Os fósseis da nova espécie de dinossauro pertencem a um grupo de dinossauros carnívoros chamados de Noasaurinae. Os Noasaurinae são abelissauros diferentões, de pequeno porte, encontrados desde a Argentina até Madagascar (com possíveis registros na Índia). Estes terópodes viveram em uma época em que os continentes do sul ainda estavam unidos, formando o Gondwana, e transitavam de um lado para o outro, cruzando um imenso deserto que existia entre o Brasil e a África.
Restos de Noasaurinae já eram conhecidos para o Brasil (veja Lindoso et al., 2012 e Brum et al., 2016), mas este é o material mais completo encontrado até o momento. É também o material mais completo de dinossauro terópode descrito para o Brasil até agora, com quase metade do esqueleto encontrado.

Figura-3
Representação tridimensional do esqueleto de Vespersaurus paranensis indicando (em cor sólida) os ossos que foram encontrados. Crédito da imagem: Rodolfo Nogueira.

O novo dinossauro possuía vértebras pneumáticas, que conferiam leveza ao seu esqueleto, como nas aves viventes, e um braço muito reduzido (com menos da metade do comprimento da perna). Porém, a sua característica anatômica mais peculiar eram os pés. Seu peso era praticamente todo suportado por um único dedo central, sendo o animal funcionalmente monodáctilo, como os cavalos. Os dedos que flanqueavam o dígito central, por sua vez, possuíam grandes garras em forma de lâmina, que deveriam servir para cortar e raspar carne.

Figura-1
Pata direita de Vespersaurus paranensis como preservada na rocha, note a garra do quarto dedo em forma de lâmina. Foto de Paulo Manzig.

As rochas do noroeste paranaense, nas quais Vespersaurus foi preservado formaram-se em ambientes desérticos, o que sugere que o animal deveria ser adaptado a esse tipo de clima. Na década de 70, em rochas relacionadas, o paleontólogo Giuseppe Leonardi descobriu uma ampla assembleia de pegadas fósseis. Algumas, feitas por um pequeno dinossauro bípede, carnívoro, aparentemente monodáctilo. À época não se conhecia nenhum animal com tais características ao qual elas pudessem ser atribuídas. Muito tempo depois, o produtor parece ter sido encontrado.

Figura-5
Reconstrução em vida do pé de Vespersaurus paranensis. Crédito da imagem: Rodolfo Nogueira.

Vespersaurus paranaensis não é primeira espécie cretácica a ser encontrada no noroeste do Paraná. No mesmo sítio fossilífero em Cruzeiro do Oeste foram descobertos também o lagarto Gueragama sulamericana e inúmeros indivíduos do pterossauro Caiuajara dobruskii. A descoberta de mais uma espécie fóssil em Cruzeiro do Oeste deve impulsionar as pesquisas paleontológicas na região.

Veja o artigo:

Langer et al., 2019. A new desert-dwelling dinosaur (Theropoda, Noasaurinae) from the Cretaceous of south Brazil. Scientific Reports https://www.nature.com/articles/s41598-019-45306-9

Demais referências:

Brum, A.S., Machado, E.B., de Almeida Campos, D. and Kellner, A.W.A., 2016. Morphology and internal structure of two new abelisaurid remains (Theropoda, Dinosauria) from the Adamantina Formation (Turonian–Maastrichtian), Bauru Group, Paraná Basin, Brazil. Cretaceous Research60, pp.287-296.

Lindoso, R.M., Medeiros, M.A., de Souza Carvalho, I. and da Silva Marinho, T., 2012. Masiakasaurus-like theropod teeth from the Alcântara Formation, São Luís Basin (Cenomanian), northeastern Brazil. Cretaceous Research36, pp.119-124.

Hipóteses filogenéticas dos Amniotas e a importância dos fósseis na compreensão da evolução da vida

Olá caros leitores, depois de um breve período de pausa nas postagens, voltamos com grande estilo. Hoje apresento a vocês um interessante texto redigido pelo Mestrando em Zoologia do Museu Nacional/UFRJ Geovane Alves de Souza, O assunto abordado se refere as primeiras discussões históricas sobre as hipóteses filogenéticas dos Amniotas (grupo que tradicionalmente inclui os répteis, aves e mamíferos e suas formas relacionadas) e a importância dos fósseis para um melhor entendimento da evolução das espécies. Então,  sem mais delongas, vamos ao texto!
 
Editado em 19/08/2018.

Em plena Era da Filogenômica, na qual o DNA possui papel central na busca pela compreensão da evolução da vida na Terra, é comum pensarmos nos fósseis como uma fonte de dados um tanto quanto ultrapassada, trabalhosa e que demanda muito tempo para estudar. A diretora do Jurassic World, Claire Dearing (encenada pela atriz Bryce Dallas) enfatiza isso muito bem em sua fala: “Aprendemos mais com a genética em 10 anos do que em um século, escavando”. Hoje é consenso no meio acadêmico a importância dos vestígios da vida pretérita, os fósseis (para melhores detalhes acerca de sua definição veja aqui), quando inferimos relações de parentesco dos organismos viventes. Contudo, nem sempre os fósseis tiveram sua importância reconhecida e passando por momentos de glória e queda ao longo dos últimos séculos.


Após a publicação da obra A Origem das Espécies por Meio da Seleção Natural por Charles Darwin em 1859, no qual o autor defendia as teorias de Evolução Biológica, Seleção Natural e Ancestralidade Comum, os fósseis passaram a desempenhar um papel chave na compreensão de como a vida evoluiu. Contudo, foi na metade do século XX, que o registro fossilífero enfrentou uma queda brusca de sua supremacia. O responsável foi o advento de uma nova maneira de se estudar a evolução: a Sistemática Filogenética de Willi Hennig (1950). A nova metodologia e filosofia da sistemática nos seus primeiros anos de existência não exigia a necessidade de determinar uma dada espécie fóssil conhecida como ancestral entre duas linhagens. Podíamos estudar a evolução das espécies viventes, tratando o ancestral comum entre elas como uma espécie hipotética. Esse modo de vislumbrar as árvores filogenéticas (diagramas ramificados que representam a evolução de uma linhagem e que são gerados a partir de uma análise computacional ou análise filogenética), conhecido como Modelo Cladogenético, é antagônico ao antigo modelo vigente, o Anagenético. De fato, determinar em qual ponto exato da evolução de uma linhagem uma espécie fóssil esta inserida não é uma tarefa fácil, eu diria que um tanto quanto impossível, a menos que tenhamos uma máquina do tempo para voltarmos e acompanharmos o passo a passo da evolução de determinada linhagem ao longo dos milhares de anos. Muitas críticas contra o uso dos fósseis foram levantadas na época. O próprio Hennig reconhecia que os dados fósseis poderiam ser úteis na hora de conduzir uma análise filogenética. Contudo, devido à tamanha incompletude do registro fossilífero, ou seja, tanta informação biológica era perdida no processo de formação de um fóssil, que estes deveriam ser preferivelmente menos utilizados na hora de reconstruir as relações de parentesco.


Petterson (1981) mostrou, através de vários exemplos, o quanto os fósseis prejudicavam a compreensão sobre as hipóteses de evolução dos animais. Ax em 1987 defendeu em seu livro The Phylogenetic System que os dados fósseis são tão incompletos que as árvores deveriam ser construídas com base apenas nos grupos viventes e só depois que a análise computacional fosse feita é que se deveriam adicionar os fósseis. Dessa maneira e com muito sucesso, os críticos rapidamente conseguiram marginalizar o uso dos dados paleontológicos nos estudos da evolução das linhagens de organismos viventes.

A Hipótese Clássica da evolução dos Amniotas

Inúmeras árvores foram construídas ao longo dos anos seguintes, a maioria delas ignorando as informações provindas dos fósseis. O estudo que mais me chamou a atenção foi o trabalho clássico de Gardiner em 1982, no qual este autor tentou reconstruir a até então, pouco compreendida história evolutiva dos amniotas. Amniota é um grupo de animais vertebrados que possuem, dentre muitas características, uma membrana extraembrionária ao redor do feto chamada de amnion, membrana a qual é fundamental para a independência da água do ambiente durante o desenvolvimento do filhote no ovo, permitindo que estes animais colonizassem completamente o habitat terrestre. Estamos falando então da maioria esmagadora de vertebrados terrestres (e os que secundariamente retornaram ao ambiente aquático) que dominaram a Terra: desde as formas extintas famosas como dinossauros, pterossauros, ictiossauros, plesiossauros até as espécies contemporâneas de tartarugas, crocodil­os, lagartos, serpentes, aves e mamíferos.


Gardiner utilizou vários dados morfológicos dos cinco grupos de amniotas viventes em suas análises (tartarugas, lagartos, jacarés, mamíferos e aves). Gardiner observou que as aves e os mamíferos eram evolutivamente relacionados, sendo agrupados por uma série de características que eram adaptações às suas altas taxas metabólicas (metabolismo alto leva a uma temperatura corpórea alta, sendo estes animais equivocadamente chamados de animais de “sangue quente”).
Gardiner ressuscitou o antigo termo Haeomothermia para nomear o grupo de animais de “sangue quente” formado por aves e mamíferos (o termo vem de homeotermia, do grego homo: igual, thermia: temperatura; que é como chamamos os animais que possuem temperaturas corporais constantes). Haemothermia, por sua vez era relacionado evolutivamente com o Crocodylia (crocodilos, jacarés e gaviais) formando o grupo Thecodontia. Tartarugas, cágados e jabutis (Chelonia) eram mais aparentados com Thecodontia (Crocodylia+(Aves+Mammalia)). Por fim, o grupo mais basal de Amniota era Lepidosauria, o qual abrange tuataras, serpentes e lagartos (Figura 1).

Esta imagem possuí um atributo alt vazio; O nome do arquivo é Fig.1.-Árvore-Gardiner-recent.jpg
Fig. 1. Relações entre as cinco assembleias de amniotas viventes defendida por Gardiner (1982; ver também Lovtrup, 1985) modificado de Gauthier e colaboradores (1988)

 
O trabalho experimental de Gauthier


Os resultados de Gardiner se baseam exclusivamente em animais viventes, conforme já foi dito e ecoaram por quase uma década. Lovtrup (1985) publicou um trabalho no qual afirmou ter encontrado maior suporte à hipótese de Gardiner. Até que, em 1988, um célebre manuscrito chegou para revolucionar a visão que a comunidade científica da época tinha sobre os dados paleontológicos. Gauthier e seus colegas (1988), baseados na hipótese de filogenia dos amniotas proposto por Gardiner, publicaram o primeiro estudo demonstrando empiricamente (ou seja, através de experimentos práticos e não calcados apenas em conjecturas) que os fósseis poderiam contribuir e muito na elucidação das hipóteses de parentesco dos seres vivos atuais. Para isso, eles conduziram uma nova análise, só que dessa vez incluindo espécies extintas, obtendo uma árvore marcadamente diferente e depois a submeteram a alguns testes para confirmar sua validade. Para entendermos como os autores chegaram a suas conclusões precisamos compreender os experimentos que a equipe realizou. Gauthier partiu de uma pergunta: os Fósseis poderiam alterar as nossas hipóteses de parentesco entre as biotas recentes? Para responder isso, ele conduziu um estudo em três etapas.


(1) Primeiramente, antes de rodar uma nova análise incluindo os fósseis, os pesquisadores destrincharam e reviram todas as características utilizadas por Gardiner e perceberam que havia alguns equívocos e erros na interpretação dos caracteres. Gardiner afirmara, por exemplo, que um coração dividido em quatro câmaras é homólogo (mesma origem; para melhor entendimento desta terminologia veja aqui) em crocodilos, aves e mamíferos, o que reforçava a relação de parentesco entre eles. Contudo, quando acompanhamos o desenvolvimento embrionário do septo interventricular destes animais, vemos que nos mamíferos ele se desenvolve a partir de uma crista de tecido endocárdico na parede de trás do ventrículo, enquanto que nas aves e nos crocodilos o septo surge de varias protuberâncias musculares pouco recobertas por endocárdio na lateral do ventrículo. Apesar de serem estruturas semelhantes nos adultos, elas não possuem a mesma origem no embrião, ou seja, não são homólogas. Logo, os equívocos nas interpretações de Gardiner o levaram a estabelecer homologias entre mamíferos e aves que não condiziam com a realidade.


(2) Depois de corrigir a lista de características, Gauthier rodou duas análises, uma contendo apenas os dados morfológicos dos cinco grupos viventes de Gardiner e outra incorporando 29 espécies de amniotas extintos. Foi então que uma nova hipótese começou a tomar forma.


A análise com dados dos animais viventes


A árvore filogenética obtida utilizando apenas os cinco grupos de amniotas viventes se assemelhou à hipótese clássica de Gardiner de 1982, com apenas uma pequena diferença: os crocodilos e não os mamíferos eram mais relacionados com as aves, trazendo dúvidas quanto a validade do antigo grupo Haemothermia (Ver figura 2). Isso implica em inferências importantíssimas para nossa compreensão da evolução da homeotermia. Primeiro, que um jacaré é o parente mais próximo das aves do que qualquer outro animal vivo hoje. Além disso, muitas características que antes eram vistas como homólogas entre aves e mamíferos e que estariam presentes no suposto ancestral comum destas duas linhagens, na verdade surgiram duas vezes independentemente na árvore da vida dos vertebrados. Talvez em resposta provavelmente as mesmas pressões evolutivas.

Esta imagem possuí um atributo alt vazio; O nome do arquivo é Fig.-2.-Arvore-Gatuhier-recent.jpg
Fig. 2. Árvore obtida da análise de Gauthier (1988) apenas com amniotas viventes. Note que ela se assemelha à árvore anterior de Gardiner (1982), contudo as aves estão mais relacionadas com crocodilos do que com os mamíferos.

 
A análise com dados combinados (animais viventes + extintos)


Na segunda análise na qual Gauthier acrescentou os fósseis, uma árvore completamente diferente surgiu (ver figura 3). Não só aves e crocodilos estavam agrupados juntos, mas lagartos e serpentes (Lepidosauria) agora estavam mais relacionados a Aves + Crocodylia do que as tartarugas. O mais estranho foi que os mamíferos agora estavam na base da árvore, formando uma grande dicotomia inicial: Mamíferos e todos seus parentes extintos de um lado versus lepidossauros, quêlonios, crocodilos, aves e todos seus parentes extintos relacionados do outro. Ao primeiro grupo, chamamos de Synapsida (amniotas que apresentam uma fenestra temporal no crânio) e ao segundo, Reptillia (que compreende tanto amniotas que possuem duas ou nenhuma fenestra temporal, Diapisida e Anapsida, respectivamente). Contudo, não bastava obter uma árvore completamente diferente, ela precisava ser mais bem justificada.

Esta imagem possuí um atributo alt vazio; O nome do arquivo é Fig.-3.-Árvore-Gauthier-fossilrecent.jpg
Fig. 3. Árvore obtidida por Gauthier (1988) combinando tanto espécies fósseis quanto viventes. Note que há uma dicotomia basal, separando mamíferos e seus parentes extintos (Synapsida) de um lado versus todos os répteis atuais + Aves (Reptilia) do outro.

 
Análises posteriores – Esmiuçando a nova hipótese obtida


Na última etapa do estudo (3), uma série de experimentos computacionais foram conduzidos por Gauthier, alguns serão explicados mais adiante e que culminaram em um achado esperançoso, principalmente para nós paleontólogos: Fósseis são fundamentais para elaboração das hipóteses de relação entre as espécies viventes.
Gauthier e seus colegas queriam saber o porquê que as árvores diferiram tanto nas análises com e sem os fósseis. Para isso, eles fizeram algumas análises posteriores, contudo só irei detalhar três delas neste texto que acredito serem mais interessantes para nossa discussão. Primeiro, os autores compararam o índice de consistência de sua nova árvore com o índice da árvore de Gardiner. Este índice mostra o quão robusto e conciso estão seus resultados, no caso, sua hipótese de evolução de uma linhagem. O interessante foi que mesmo adicionando várias espécies fósseis na sua análise, Gauthier encontrou um valor de índice de consistência semelhante ao de Gardiner, mostrando que mesmo os fósseis alterando drasticamente a hipótese, a árvore continuava tão confiável quanto uma utilizando apenas espécies viventes.


Numa análise posterior, Gauthier e colaboradores removeram todos os grupos fósseis do lado “sinapsídeo” da árvore, deixando apenas os animais viventes desse ramo (mamíferos) junto com todos do lado “Reptillia” (viventes e extintos) e rodaram a análise. Paralelamente, foi feito o oposto, todas as linhagens extintas de Reptillia foram retiradas deixando apenas seus representantes viventes e o lado “sinapsídeo” da árvore (viventes e extintos) e rodaram a análise. Os autores viram que não importava qual fóssil de Reptillia fosse retirado, a árvore final não se alterava. Porém,  quando os fósseis de sinapsídeos eram retirados, a árvore adquiria o novo padrão proposto por Gardiner (1982; Figura 3).

Gauthier então percebeu que os principais responsáveis pela nova topologia da árvore eram os fósseis de sinapsídeos. Mas por que isso?
De acordo com os autores, quanto mais antiga é a origem de uma linhagem e quanto mais derivada for a morfologia de seus representantes atuais (como é o caso dos mamíferos), mais os fósseis serão importantes para elucidar sua evolução. Basta compararmos os mamíferos atuais com seus parentes extintos, os “pelicossauros” como Casea, Ophiacodon, Edaphosaurus, Sphenacodon (figura 4) para ver o “abismo morfológico” que separam essas linhagens. Quando observamos os mamíferos atuais, dificilmente conseguimos relaciona-los com outro grupo de animal vivente e quando tentamos, certamente estaremos fadados ao erro, assim como Gardiner, em 1982 equivocadamente agrupou Aves e Mammalia no antigo grupo Haeomothermia. Porém, quando olhamos para os fósseis vislumbramos um mundo completamente “novo”. As formas extintas possuem combinações únicas de características basais e derivadas que frequentemente se apresentam numa serie gradual de mudanças, que nos permitem acompanhar suas histórias evolutivas de maneira tal que possamos observar espécies diferentes ficando cada vez mais semelhantes conforme voltamos no tempo. Os fósseis são uma das poucas evidências diretas da evolução e é por isso, que os dados paleontológicos se tornam tão fundamentais para elucidar as relações evolutivas dos grupos viventes. Principalmente, quando o objeto de estudo são animais tão diferentes como seu cachorro e um pardal na janela de casa.


Outro experimento que a equipe de Gauthier conduziu consistiu basicamente em retirar todas as linhagens viventes da matriz de características e fazer uma nova análise. Apesar de ser um experimento simples, o resultado obtido foi revelador: a nova hipótese representada na figura 3 veio à tona novamente, porém sem os animais viventes. Este resultado, associado à análise inicial das características utilizadas no trabalho de Gardiner (1982), derruba os argumentos dos críticos a respeito da incompletude do registro fóssil. De fato a informação que provem dos fosseis é mais incompleta do que as que podemos retirar dos animais viventes, mas mesmo assim os fósseis estão longe de serem menos informativos em uma análise filogenética. Gauthier demonstrou isso quando retirou todas as espécies viventes da análise e mesmo assim alcançou a nova hipótese. Além disso, Gauthier enfatizou que incompletude não é exclusiva de fósseis. Ela pode ocorrer naturalmente nos animais. Quatro das características utilizadas na análise de Gardiner eram do osso quadrado, um osso na base do crânio dos vertebrados no qual se articula a mandíbula. Contudo, nos sinapsídeos mais derivados, os cinodontes (o qual mamíferos fazem parte), esse osso foi gradativamente sendo reduzido e alocado cada vez mais para trás do crânio junto com uma série de ossos da mandíbula. Esta condição alcançou o extremo nos mamíferos, onde o osso quadrado e um grupo de ossos que uma vez pertenceram à mandíbula, se reduziram e modificaram sua função ao ponto de formarem o que hoje são nossos ossículos do ouvido médio (o quadrado dos outros vertebrados é a bigorna nos mamíferos). Logo, aquelas quatro características baseadas na morfologia do osso quadrado, não se aplicam aos mamíferos, pois o quadrado deles se alterou tanto que fica difícil comparar com os outros animais, ou seja, este é um dado naturalmente faltante. Além disso, Gauthier percebeu que Casea (o fóssil mais basal e antigo de sinapsídeo e que consequentemente esperávamos maior incompletude) apresentava 26% de informação faltando, enquanto que os mamíferos atuais tinham em média 15% de dados morfológicos faltando ou difíceis de interpretar. Esses 11% de diferenças são realmente significantes? Gauthier não só provou que não há diferença significante como também nos mostrou que informação incompleta não é exclusiva dos fósseis.

Fig. 4. Outra árvore filogenética, dessa vez apenas com sinapsídeos. Note a variedade de formas desde as mais basais, como Casesauria (um “Pelicossauro”), até os parentes mais próximos dos mamíferos, um cinodonte não-mamífero.
Fig. 4. Outra árvore filogenética, dessa vez apenas com sinapsídeos. Note a variedade de formas desde as mais basais, como Casesauria (um “Pelicossauro”), até os parentes mais próximos dos mamíferos, um cinodonte não-mamífero.


A Renascença dos fósseis


Após demonstrar empiricamente quão importante os fósseis são para nossa compreensão da evolução das linhagens viventes, Gauthier deu um solavanco nos sistematas, convidando-os a se debruçarem no assunto. Desde então, estudos importantes vêm sendo conduzidos, cada vez mais enaltecendo o uso de dados paleontológicos em reconstruções filogenéticas e desenvolvendo metodologias para minimizar o efeito da incompletude dos dados de organismos tanto viventes quanto extintos, o famigerado missing data que os cladistas tanto abominam (veja Donoghue et al., 1989; Smith, 1998; Wilkinson; Benton, 1995).
Exemplos como estes de Gardiner e Gauthier nos mostram como a Ciência é dinâmica. O que antes era tido como verdade e que hoje é obsoleto, não necessariamente deixa de ser útil. Se Gardiner não tivesse se aventurado nas relações de Amniota, Gauthier e toda uma geração de sistematas não seriam impulsionadas a refletir sobre o assunto e talvez o reconhecimento da importância dos fósseis na reconstrução da evolução da vida na Terra poderia ser ainda mais postergada. Por fim, quando ignoramos as informações contidas no registro fóssil, estamos ferindo o princípio da Evidência Total (um tema que será abordado em postagens futuras do blog). Este princípio pode ser exemplificado com uma ótima analogia que um estimado amigo uma vez me fez: não usar os dados paleontológicos para inferir filogenia é como ter um bebê de colo e joga-lo pela janela só porque ele não é um adulto.


Referências:


AX, Peter. 1987. The phylogenetic system: the systematization of organisms on the basis of their phylogenesis.
DARWIN, C. A Origem das Espécies. Hemus – Livraria Editora Ltda, São Paulo, SP.


DONOGHUE, Michael J. 1989. Phylogenies and the analysis of evolutionary sequences, with examples from seed plants. Evolution, v. 43, n. 6, p. 1137-1156.


GARDINER, BRIAN G. 1982. Tetrapod classification. Zoological Journal of the Linnean Society, v. 74, n. 3, p. 207-232.


GAUTHIER, Jacques; KLUGE, Arnold G.; ROWE, Timothy. 1988. Amniote phylogeny and the importance of fossils. Cladistics, v. 4, n. 2, p. 105-209.
HENNIG, Willi. 1950. Grundzuge einer Theorie der phylogenetischen Systematik.


LOVTRUP, Soren. 1985. On the classification of the taxon Tetrapoda. Systematic Zoology, v. 34, n. 4, p. 463-470.


PATTERSON, Colin. 1981. Significance of fossils in determining evolutionary relationships. Annual Review of Ecology and Systematics, v. 12, n. 1, p. 195-223.


SMITH, Andrew B. 1998. What does palaeontology contribute to systematics in a molecular world?. Molecular phylogenetics and evolution, v. 9, n. 3, p. 437-447.


WILKINSON, Mark; BENTON, Michael J. 1995. Missing data and rhynchosaur phylogeny. Historical Biology, v. 10, n. 2, p. 137-150.

WhatsApp Image 2018-01-04 at 18.22.30

Geovane Alves de Souza, Graduado em licenciatura e bacharelado em Ciências Biológicas pela Universidade Estadual de Londrina. Atualmente é mestrando em Zoologia pelo Museu Nacional/UFRJ. Já desenvolveu pesquisas na área de parasitologia de animais silvestres, hoje conduz estudos de osteohistologia com titanossauros.