Impressora 3D pode imprimir tecidos biológicos

Hoje em dia já se usam as impressoras 3D para a produção de moldes (scaffolds) para o cultivo de células, as chamadas bio-printers. Porém, é claro, os cientistas querem ir um pouco mais adiante. Vejam a matéria da BBC no Congresso AAAS sobre impressão 3D utilizando partes biológicas como matéria-prima para reconstrução de tecidos, orelhas e outras partes do corpo.

http://www.bbc.co.uk/news/science-environment-12507034

Bancos de dados, GenBank, homólogos e ortólogos.

Grupos de Pesquisas em Biologia Sintética

Uma lista de grupos de pesquisa que trabalham com Biologia Sintética. Vale a pena conferir e acompanhar o trabalho desse pessoal.

Synthetic Biology Labs

Harvard University – Silver Lab

Harvard University – Laboratory for Molecular Automata

CalTech – Center for Biological Circuit Design

CalTech – The Elowitz Lab

CalTech – Frances Arnold Research Group

CalTech – The Pierce Lab

CalTech – Asthagiri Group

University of Michigan – Del Vecchio Lab

University of Michigan – Ninfa Laboratory

University of Minnesota – Riedel Lab

University of Minnesota – Kaznessis Group

Duke University – Laboratory of Biological Networks

Synthetic Biology Engineering Research Center

Lawrence Berkeley National Laboratory – Synthetic Biology Department

UCSF/UCB Center for Engineering Cellular Control Systems

UC Berkeley – Lim Lab

Stanford University – The Kool Group

Stanford University – The Smolke Lab

UCSF – Kortemme Lab

UCSF – Voigt Lab

UCSF – Lim Lab

Virginia Bioinformatics Institute – Peccoud Research Group

Boston University – Gardner Laboratory

Princeton University – Weiss Lab

University of New Mexico – Molecular Computing Group

The University of Texas at Austin – Andrew Ellington

Mount Sinai Hospital – The Pawson Lab

Dresden University of Technology – Schwille Lab

Tokyo Tech – Kiga Lab

EMBL-Heidelberg – Luis Serrano Group

ETHZ – Synthetic Biology Workgroup

ETHZ – Bioprocess Laboratory – Sven Panke

University of Cambridge – Jim Ajioka

University of Cambridge – Jason Chin

The University of Edinburgh – Alistair Elfick

Imperial College London – Paul Freemont

University of Groningen – Centre for Synthetic Biology

Ecole Polytechnique – Alfonso Jaramillo

Università degli Studi di Roma Tre – Luisi Synthetic Biology Lab

System & Synthetic Biology Labs

Oak Ridge National Laboratory & University of Tennessee – Molecular-Scale Engineering and Nanoscale Technologies Research Group

UC Berkeley – Arkin Lab

UC Berkeley – Keasling Lab

UC Davis – Michael A. Savageau

Boston University – Applied Biodynamics Laboratory

CalTech – Richard M. Murray

UCSD – Systems Biodynamics Lab

The University of Texas – Center for Systems & Synthetic Biology

Waseda University – Laboratory for Molecular Cell Network

Keio University – Sakakibara Lab

Kyushu Institute of Technology – Kurata Lab

Spanish National Biotechnology Centre – Logic of Genomic Systems Lab

Universitat Pompeu Fabra – Complex Systems Lab – Ricard Solé

Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional – Systems And Synthetic Biology

Imperial College London – Institute of Systems and Synthetic Biology

RIKEN – Computational Systems Biology Research Group

Do-it-yourself biologists (DIYbio) e a ciência cidadã

ResearchBlogging.org

Neste momento, em algum lugar dos Estados Unidos, da Inglaterra ou até da Índia, algum biólogo sintético amador está realizando um experimento na sua cozinha ou garagem. Nos últimos dois anos, entusiastas da biologia molecular têm se juntado para montar organizações de biologia sintética amadora, como o DIYbio (do-it-yourself biology), em que os membros se reúnem em pubs e barbecues para discutir os últimos experimentos realizados nas suas próprias garagens. Há quase seis meses tenho participado das discussões desse grupo, que apresentam conteúdo refinado e objetivo sobre o desenvolvimento de microscópios de 10 dólares, espectrofotômetros, centrífugas de furadeiras ou liquidificadores, construções de diferentes kits com E. coli modificada, chegando até a sequenciadores de DNA caseiros.

Inspirados pelos grandes avanços realizados em garagens pelos fundadores de atuais gigantes da informática, os também chamados biohackers pretendem revolucionar a ciência através de experimentos e idéias não-convencionais aplicados a biologia sintética.

Este movimento também se caracteriza pela chamada ciência cidadã (minha tradução de citizen science), em que os cidadãos ativamente participam no papel de desenvolver a ciência e as novas tecnologias. Além disso, a ciência cidadã estimula o apoio da população à ciência, o desenvolvimento do pensamento científico nas pessoas, além de introduzir novas idéias de diferentes disciplinas ao assunto. Utilizando a Internet como plataforma, um simples projeto de ciências pode envolver dezenas, centenas e milhares de pessoas de diversas formações no mundo dispostas a criar algo novo e interessante.

Porém, junto com o crescimento da ciência cidadã, tem também aumentado a preocupação do governo americano e do FBI a respeito do que os biohackers estão fazendo. Por incrível que pareça, agentes do FBI têm comparecido a reuniões do DIYbio para entender o que as pessoas estão fazendo e qual a possibilidade de utilização das ferramentas para o bioterrorismo. A comunidade DIYbio teme que o foco constante em possíveis atividades terroristas desvie a atenção dos tópicos importantes relacionados com biossegurança: como o descarte de bactérias geneticamente modificadas, normatização/legalização de laboratórios caseiros e equipamentos de segurança mais acessíveis e baratos.

Muitas vezes o que tem acontecido é que não existe nenhum tipo de norma ou lei que fale a respeito de laboratórios caseiros para a utilização de bactérias geneticamente modificadas.

Eu acho incrível o que está acontecendo neste momento. Não só está ocorrendo uma explosão de conhecimento e técnicas no mundo científico, mas também a população está cada vez mais interessada em fazer parte dessas descobertas e fazer da ciência um exercício cotidiano.

Ledford, H. (2010). Garage biotech: Life hackers Nature, 467 (7316), 650-652 DOI: 10.1038/467650a

Editorial, Nature (2010). Garage biology Nature, 467 (7316), 634-634 DOI: 10.1038/467634a

Workshop on Synthetic Biology and Robotics

Estou divulgando o Workshop on Synthetic Biology and Robotics da FAPESP no próximo dia 24, uma oportunidade imperdível para discutir alguns aspectos da Synbio. O programa está disponível no site da FAPESP e a inscrição é gratuita.

Biologia sintética e a computação

ResearchBlogging.org

Ontem tivemos nossa primeira reunião do Clube Científico de Biologia Sintética para discutir o artigo “Synthetic biology: new engineering rules for an emerging disciplines.”  A imagem abaixo resume bastante a abordagem dos autores do Departamento de Engenharia Elétrica Princeton para conduzir a revisão sobre o assunto.

Os autores traçam um paralelo entre a biologia e os computadores, no qual, não apenas se procura explicar a biologia celular utilizando a computação como analogia, mas também, mostra que já foram desenvolvidos componentes biológicos que funcionam como componentes de computadores. São dados exemplos de várias construções biológicas sintéticas que funcionam como componentes elétricos, como inversores (inverters devices), flip-flops (toggle-swicthes), osciladores (oscilators), amplificadores de sinais (transcriptonal cascades modules) e desviadores de sinais (diverter scaffolds). Restando assim, poucos módulos para se construir um microcomputador celular sintético.

Os autores comentam como estes módulos sintéticos e a condição endógena celular influenciam o comportamento um do outro,  sendo que qualquer flutuação nos processos da célula hospedeira podem influenciar o módulo e sua reposta (output). Dessa maneira, torna-se necessário combinar técnicas de estimação de parâmetros e técnicas de análises de fluxos metabólicos para entender o contexto celular e os impactos desses módulos na célula. Para explicar isto de uma maneira resumida, a conectividade dos módulos entre si e com a célula não é suficiente para definir a dinâmica de uma rede, é preciso também incluir parâmetros cinéticos e regulatórios (velocidade das reações, feedbacks, efeito de reguladores…) que podem variar sua atividade de acordo com as mudanças realizadas no sistema original. Estes cálculos, porém, são muitos complicados e demandam uma matématica muito avançada. O que demonstra, mais uma vez, a necessidade de equipes multidisciplinares para a formação de grupos de pesquisa em synbio.

O artigo mostra também que células sintéticas estão se tornando cada vez mais fáceis de construir. Não só pela nossa capacidade de manipular os componentes celular, mas pelo aumento da nossa capacidade de sintetizar DNA. Existem porém, desafios e limitações nos tipos de atividades complexas que uma célula independente consegue realizar de uma forma confiável. Assim, uma nova fronteira para a synbio é distribuir redes e módulos sintéticos entre múltiplas células, formando sistemas de comunicações célula-célula, visando aumentar a possibilidade de desenhos e superar a confiança limitada de células sintéticas individuais. Para isso, já estão se desenvolvendo módulos de quorum sensing (mecanismos de comunicação celular) sintéticos que possibilitam a coordenação do comportamento de comunidades microbianas. Verifica-se, portanto, que muitos avanços têm sido realizados para aumentar a complexidade da arquitetura das redes sintéticas.

Este artigo é particularmente interessante porque mostra a visão de engenheiros elétricos do que é a biologia sintética. É importante destacar que existem diferentes visões e abordagens de pesquisa a respeito do que é a biologia sintética e como ela pode ser aplicada, dependendo da especialidade e background do grupo de pesquisa.

Nas próximas reuniões pretendemos abordar tópicos mais específicos da biologia sintética, como a construção de um oscilador sintético, e mostrar diferentes visões da biologia sintética.

Até lá!

Andrianantoandro, E., Basu, S., Karig, D., & Weiss, R. (2006). Synthetic biology: new engineering rules for an emerging discipline Molecular Systems Biology, 2 DOI: 10.1038/msb4100073

Podcast: Futures in Biotech

Preciso divulgar esta dica dada pelo meu estimado colega Atila: o podcast realizado pelo site Futures in Biotech. Já escutei os seis primeiros e são sensacionais. Os dois entrevistadores, Marc Pelletier (Pos-doc em Yale) e Leo Laporte, um especialista em TI interessado em Biotech, conseguem extrair dos entrevistados o conteúdo de suas pesquisas de uma forma simples e ao mesmo tempo profunda. Estou mandando o link das entrevistas mais antigas, acho que vale a pena escutar os episódios dos mais antigos para os mais recentes, para acompanhar os podcasts de uma maneira mais didática.

Regeneração de colunas Miniprep Qiagen

Eu sempre achei um desperdício enorme jogar fora  as colunas presentes nos kits comerciais. Até que no ano passado, baseado em um protocolo simples e barato de Siddappa NP, publicado em 2007 na revista Biotechniques começamos a regenerar as colunas de extração de plasmídeo Miniprep Qiagen. Basicamente, as colunas são tratadas com 1 M de HCl durante a noite, lavadas repetidamente com água e reequilibradas com tampão EB ou TE.

Os autores do artigo estavam preocupados com a contaminação de DNA antigo nas colunas regeneradas e utilizaram RT-PCR e ensaios de transfecção para demonstrar que existe zero de contaminação nas colunas reutilizadas. Eles também demonstraram que a exposição prolongada a 1M de HCl não afeta a capacidade de ligação de DNA. Talvez seja apenas o prazer de usar uma coluna reutilizada, mas eu tenho a impressão que as colunas regeneradas funcionam melhor que as novas. Li em algum lugar que este protocolo funciona muito também para os Midi e MaxiPrep também.

O kit da Miniprep Qiagen com 50 reações custa cerca de R$350,00, dessa maneira, cada extração de plasmídeo custa cerca de 7 reais (contando apenas o custo de kit, sem contar eppendorfs, centrífuga, luz,…). Já utilizamos colunas regeneradas 5 vezes e queremos chegar até 10 regenerações, assim, poderemos realizar 50o extrações plasmidiais a cerca de R$o,35. Muito mais justo. O problema, agora, será a quantidade de buffers que você vai precisar. Mas não se preocupe, no final do artigo você vai encontrar os protocolos de tampões que podem ser utilizados no lugar dos comerciais (que acho que ainda podem ser otimizados).

Se alguém tiver outros protocolos para fazer render a verba, por favor, me avise!

Protocolo de regeneração das colunas de extração de DNA plasmidial:

1. Colocar em uma solução a 1N HCl por um dia (1 L para 100 colunas). Importante deixar as colunas imersas na solução sem bolhas dentro da coluna  (costumo sonicar por 5 min para retirar bolhas de ar);

2. Lavar repetidamente (4 – 5 vezes) as colunas com H2O destilada autoclavada.

3. Deixar secar a 37°C por 24h (acima desta temperatura as colunas estragam). Selar em plásticos e anotar no saco quantas vezes aquela coluna já foi utilizada. Manter em local seco.

4. Antes de utilizar, reequilibrar a coluna com 50 µL de TE a 42oC. Eu sempre faço a eluição do DNA a 42oC para aumentar o rendimento.

Soluções do kit Qiagen:

Buffer N3: 4.2 M Guanidina-HCl, 0.9 M potassium acetato,  pH 4.8

PS: já tentei o tampão de acetato de potássio do Birnborim (lise alcalina) mas não funcionou muito bem.

Buffer P1: 50mM Tris HCl pH, 10mM EDTA, 100µg/ml de RNase

Buffer P2: 200mM NaOH, 1% de SDS

Buffer PE: 10mM Tris HCl  pH 7,5, 80% etanol, 100 mM NaCl

PS: a concentração do sal me parece ser fundamental para uma boa eluição, eu tentei várias concentrações e com 100 mM obtive os melhores resultados.

Buffer EB (TE): 10 mM Tris-Cl, 1 mM EDTA, pH 8.0

Para mais detalhes, consulte o site do autor.

BioBricks: fabricação de pequenos fragmentos de DNA

Este protocolo é utilizado para a fabricação de BioBricks pequenos, como promotores ou sítios de ligação do ribossomo (RBS). Para isso, utiliza o anelamento e extensão dos primers para criar um pequeno fragmento de DNA (~ 100 bp) utilizando Taq polimerase de alta fidelidade. O fragmento de DNA pode ser imediatamente utilizado em uma reação de clonagem utilizando TOPO-TA. Caso se deseje realizar uma etapa de digestão do fragmento de DNA, uma etapa de purificação de produto de PCR é necessária.

Materiais:

– Dois primers que se sobrepõe por ~20 bp.

Primer 1:    5′ ———————————– 3′
Primer 2:                                        3′ ———————————– 5′

Mix para PCR Taq alta fidelidade

Método

1. Diluir os dois oligos a uma concentração de 25 μM utilizando H2O. Para primers maiores que 50-60 bp podem ocorrer problemas como erros e deleções, por isso, pode valer a pena incluir uma etapa de purificação extra PAGE (Invitrogen).

2. Misturar os reagentes em um tubo estéril de 0.6 mL:

  • 9 μL PCR supermix
  • 0.5 μL primer 1
  • 0.5 μL primer 2

3. A reação de anelamento e extensão dos primers ocorrem no termociclador segundo o seguinte protocolo:

  1. 94°C por 5 mins
  2. 94°C por 30 seconds
  3. 55°C por 30 seconds (ou qualquer outra temperatura de anelamento)
  4. 72°C por 30 seconds
  5. Repita os passos 2-4 por 2-3 ciclos
  6. 72°C por 5 mins

4. Utilize 1μL de produto de PCR fresco (feito no mesmo dia) numa reação de clonagem com TOPO TA cloning.

Para desenhar um BioBrick por esse método não se esqueça de colocar o prefixo e sufixo dos BioBricks nos primers. Pronto, já descrevemos os protocolos para desenhar e montar um circuito sintético com promotores, RBS e genes.

Boa sorte e qualquer dúvida, por favor, pergunte!

Referências

Stemmer WP, Crameri A, Ha KD, Brennan TM, and Heyneker HL. Single-step assembly of a gene and entire plasmid from large numbers of oligodeoxyribonucleotides. Gene 1995 Oct 16; 164(1) 49-53. pmid:7590320. PubMed HubMed PubGet [Stemmer-Gene-1995].

http://openwetware.org/wiki/Knight:Annealing_and_primer_extension_with_Taq_polymerase

BioBricks: fabricação de uma parte padrão.

Até agora comentamos sobre a possibilidade de juntar diferentes componentes utilizando o padrão técnico de montagem dos BioBricks. Mas neste post vou comentar sobre a fabricação de uma parte padrão. No futuro, eu pretendo comentar sobre a síntese de DNA sintético, mas agora vou explicar como montar um BioBrick utilizando o método de PCR. O aparelho para realizar um PCR, o termociclador, está presente na maioria dos laboratórios de biologia molecular, e hoje se apresenta como uma ferramenta básica para este tipo de atividade. Existem centenas de livros e sites na Internet que podem te familiarizar com a técnica. Primeiramente, um BioBrick pode ser construído via PCR se existe algum molde de DNA do qual o BioBrick possa ser amplificado (por ex., um gene de alguma bactéria) ou se a parte é pequena o suficiente que possa ser criada através do alinhamento e extensão do primer (iniciador). Nos dois casos é necessário adicionar na extremidade 5′ dos primers as sequências referentes aos sítios das enzimas de restrição presentes nos BioBricks, os sufixos e prefixos (ver post anterior).

A construção de BioBricks contendo sequências codificadoras de proteínas requer um sufixo e um prefixo um pouco mais especializados por duas razões:

1. o prefixo é alterado para garantir o espaçamento entre o sítio de ligação do ribossomo e o códon ATG de início.

2. BioBricks que codificam proteínas possuem, por padronização, dois códons de sequência TAA de parada.

Ao construir os primers, basicamente, é necessário “copiar e colar” a seguinte sequência de 31 bp no fim 5′ no seu primer upstream (ou iniciador universal) desenhado para o seu fragmento de DNA de interesse:

5′ —> 3′
GTT TCT TCG AAT TCG CGG CCG CTT CTA G ATG…
start codon (no caso de um gene)
E “copiar e colar” os seguintes 35 bp no fim 5′ do seu primer downstream (iniciador reverso):

5′ —> 3′
GTT TCT TCC TGC AGC GGC CGC TAC TAG TA TTA TAA….
duplo stop codon!

A estas sequências deve-se somar aproximadamente 20 bp de sequência de primer relativa a região codificadora. Para este tipo de clonagem se utiliza uma Taq polimerase com alta fidelidade e um kit de clonagem TOPO-TA cloning.

Claro que todas as outras precauções para se desenhar um primer ainda são válidas, como a verificação de sítios de restrição nas sequências. Para mais detalhes, veja o protocolo disponibilizado para a fabricação de BioBricks.