Arquivo mensais:março 2017

DAS CINZAS E DOS FÓSSEIS


http://orsm.com.br

No inverno aqui em Campinas, em geral seco, com bastante frequência ocorrem incêndios. Nessas ocasiões as casas, carros, etc. que estão perto ou que passam do lado do incêndio na estrada ficam cobertos daqueles fragmentos de plantas que vêm voando no vento, aqueles carvõezinhos. Pois esses fragmentos podem fossilizar e quiçá serem os únicos testemunhos da vegetação.

Uma das melhores evidências das mais antigas flores fósseis pertencem ao que restou de um incêndio da floresta, que no início do período Cretáceo (a uns 110 milhões de anos no passado, ou simplesmente Ma.) existia em Portugal.

De forma geral os fósseis vegetais produzidos por incêndios recebem o nome de carvões de queimada, ou charcoals em inglês. Eles são compostos por 60-90% de carbono e são conservados no registro fóssil por serem praticamente inertes. Neles há uma excelente preservação da morfologia e anatomia, muitas vezes até nível celular.

Este tipo de fossilização é tão antigo como o são as plantas na superfície do planeta, cujos registros mais antigos datam de uns 400 Ma. (Siluriano) ou um pouco mais… Isto indica que antes da vida povoar os continentes não existiam incêndios, talvez porque não houvesse nada para ser queimado. Contudo, evidências desses primeiros incêndios são encontradas em rochas de todos os continentes, o que indica que o processo de conquista do meio seco pela vida foi um evento que aconteceu por toda a superfície do planeta.

Os carvões de queimada ou charcoals, podem ser observados a olho nu ou no microscópio e a sua presença em grande quantidade está relacionada com os períodos do tempo geológicos com maior porcentagem de O2 na atmosfera que hoje em dia. como ocorreu durante os períodos Permiano (~298 a 252 Ma.) e Cretáceo (145 a 66 Ma.). Mas o que acontece para aumentar a concentração de O2 na atmosfera? Bom, se trata de momentos muito mais quentes que hoje e sem a presença de gelo nos polos. Assim, o nível relativo dos mares é mais alto, e como consequência os continentes possuem extensos mares interiores e rasos onde há uma enorme proliferação de recifes muito ricos em vida. Aqui no Brasil, durante o Cretáceo, o Nordeste era um enorme mar raso, após a separação entre a África e a América do Sul. Nesses mares interiores, por serem também quentes e com pouca circulação, ocorre a deposição maciça de carbonato de cálcio (CaCO2) e de matéria orgânica e, por conseguinte, o sequestro do C na crosta terrestre, elevando a concentração de O2 na atmosfera.

Fragmento de charcoal, visto em microscópio eletrônico de varredura. 1. Escala = 1mm; 2. Escala F= 500 µm.; 3. Escala = 50 µm; 4. 200 µm.

Voltando aos incêndios, com taxas de O2 elevadas, é muito mais fácil que a vegetação pegue fogo por ação de raios, vulcões, meteoros, etc. ou mesmo por combustão espontânea com mais oxigênio para oxidar a matéria orgânica pela queima. Os registros de incêndios, ou neste caso de paleoincêndios, são encontrados em rochas sedimentares ou, mais raramente, em rochas ígneas associadas a erupções vulcânicas. Os fragmentos de carvão de queimada são depositados tanto no continente como também nos mares, neste caso envolvendo o transporte dos fragmentos de charcoals pelo vento ou pela água, pois os carvões podem flutuar facilmente durante alguns dias até ficarem encharcados de água e afundar, possivelmente longe do local do incêndio e até mesmo no fundo do mar.

Estudos realizados em depósitos quaternários (2 Ma. até hoje) utilizam os registros dos paleoincêndios como evidências de mudanças climáticas e para caracterizar a presença de biomas com o Cerrado, que está intimamente associado com a presença do fogo. Nos estudos do Quaternário, a presença de charcoals é muitas vezes associada com climas mais secos que o atual ou até mesmo com a ação humana a partir dos últimos 10.000 anos. Outra grande vantagem nos estudos quaternários na utilização dos charcoals é a possibilidade de realizar, por meio deles, datações absolutas muito precisas utilizando o isótopo radiativo do carbono o C 14 o qual possui uma meia vida de 60.000 anos, bem como de estabelecer por meio do estudo de isótopos estáveis de C o tipo de vegetação que deu origem aos charcoals, indicando se tratava de uma vegetação mais aberta ou de uma floresta.

Assim, da próxima vez que passar perto de um incêndio ou encontrar uns carvões no campo, imagine as possibilidades que eles oferecem para um dia poder reconhecer ou reconstruir a paisagem atual.

 

 

Incêndio florestal, imagine a quantidade de charcoals sendo produzidos. http://www.meilogunotizie.net

Compostos orgânicos extraterrestres e a origem da vida na Terra

Como a vida se iniciou na Terra ainda é um mistério que intriga diversos cientistas e curiosos por muito tempo na nossa história. Na década de 20, Aleksandr Ivanovich Oparin, bioquímico russo, criou uma teoria do surgimento dos primeiros compostos orgânicos nos primórdios da evolução do nosso planeta, período no qual quase não existia oxigênio livre na atmosfera, que contava com os gases dióxido de carbono (CO2), nitrogênio (N2), vapor de água (H2O), amônio (NH3) e metano (CH4). Neste contexto, com a influência da energia liberada por relâmpagos, estas moléculas foram desintegradas dando origem a compostos orgânicos um pouco mais complexos. A teoria de Oparin foi testada experimentalmente na década de 50 por Stanley Miller, químico americano, que conseguiu formar aminoácidos simples a partir de descargas elétricas em ambiente simulando as condições da teoria de Oparin.
Os compostos orgânicos previamente formados, com a ação das descargas elétricas e raios UV provenientes do Sol, foram desencadeando reações químicas que deram origem a moléculas como álcoois, açúcares, aminoácidos e cadeias de carbono. Posteriormente surgiram proteínas e polissacarídeos. Mais tarde estas moléculas, que ficaram concentradas nos mares, deram origem às formas mais primitivas do que se podia chamar de vida, os chamados coacervados.

Perspectiva artística de como era a atmosfera primitiva da Terra, ambiente no qual teriam se formado os primeiros compostos orgânicos (fonte: autor desconhecido).

Enquanto isso, fora da Terra…

Já faz um bom tempo que se é conhecido que no espaço são encontrados diversos compostos orgânicos, como pares de bases e aminoácidos. Em 2011, por exemplo, alguns astrônomos da Universidade de Hong Kong encontraram compostos orgânicos complexos (comparados até com carvão e petróleo) em várias partes do Universo, e sugeriram que esse tipo de composto pode não ser exclusividade de formas biológicas, podendo ser espontaneamente criados por estrelas.
Em setembro de 2016, a NASA divulgou a detecção de um bilhão de pares de bases de DNA (provindas de amostras levadas da Terra) em apenas uma semana, pela utilização de um mini-sequenciador de biomoléculas em uma estação espacial, provando que é possível o sequenciamento de material genético em condições fora da Terra. Isto significa mais um importante passo para a possibilidade de detectar estes tipos de compostos em exoplanetas, por exemplo.
Mas uma notícia recente, de fevereiro de 2017, foi ainda mais animadora: foram detectados diversos compostos orgânicos, carbonatos e argilas em Ceres, o maior corpo entre o cinturão de asteroides que fica entre Marte e Júpiter, também considerado um planeta anão. Estes compostos, detectados por espectroscopia na região do infravermelho e do visível, foram mapeados em torno de uma cratera localizada no hemisfério Norte do pequeno planeta. Os compostos orgânicos encontrados possuem comprimentos de onda característicos de grupos metil (CH3-) e metileno (-CH2-).

Imagem da cratera mapeada na superfície do planeta anão Ceres, onde a coloração vermelha alcançada pela utilização de filtros espectrais combinados se refere à matéria orgânica. Fonte: NASA.

E como podemos relacionar esta descoberta com a origem da vida na Terra?

Em outubro de 2003, um trabalho publicado na revista Science mostrou que um experimento envolvendo a utilização de argila (no caso, montmorillonita) aumentou a tendência de ácidos graxos (que compõem os lipídios que formam as membranas das células) de formar membrana de camada dupla, além de induzir a formação de cadeias de RNA, moléculas que contém informação genética para a transcrição de proteínas. De acordo com o químico Alexander Graham Cairns-Smith, da Universidade de Glasgow (Escócia), autor do trabalho, na argila é onde podem ter surgido as primeiras moléculas que deram origem à vida. Isto porque as superfícies argilosas podem ter servido como um agente organizador de padrões, assim como os nossos genes atuam. Além disso, nas argilas os compostos orgânicos podem ter sido mantidos juntos e com condições ideais para o acontecimento de algumas reações químicas que seriam substanciais para a formação de proteínas, por exemplo. Em outras palavras, as partículas de argila serviriam como substratos para a união de aminoácidos para a formação de proteínas, além de favorecer a formação de dupla camada lipídica que posteriormente dariam origem às membranas celulares.
Um ambiente ideal para a evolução da vida pré-bacteriana no nosso planeta seriam as hot springs e fontes hidrotermais, regiões onde a água subterrânea aquecida geotermicamente emerge, no continente ou no assoalho oceânico, respectivamente. Estes ambientes possuem vários requerimentos que poderiam ser essenciais para as reações que deram origem à vida, além da presença de argila, como uma ampla gama de temperaturas (no qual uma deles seria ótima); presença de compostos orgânicos dissolvidos; grande disponibilidade de fósforo, zinco e níquel, etc.

Hot spring (esquerda), no parque Yellowstone, EUA. Fonte: Enciclopédia Britânica. Fonte hidrotermal em fundo oceânico (Fonte: Wikipedia).

Os carbonatos e argilas que foram encontrados no planeta anão Ceres podem fornecer evidências de que lá um dia aconteceram reações químicas na presença de água e calor, o que pode significar que os compostos orgânicos mapeados no planeta puderam ter uma origem semelhante aos primeiros compostos orgânicos mais complexos na Terra.

As joias do Universo

No último dia 22 de Fevereiro, a agência espacial norte-americana NASA divulgou uma notícia que movimentou a comunidade científica e o mundo todo. Foi anunciada a descoberta de um sistema planetário composto de sete planetas orbitando uma estrela anã-vermelha. A estrela, com apenas cerca de 8% da massa de nosso Sol, já havia sido registrada anteriormente e foi batizada em referencia ao Telescópio TRAPPIST (que por sua vez recebeu este nome em homenagem aos monges católicos trapistas, uma ordem comum na Bélgica e na Holanda e famosa por suas deliciosas cervejas). Os sete planetas do Sistema TRAPPIST (planetas “b”, “c”, “d”, “e”, “f”, “g” e “h”) possuem órbitas pequenas, tamanhos similares aos da Terra e possivelmente são rochosos. Os planetas “e”, “f” e “g” encontram-se em uma distância que pode indicar a existência de água no estado líquido. A NASA tem planos de investigar sinais de atmosfera nestes planetas e se podem realmente possuir água líquida.

O Sistema TRAPPIST (www.nasa.gov)

Tal descoberta é realmente algo extraordinário, mas devemos ser cautelosos com as notícias que já se espalharam pelas mídias, em especial pela rede mundial de computadores, e que muitas vezes não estão embasadas em fatos concretos, mas na imaginação e nos anseios pessoais de seus autores. Não é verdade que a NASA descobriu um sistema planetário que possua vida, nem mesmo foi relatada a existência de água no estado líquido, mas a simples possibilidade de existência deste composto primordial já empolga muitas das pessoas que acreditam que a vida animal complexa que habita a Terra também esteja espalhada pelo Universo. Há, no entanto, uma corrente oposta e me lembrei da mesma com todo o frenesi causado pelo Sistema TRAPPIST. Há cientistas que defendem a hipótese da “Terra Rara”, segundo a qual a vida microbiana simples pode estar difundida pelo Universo, mas a vida animal complexa é muito rara. Ainda quando estava na graduação tive a oportunidade de ler o best-seller do paleontólogo Peter D. Ward e do astrobiólogo Donald Browlee (ambos norte-americanos): “Rare Earth: Why Complex Life Is Uncommon in the Universe” e que me deixou fascinado! Embora muitas pessoas se excitem com a ideia de vida complexa extraterrestre, a possibilidade de sermos um evento de tamanha singularidade como apresentado pela hipótese da Terra Rara me parece muito mais excitante!

Capa do livro “Rare Earth: Why Complex Life is Uncommon in the Universe”, de Peter D. Ward e Donald Browlee (2000)

Enquanto a vida simples microbiana é adaptada às mais adversas condições, como temperaturas extremas de ambientes polares e de ambientes próximos a vulcões, a vida animal complexa é mais restrita e sua existência depende de muitas singularidades que tornam o nosso “pálido ponto azul” (como apelidado pelo grande astrônomo e divulgador da ciência, Carl Sagan) tão raro! Para que a vida animal complexa pudesse surgir em nosso planeta foram necessários bilhões de anos de história geológica, cerca de 3,8 bilhões ou mais. Segundo a hipótese da Terra Rara, planetas mais jovens não possuiriam idade suficiente para que a vida pudesse surgir e evoluir para formas tão complexas como ocorreu na Terra. Além do tempo de existência dos planetas, há inúmeras outras condições para abrigarem seres complexos, como os que estão lendo este texto.

É necessário que o planeta não esteja situado na zona central de sua galáxia, pois no centro das galáxias é maior a probabilidade de que ocorram impactos com asteroides e cometas, que podem extinguir a vida. É necessário que o planeta mantenha parte de seu calor primordial, o suficiente para que exista a força capaz de mover seus continentes. Não fosse a tectônica de placas em nossa Terra rara, não haveria continentes-ilha, palco do isolamento geográfico que levou às inúmeras especiações e a diversificação da vida complexa. É necessário que o planeta tenha uma órbita estável e quase circular. Planetas com órbitas erráticas ou que não apresentem órbitas próximas de serem circulares não teriam condições climáticas que suportassem a vida complexa como conhecemos, pois ora estariam muito próximos de sua estrela, ora estariam muito distantes. É necessário que a própria estrela seja estável, sem muitas flutuações na energia liberada. E mesmo em um sistema planetário com uma estrela relativamente estável, pode ocorrer a liberação de energia em excesso, o que faz necessário um campo magnético protegendo o planeta.  Mesmo na presença de todas estas condições, é ainda importante a existência de um planeta vizinho de muita massa e que com seu poderoso campo gravitacional atraia qualquer bólido errante, protegendo o planeta, como faz Júpiter em relação à Terra. Muitos podem pensar que a hipótese da Terra Rara falhe ao não considerar que a vida em outros planetas possa ser diferente da que aqui ocorre (composta de outras macromoléculas essenciais) e que tenha outras exigências para progredir de formas simples a formas complexas. No entanto, a única forma de vida conhecida é a que existe em nosso planeta, e o que definimos como vida está restrito a ela.

A descoberta do Sistema TRAPPIST é uma boa nova e merece toda a empolgação da comunidade científica e de todas as pessoas que são apaixonadas por ciência, mas não creio que estamos próximos de encontrar vida complexa. Podemos sim ter esperança de que exista água no estado líquido, em especial na zona que abriga os planetas “e”, “f” e “g”, e que os planetas sejam realmente rochosos e que possuam atmosferas similares às da Terra, e que abriguem, talvez, vida microbiana, vida mais simples. Mas a vida complexa parece ser rara no Universo! Nós temos a sorte de viver em um planeta que a abriga e que ainda registra nas rochas, através dos fósseis, a história de sua evolução. A Terra é rara, toda sua diversidade de organismos complexos é rara e o registro fóssil é ainda mais raro. As joias do Universo podem estar mais próximas de nós do que pensamos.

A Terra, nosso pálido ponto azul, vista de Saturno e fotografada pela sonda Cassini em 2013. Uma das joias do Universo! (www.science.nasa.gov)

O Carnaval dos microbichos

Faz um tempo que a cada carnaval fico com vontade de ir para Veneza (Itália) e utilizar uma máscara decorada e inspirada nos foraminíferos. Eles são microfósseis, pois estima-se que hoje em dia existam ao redor de 8.000 espécies, mas a grande maioria delas dificilmente alcança mais de 1mm. Pela sistemática, eles são protistas eucariontes cosmopolitas, na sua maioria marinhos, e pertencem ao Filo Granuloreticulosa, possuindo uma célula só e são aparentados com as amebas. Os foraminíferos em vida possuem pseudópodes (ou falsos pés) que os auxiliam em muitas funções como na fixação, flutuação, alimentação, respiração, coleta, etc.
Os foraminíferos secretam uma carapaça ou esqueleto externo, que recebe o nome de testa, que em muitos casos é composta por carbonato de cálcio na forma de cristais de calcita. A testa é preservada facilmente no registro sedimentar, principalmente marinho, sem precisar passar por um processo de fossilização. O formato das testas, ou seja, a sua morfologia externa é francamente espetacular e sumamente variada.

Foraminífero  belamente ornamentado (http://www.foraminifera.eu)

A enorme quantidade de testas de foraminíferos depositadas no fundo dos mares e oceanos, as famosas vazas de foraminíferos, fazem desse filo de protozoas um dos grupos de fósseis mais abundantes do registro fossilífero do nosso planeta nos últimos 500 milhões de anos. Na verdade, são bem menos famosos que os dinossauros e muito mais bem-sucedidos. Quem não ouviu falar das pirâmides do Egito, umas das sete maravilhas do mundo antigo? Pois bem, elas foram construídas com blocos de pedra calcaria formada pela deposição de foraminíferos ou vazas de foraminíferos.

As vazas de foraminíferos são mundialmente estudadas em testemunhos recuperados de perfurações que alcançam centenas de metros de profundidade. Esses registros ordenados são precisos e preciosos na hora de realizar correlações entre camadas de diferentes locais no planeta, datar camadas, calcular – por meio de isótopos estáveis de Oxigênio – a temperatura das águas na qual foi segregada a testa, ou seja, ter acesso a paleotemperaturas de épocas passadas, etc.

A imagem pertence a um mesmo foraminífero planctônico, a diferencia esta na presença de espinhos em um e sem os espinhos no outro (http://www.foraminifera.eu)

Pois bem, as testas dos foraminíferos, como já falei, são super-bonitas e ornamentadas e dependendo da forma como o seu dono habite o ambiente marinho são denominadas como planctônicos, se pertencem a indivíduos que vivem flutuando perto da superfície, ou bentônicos, se vivem no fundo. Nesse segundo caso, podem viver colados a outros organismos ou enterrados entre os grãos de areia. Claro que também a sua distribuição nos mares vai ser regida por parâmetros como temperatura, salinidade, nível de oxigênio, disponibilidade de alimento, etc.

Entre os grupos de foraminíferos que possuem testa de calcário, temos os de testa aglutinante ou Textulariina, os porcelânicos ou Miliolina, os de testa hialina ou Rotaliina e um grupo extinto há mais de 250 milhões de anos conhecido como de testa microgranular ou Fusilinina. A forma como os cristais de calcita se organizam para formar a testa confere ao protozoa diferentes propriedades para e xplorar o seu habitat, ou seja, viver em lugares variados.

Aspecto da testa aglutinante (http://www.foraminifera.eu)

Entre os grupos de hoje, os foraminíferos aglutinantes secretam um tipo de cimento e com auxílio dos pseudópodos (lembrando que são parecidos com as amebas) colhem diminutos fragmentos de conchas ou grãos de areia e rochas do fundo, que vão colando no cimento e com isso construindo a testa. Na maioria dos casos a testa possui um furo na ponta, para saída dos pseudópodes. Com esse tipo de testa os aglutinantes exploram locais com pouca disponibilidade de carbonato dissolvido na água, como a foz de rios ou mesmo as profundezas dos oceanos, abaixo dos 2.000 metros de profundidade.

Exemplares com testa porcelânica (http://www.marine.usf.edu)

Os foraminíferos com testa porcelânica segregam cristais de calcita que são depositados em todas direções, isto é, sem uma ordem definida, formando uma testa muito robusta e habitam o fundo de todos dos mares e em todas as latitudes.

Os foraminíferos hialinos constroem as suas testas depositando os cristais de calcita de forma ordenada, então as suas testas são transparentes e finamente perfuradas. Pelas perfurações emergem os pseudópodes que auxiliam na flutuação, sendo esse grupo o que reúne todas as espécies de foraminíferos planctônicos, embora também existam muitas formas bentônicas.

Fomaníniferos planctônicos de testa hialina (http://www.foraminifera.eu)

As testas podem, independente de como foram construídas, ser ornamentadas ou lisas, ter uma ou muitas câmaras dispostas em uma ou muitas fileiras, em linha ou enroladas, etc. etc. Então, com essa diversidade e com 500 milhões de anos de história não vai ser difícil eu fazer a minha máscara, as de todo um bloco ou mesmo as de todos os foliões com motivos de foraminíferos diferentes….