FAQ #3 Como copiar o código em laboratório?

FAQ da Bioengenharia 3

Ahá! Essa é a pergunta que mudou a biotecnologia. Até conseguirmos fazer isso, nós (i.e. humanidade) passamos por um caminho bem interessante envolvendo prêmios nobel e momentos epifânicos. O videozinho explica muito melhor do que esse texto corrido como funciona a metodologia pra se fazer isso, a Reação em Cadeia da Polimerase (Polimerase Chain Reaction), o tão amado e odiado (quando simplesmente não funciona) PCR!

[youtube_sc url=”http://www.youtube.com/watch?v=vmlLj1aLZ7s”]

Encurtando a história: usando uma enzima que trabalha “sentando” no molde de uma fita única de DNA, aquecimento e desaquecimento (para “ligar” e “desligar” essa enzima) e pedacinhos de nucleotídeo, conseguimos fazer milhões de cópias de apenas uma única molécula de DNA – é por isso que o pessoal do CSI (o seriado) consegue uma grande informação genética usando apenas resíduos quase desprezíveis de material biológico.

 pcr

Por Otto Heringer e Viviane Siratuti.

FAQ #2 Como extrair um pedaço de DNA desejado?

FAQ da Bioengenharia 2

Queremos pegar um pedacinho codificante de DNA (responsável por alguma característica no organismo) de um outro pedaço maior de DNA. OK, mas onde fica esse outro pedaço? Bem, existem pedaços disso praticamente a todo o seu redor. Onde há vida, há informação genética que pode ser “pega”. Extraímos ele basicamente fazemos lavagens usando solventes de diferentes “afinidades de dissolução” (a grosso modo) com as biomoléculas da célula até restar o DNA.

Se você quer saber, existem até kits comerciais para se fazer isso (como por exemplo a imagem abaixo), são os famigerados “kits de miniprep”. “Mini” porque em geral são bastante usados kits que trabalham com pequenos volumes (microlitros), mas também existem os kits de “midiprep” e “maxiprep”, para volumes maiores.

K210010

Assista o vídeo caso você queira saber mais do processo (aviso: a realidade às vezes não é algo tão excitante como você imaginava).

[youtube_sc url=”http://www.youtube.com/watch?v=P12DPa-g8Ro”]

Aliás, se você ficou com vontade de extrair DNA em casa, é bem simples, clique aqui.

Por Otto Heringer e Viviane Siratuti.

FAQs da Bioengenharia – Introdução

FAQ da Bioengenharia 1

Preocupados com os novos amantes da biologia sintética, estamos procurando materiais de introdução no assunto e encontramos algumas coisas interessantes! 🙂

Por isso vamos colocar uma sequência de posts explicativos, partindo de uma visão geral e seguindo por perguntas mais específicas. É um pequeno tutorial-FAQ sobre alguns fundamentos que quando entendidos ajudam bastante a entender algumas de nossas discussões e outros posts deste blog. Serve para ajudar principalmente quem não é da área de biológicas ou quem ainda não se aprofundou muito neste assunto! Se continuarem com dúvidas, perguntem tá?!

Lembrem-se de ativar as legendas dos vídeos, caso necessitem! Todos possuem legendas originais em inglês e alguns em português. Você pode colocá-las traduzidas quando só houver em inglês (não muito recomendado, rs). Nos vídeos do JOVE existe a opção de colocar os textos em português. Se você não sabia que o YouTube fazia isso por você, dá uma olhada aqui (dica: barrinha inferior do vídeo).

Antes de mais nada, você sabe o que são e quais as relações entre nossas principais moléculas orgânicas (DNA, RNA e proteínas), certo? Se sua resposta é não, assista um desses vídeos!

 

[youtube_sc url=”http://www.youtube.com/watch?v=h3b9ArupXZg#t=0″]

[youtube_sc url=”http://www.youtube.com/watch?v=tMr9XH64rtM”]

 

Indo além da Estrutura 

OK, agora vamos além desses conceitos básicos dos vídeos. Mais que entender a estrutura e a dinâmica dessas biomóleculas, como os cientistas a alteram? Em linhas gerais, como se faz para modificar geneticamente um organismo?

320

 

Vamos lá! Primeiro pegamos um pedacinho codificante de DNA (gene) de outro organismo que tenha certa característica que desejamos. Para isso, extraímos o DNA e depois multiplicamos só esse pedaço que nos interessa através de uma técnica chamada PCR (afinal, a eficiência das transformações é pequena e quanto mais material melhor). Precisamos também extrair e abrir os plasmídeos (DNA circular) do organismo escolhido para receber este gene e assim receber as novas características (já que o plasmídeo é nosso principal veículo de introdução dos genes nas células). Para abrir estes plasmídeos usamos enzimas de restrição que cortam as moléculas de DNA em lugares específicos e chamamos isso de digestão. Depois que tivermos vários plasmídeos e genes, podemos grudá-los com a ajuda de enzimas de ligação. E então, para saber se nosso novo plasmídeo deu certo usamos uma técnica de separação por carga e tamanho de molécula, a eletroforese em gel. Nela, as moléculas se acumulam em certas posições que nos dizem seus tamanhos (mergulhadas em um polímero) e assim podemos identificar aquelas que correspondem ao que estimamos. Além disso, fazemos testes com a técnica PCR e o sequenciamento genético. Se os testes disserem que tudo que fizemos deu certo, recuperamos o material e colocamos nossos novos plasmídeos nos organismos, geralmente utilizando choque térmico ou elétrico. Esse passo, introdução de plasmídeos, é a chamada transformação. Mas para selecionarmos somente aqueles organismos que realmente foram transformados usamos antibióticos que matam as células que não ganharam os nossos novos plasmídeos, já que não possuem os genes de resistência que foram colocados neles. E no final, cada célula que sobreviveu se multiplicará, formando colônias de organismos geneticamente modificados. Agora dá uma olhada no esquema de novo e vê se entendeu até aqui!

Por Otto Heringer e Viviane Siratuti.

iGEM World Jamboree – Parte 1: Overview do Evento

*este post sofreu com o fato do autor ter perdido o cartão de memória com fotos do evento. Algumas foram recuperadas, embora com qualidade muito pior u.u…. faremos a melhor limonada possível dos limões recebidos e esperamos que gostem!

Entre os dias 1 e 4 de novembro de 2013 ocorreu a etapa mundial do iGEM, o iGEM World Jamboree, onde equipes selecionadas nas fases regionais do mundo todo reúnem-se no MIT (Massachusetts Institute of Technology), em Boston, para apresentarem seus projetos finalizados nesta temporada. Apesar de nosso projeto não ter sido selecionado,  mandamos nossos enviados especiais, Pedro e Danilo, para acompanhar o evento e trazer essa experiência!

classicoMIT

Dois invasores em frente ao prédio clássico do MIT

O evento apresenta o mesmo formato que as fases regionais, com a diferença de ser muito maior: são três salas de apresentações simultâneas, nas categorias “undergraduate” e “overgraduate”, e uma sala com a categoria Entrepreneurship e Software.  Ao todo são em média 80 apresentações diferentes durante o evento todo, das quais acompanhamos cerca de 30.

Este é o primeiro de uma série de posts originados deste evento, nos quais contaremos as impressões gerais da experiência. Nos próximos posts iremos abordar os nossos projetos favoritos, as possibilidades brasileiras e latino americanas no evento e como o iGEM se tornou uma máquina azeitada de inovação (mesmo contando com apenas 7 funcionários).

A cidade, o MIT e tudo mais

O evento não ocorre propriamente em Boston, mas sim em Cambridge, cidade onde estão localizados o MIT e Harvard. Cambridge é uma cidade bonitinha com a estética da Nova Inglaterra: prédios de tijolinhos, esquilos, carvalhos e com aquela beleza clássica de outono do clima temperado totalmente alheia a nós, mas que nos acostumamos a ver nos desenhos da Disney. Fora isso, é a moradia de milhares de estudantes de alto nível do mundo todo que desenvolvem suas atividades nas universidades locais.

mitmoderno

Stata Center, palco de parte das apresentações/

Os campi de Harvard e MIT são bem integrados à cidade. Harvard, apesar de ser cercada de muros, possui os portões abertos, amplos gramados e um visual clássico, o movimento de estudantes é bastante intenso o dia inteiro. O MIT, por sua vez, não possui muros e conta com edificações clássicas e também modernas. Percebe-se que a relação com o espaço é bem diferente do que a que temos no campi da USP, que, apesar de ser de uma universidade pública, é bem menos integrado à cidade do que as universidades citadas acima.

O MIT, em específico, não deve em nada à USP quanto à sinalização dos prédios e ruas: ambos são bastante confusos para um visitante. Fora essa dificuldade, a estrutura é realmente boa: auditórios espaçosos, salas adequadas para conversas, espaços para estudo independente e boa rede wifi formam um ambiente propício para o desenvolvimento de idéias. Com certeza é um lugar onde qualquer desenvolvedor de projetos gostaria de estar.

O evento

O primeiro dia do evento é apenas para inscrições e um breve treino. Apesar do clima de excitação em meio à pizza (UHUL!), o ambiente não é de muita confraternização. Os times revezam-se nas salas, onde têm apenas meia hora para treinar suas apresentações (acredite, em meia hora com certeza alguém estará batendo na sua porta para que você saia), e podem aproveitar o tempo para escrever o que quiser nas lousas do hall.

No segundo e terceiro dias temos o que realmente interessa. As apresentações começam pontualmente e são intercaladas com perguntas dos juízes e da platéia. Os times possuem 20 minutos para a apresentação e mais 10 para perguntas e não ocorreram problemas nesse sentido: tudo parecia muito bem alinhado e ensaiado (com slides previamente preparados para responder as perguntas que pudessem surgir, inclusive), com algumas excessões específicas. Devo dizer, porém, que nem sempre os juízes faziam perguntas claras e objetivas, ainda mais levando-se em conta que para muitos times o inglês não era a língua nativa.

epigenetics

As lousas duplas que sempre vemos nos filmes. Elas existem!

Ao contrário do evento regional da América Latina, os pôsteres são exibidos em todos os momentos de intervalo e, no nosso caso em específico, alguns foram importantes para decidir o que veríamos. Os pôsteres do iGEM são ligeiramente diferentes do que estamos acostumados, com mais texto e maior preocupação com o design de como as informações são apresentadas.  Nesse sentido, ainda não me convenci que o houvesse algum pôster melhor que o nosso, haha.

Ao fim, dos seis finalistas das duas categorias, Overgraduate e Undergraduate, uma surpresa: Nenhum time americano na final. 5 times europeus, sendo 3 alemães, 1 francês e um inglês, mais um time chinês. (confira!). Os resultados finais, bem como awards estão nesta página. Com destaque para, até onde eu sei, o primeiro award ganho por um time Latino americano: Melhor modelagem para o time de Buenos Aires!
Enfim, nos próximos posts teremos uma seleção dos melhores projetos segundo nós mesmos, bem como relatos da categoria de empreendedorismo e afins!

Até lá!

*Hard Level Bonus Stage: Ache-nos na foto oficial!

Dica: Dois solitários vermelhos.

O Brasil no iGEM América Latina 2013

E lá fomos nós de novo viajar em nome do futuro da Biotecnologia do Brasil. Não só a gente, Manaus e Minas estavam lá junto , e nós junto com eles, é claro. Para começar a contar como tudo rolou, vamos começar falando da gente, os brazucas:

Os Brazucas

Os Brazucas todos juntos.

Minas, Manaus e São Paulo em um só lugar.

Foi muito legal ver times do iGEM surgindo pelo Brasil. Bonito em dois sentidos: em relação à UFMG que surgiu com um time quase que espontâneamente, e em relação à UFAM e cia, onde mantínhamos contatos a tempos com o professor Carlos Gustavo, com quem pudemos ajudar e inspirar de alguma forma a criar uma iniciativa firme e forte lá na região ainda bem florestada do país.

O Pedrão e o Grande Carlos.

O Pedrão e o Grande Carlos.

Eu gostaria de escrever uma bíblia aqui sobre os projetos de cada um dos Brazucas, mas para o bem do leitor eu vou dar uma “resumida” (a minha “resumida”):

Manaus

Como já disse antes, nós já éramos amigos deles bem antes de nós todos os conhecermos pessoalmente. Além de uma conversa antiga com o Instructor deles, o Marcelo Boreto desfrutou das delícias de ser um físico manjador de modelagem de sistemas biológicos e ganhou uma viagem lá para Manaus para dar um workshop de modelagem para o iGEM, comer doces de cupuaçu e fazer amizade à moda antiga (na “RL”) com pessoas e outras criaturas, como a Costinha, a preguiça de Lab – as piadas e trocadilhos ficam a cargo do leitor.

Marcelo e Preguiça

O Marcelo num dia que tava com preguiça

A grande ideia do time amazonense foi bem interessante. Eles usaram duas grandes coisas em seu projeto:

  1. o fato de que o chassi Shewanella putrefaciens consegue transportar elétrons (de uma maneira ainda não bem descrita, diga-se de passagem – ia escrever um post sobre isso outro dia) para o meio externo de maneira a gerar eletricidade (esse time alemão do iGEM se deu muito bem com esse tema),
  1. e a ideia de que a fonte desses elétrons poderia vir da degradação de lipídeos, mais especificamente de óleo de cozinha usado.

A grande tarefa deles foi tentar reprimir um inidor da via metabólica de degradação de lipídeos que a torna não-constitutiva e superexpressar genes relacionados ao transporte de lipídeos para a célula. Bem esperto. Levaram bronze medal pra casa e de quebra o prêmio de best presentation, dá um orgulho que só desse povo de Manaus! Veja a wiki deles aqui.

UFMG

O time de minas foi o mais “brasileiro”dos brasileiros, na minha opinião – e não, não é porque nosso time da USP tem estrangeiros. Foi o mais brasileiro porque surgiu do nada, na raça, na gana, sem desistir nunca, e conseguiu o que precisava para ir pra final bem melhor do que nós: que é ter resultados concretos da caracterização dos BioBricks. Também foi time mais emocionante que foi pra final, o da comemoração mais intensa. Sim, eu vi lágrimas em alguns olhos mineiros após a divulgação dos finalistas. Fiquei genuinamente feliz por eles, senti o Brasil representado ali, principalmente com aquele jeitinho mineiro “comequieto” de ser.

Lembrando ainda que deve ser dado a César o que é de César: conhecendo o time mais de perto como pude, consegui perceber o papel crucial e integrativo de cada membro da equipe (principalmente com os que conversei: Mariana, Carlos, Júlio – esse último, grande companheiro dos rolês chilenos), mas gostaria de fazer jus principalmente ao comedido Lucas, que pelo o que senti, com toda sua mineirice, foi um dos grandes bastiões que deu “liga” ao grupo (não é a tôa que ele é um dos idealizadores da Liga Média, há!) e eu acho que todo mundo deve saber disso – a não ser que ele me censure aqui, hahaha.

Os Mineiros e alguns argentinos (créditos portenhos às fotos).

O projeto deles foi interessantíssimo. No iGEM o tipo de projeto que dá para ser feito no tempo curto da competição sem deixar de atingir bons resultados práticos é, sem dúvida, envolvendo biodetectores. Com uma excelente escolha de projeto integrando o know-how dos labs dos professores envolvidos e dos alunos (além de ser completamente viável, diga-se de passagem), a proposta de biodetecção foi criar um método completamente novo de diagnóstico de síndrome coronária aguda (SCA) – que, em outras palavras avacalhadoras, é praticamente um “pré-infarto”. Eles miraram em três biomarcadores dessa síndrome: uma albumina modificada que aparece no sangue durante a SCA, um peptídeo que em altas concentrações indica falência cardíaca e um metabólito que recentemente foi comprovado como indicador para ACS. Dentre os três, o método de detecção mais esperto foi o albumina modificada, em que eles usaram o fato de ela ter uma taxa de ligação menor a metais do que a albumina saudável; o metal que “sobra” (que no caso era cobalto) ativa um promotor indicando a presença do biomarcador. Legal né? Vale a pena dar uma olhada na wiki bonitinha deles.

USP

Bem, e a gente? Nós tentamos fazer um biodetector do Metanol seguindo a ideia de uns posts (esse, e esse) que fizemos aqui no blog lá no começo de 2013. Esse ano fizemos um projeto bem mais completo e focado que o ano passado. Produzimos muito mais em diversos pontos que me 2012 tínhamos deixado de lado: biossegurança, a wiki, design, Human Practices e prototipagem. Dê uma olhada na wiki que fizemos, aqui.

É nóis! Ou melhor, é metanóis!

É nóis! Ou melhor, é metanóis!

Tivemos muito mais financiamento e apoio por causa dos trabalhos de 2012 e conseguimos nos unir em um coletivo que deu certo (unindo ainda mais gente de mais lugares diferentes da USP). É claro que com tudo isso havia a pressão para que ganhássemos a medalha de ouro para ir pra Boston, e ela foi grande! Muita gente ficou desapontada com a nossa medalha de prata, mas não se deve negar que eles foram incríveis: para caracterizarmos os BioBricks (que fatalmente é o que dá a desejada medalha), recebemos a síntese no começo de agosto para entregar os resultados no final de setembro, e detalhe: ninguém do grupo tinha expriência com Pichia e não tínhamos padronizado a metodologia de utilização do equipamento medidor de fluorescência. Mesmo assim conseguimos levar à competição pelo menos um resultado de fluorescência de uma das linhagens que queríamos testar para a caracaterização das partes, foi uma maratona insana de 2 meses (e inclua a escrita da wiki e a preparação da apresentação e poster nisso).

A clássica Jamboree picture - um pouco menos verticalizada que o de costume.

A clássica Jamboree picture – um pouco menos verticalizada que o de costume.

O que ficou engasgado mesmo é que no evento deveríamos ter levado o best model. A argumentação usada pelo Juíz, de que “um bom modelo deve usar dados experimentais”, apesar de ser verdadeira não deveria valer para a premiação específica da modelagem. Afinal o que sendo está avaliado? O Modelo trabalhando nas hipóteses fixadas ou os resultados? Dessa maneira, um grupo de modelagem poderia elaborar o modelo mais inteligente e inovador da competição e mesmo assim não ser premiado se seus dados experimentais forem insuficientes.

Conversando com os Juízes após a competição, nos contaram que ficamos em segundo lugar para os “Best Prizes” em bastante coisa (best pôster, best natural part, best modelling). O que explica isso é a grande metáfora da galinhada: preparamos aquele banquete super organizado, lindo e completo, mas faltou matar a galinha – e a galinha é caracterizar o BioBrick.

Os HighLights Latinos do Jamboree

Aquele momento em que você acha que está dando highlights demais.

Aquele momento em que você acha que está dando highlights demais.

O Jamboree foi excelente. Principalmente porque dessa vez providenciaram mais oxigênio no ar colocando o evento em Santiago (e não a algumas dezenas de centenas de metros acima do nível do mar). Essa cidade é maravilhosa, é tudo lindo, bonito e bem organizado. O trânsito é bem diferente de Bogotá; fiquei com a impressão de que é um trânsito que funciona, sabe!? Dá vontade de fugir do Brasil e morar lá, ainda mais sabendo que há um grande incentivo para empreendedores estrangeiros por parte do governo chileno, com inclusive brasileiros já espertos disso.

Todos devidamente abastecidos com produtos derivados de "lã-de-lhama" (ou seria alpaca?).

Todos devidamente abastecidos com produtos derivados de “lã-de-lhama” (ou seria alpaca?).

Os outros times do iGEM mandaram muito bem, o nível dos resultados atingidos pelas equipes realmente melhorou bastante – ainda há uma estrada levando além do horizonte que distancia os resultados que os times do hemisfério norte  e sul conseguem obter, mas isso fica pra um post futuro. Os grandes highlights latinos que precisamos fazer são:

  • Equipe UC Chile: Escolheram um tema de projeto bastante ambicioso e muito interessante, o de microcompartimentos bacterianos genéricos para realização de reações “localizadas”, assim como um vacúolo (em “plantinhas”), peroxissomo e lipossomo – daí o nome do projeto deles “whateverisisome”. Além disso, criaram também um jogo (só que não de cartas) como Human Prcatices. A wiki deles ficou muito linda, veja só.
  • Equipe colombiana Uniandes: A equipe latinoamericana mais experiente no iGEM veio com dois projetos para o Jamboree: um sensor de glucocorticóides que poderia ser um “sensor de stress” e um sistema de absorção de níquel que poderia ser usado para biorremediação. O highlight aqui é a movimentação eficiente das células do chassi que eles usaram em direção a um campo magnético relativamente fraco. A wiki deles está muito legal também, dê uma olhada. Sinceramente: eu pensei que eles seriam finalistas.
  • Equipe de Buenos Aires: Apesar de a wiki deles aparentemente não ter sido terminada a tempo, esse foi o projeto mais bem ranqueado no evento. A apresentação deles foi sensacional e envolvente. Conseguiram caracterizar otimamente os promotores sensíveis a arsênico que usaram para propor um biodetector desse contaminante na água. O highlight aqui foi a colaboração do time mexicano da TecMonterrey e o protótipo que eles proporam para um biodetector comercial.
  • Equipe mexicana de TecMonterrey: O projeto desse time era sobre a biodetecção e tratamento de câncer. Os grandes highlights são a caracterização conjunta de algumas partes para o time argentino – fazendo com que eles detectassem uma concentração absurda de arsênico em um dos rios de Monterey e fossem reconhecidos pelo governo de lá por isso – e uma Human Practices genial: além de workshops e eventos promovidos pelo grupo (que incluem um TEDx), eles traduziram um manual para auto-examinação de câncer de mama para dois mais falados dialetos indígenas no país – Otomí e Zapoteco. Muitíssimo legal!

É lógico que houveram outros resultados muito legais que estou me controlando pra não mencionar. Mas highlights são highlights e não dá pra destacar tudo senão acaba a tinta da minha marca-texto mental.

The Good Fight

Enfim. Após esse ano cheio de altos e baixos como todo bom ano deve ser, estamos satisfeitos. Apesar de não termos correspondido às expectativas pressurizantes de alguns, conseguimos fazer muito bem aquilo que é mais importante: estimular as pessoas a criarem, saírem da ordem natural da academia e quebrar as paredes dos silos que contém (sim, contém, e não contêm!) a interdisciplinariedade efetiva. E também, é claro, estimular esse tipo de iniciativa por aí, papel do synbiobrasil que foi devidamente reconhecido conversando com o juízes. E é extamente isso que estamos fazendo agora: queremos espalhar essa experiência para outros campus da USP e outras universidades, bem como em nos formalizar institucionalmente aqui no campus da capital como uma organização devidamente reconhecida.

E é isso aí. Let’s keep fighting the good fight. 🙂

No próximo post (que será depois de um descanso merecido de final de ano), vamos começar a contar como foi incrível evento mundial nos EUA com os “enviados especiais” (aka. penetras) que mandamos pra lá, inflitrados no time mineiro. E esperamos já poder fazer isso vestindo o site novo com esses textos!

Um jogo para acabar com preconceitos

Qual é a melhor maneira de passar uma informação pra uma pessoa!?

Como os comerciais, filmes e canais de televisão estão aí pra comprovar, o entretenimento passa muito mais pra você do que mera diversão. É com essa ideia que ficamos pensando em como fazer as pessoas entenderem os conceitos e finalidades da abordagem da Biologia Sintética. Como não perdemos tempo para arrumar uma desculpa para nos divertir, criamos durante esse ano um jogo de cartas – inspirado em elementos de MunchkinBohnanza, Magic e War – para, além de ensinar de uma maneira divertida sobre conceitos de microbiologia e biologia molecular, informar melhor as pessoas e acabar com certos preconceitos envolvendo microrganismos bioengenheirados.

E olha que legal: além de levarmos essa ideia como nossa Human Practices na competição internacional de máquinas geneticamente modificadas desse ano (e sermos bastante elogiados por esse trabalho), emplacamos primeiro lugar com o projeto na Olimpíada USP do Conhecimento!

primeiro lugar USP Conhecimento

É, senhora Sociedade, eu te disse que nossa brincadeira é uma brincadeira séria! Tão séria que esse projeto não para aqui.

Game Crafter

O jogo estará disponível para download (se você quiser imprimir aí na sua casa) ou para compra através do maravilhoso site “The Game Crafter“, que é de uma empresa que imprime e vende jogos independentes, como o nosso. Desse jeito nosso jogo vai poder sempre fazer o que ele se propõe a fazer: ser jogado!

O jogo

O jogo funciona assim: cada jogador (até 4) escolhe uma carta de personagem personagem, como por exemplo o professor Fujita:

Senhor Fujita

OBS: procure o “easter egg”.

Como dá pra ver, cada pesquisador tem uma personalidade específica e um chassi com que desenvolve seus projetos. No caso o senhor Fujita é um pesquisador que não colabora muito mas bastante competente, trabalhando com a largamente usada Escherichia coli.

O grande objetivo do jogo é construir primeiro que o seu colega um circuito gênico – afinal estamos falando de academia, minha gente! Para construir o circuito o jogador deve “criar”, acumular e trocar BioBricks, até que tenha a combinação de Biobricks necessários para completar o circuito, como por exemplo esse:

Carta Objetivo

OBS: nem todos os objetivos realmente podem ser feitos em alguns chassis.

Os Biobricks podem ser baixados com “pontos de metabolismo”, que é a representação dos recursos metabólicos e energéticos que o microrganismo tem para passar com sucesso pelo processo de transformação gênica de cada parte, a ser inserida sequencialmente na célula (no exemplo anterior há 8 BioBricks).

A dinâmica das cartas se dá quando elas ainda estão na sua mão e não foram “baixadas” no organismo. Há também (no melhor estilo Munchkin – quem já jogou sabe do que estou falando!) cartas dinâmicas usadas por um jogador em si mesmo ou em outros jogadores, como essa abaixo:

Carta dinâmica

E, por último, o último elemento do jogo é a tão temida aleatoriedade! Aquelas variáveis sem controle que sempre fazem seu experimento não sair como você queria. Um jogador no final da rodada joga um dado: dependendo do número tirado uma “carta aleatória” surge, ajudando ou prejudicando o ganho de pontos de metabolismo (que ocorre por rodada) dos chassis de cada pesquisador.

Cartas Aleatórias

Fizemos um overview do projeto num vídeo do youtube, dê uma olhada:

[youtube_sc url=” http://youtu.be/6Odd5-OKyHA”]
Quando o nosso novo site ficar pronto vamos ter um endereço especial com o jogo, por enquanto fica aqui nossa promessa de acesso aberto a esse conteúdo. 🙂

Acontece nos filmes, acontece na vida, acontece no Clube de Biologia Sintética

Este é mais um projeto que surgiu das reuniões do Clube de Biologia Sintética, feito por pessoas das mais diversas áreas e que se conheceram no clube. Esse é o objetivo principal do grupo: Reunir e ensinar pessoas de maneira divertida , integrar áreas, criar projetos científicos inovadores e criativos e, por fim, gerar impactos positivos na sociedade.

Você que compartilha dos nossos ideais, acompanhe nossas reuniões pessoalmente ou pelo ao vivo pelo streaming no nosso canal do youtube, ou ainda entre em contato pelo nosso email, canal do facebook e twitter!

Uma experiência de Biologia Sintética no ensino médio paulistano.

Pelos caminhos tortuosos que só os bons colegas nos proporcionam, acabei convidado a participar de uma das experiências mais empolgantes dos últimos tempos: uma tarde de apresentações e comentários a respeitos dos TCCs de alunos do colégio Bandeirantes, na Zona Oeste de São Paulo. Até aí, nada que pareça a princípio muito divertido, não fossem as boas surpresas que me aguardavam.

Para contextualizar, o Colégio Bandeirantes possui um módulo de Biotecnologia coordenado pela professora Ana Cristina Camargo de São Pedro para os alunos do segundo ano do ensino médio. Nele são ensinados e discutidos assuntos pertinentes ao tema, inclusive utilizando de artigos e outros materiais científicos bastante novos e, ao fim, os alunos apresentam um projeto de biotecnologia com foco na resolução de um problema do mundo atual.

Saudosismo ao ver esse formato "trabalho em grupo"?

Saudosismo ao ver esse formato “trabalho em grupo no ensino médio”, haha?

Nas apresentações, todas com o clima saudoso de “trabalho em grupo” dos tempos de colégio,  aparecem projetos motivados por temas como poluição marítima por petróleo, obesidade, doenças genéticas, síntese de produtos complexos e afins. Algo natural visto que a biotecnologia é o santo graal apontado para a maioria dos problemas que até então não fomos capazes de responder satisfatoriamente.

Não vou detalhar todos os 5 projetos, mas um em especial me pareceu bastante interessante: A síntese de Paclitaxel por meio de GMOs. Paclitaxel é um produto quimioterápico cuja principal fonte é um fungo endofítico da árvore Taxus brevifolia, o Taxomyces andreanae, porém já foi encontrada em outros fungos também. A molécula é complexa e já é parcialmente sintetizada em E.coli e leveduras se aproveitando de vias de síntese de terpenos, mas sua síntese completa ainda não é feita em GMOs.

Taxus brevifolia – Extrair produtos de alto valor de suas fontes naturais as vezes não é a melhor estratégia.

O projeto basicamente consistia na transferência da via metabólica para uma bactéria para produção e posterior purificação em níveis farmacêuticos do produto. Apesar de sabermos que as coisas não funcionam de maneira simples assim, foi bastante interessante a abordagem pela similaridade com coisas que já vem sendo feitas, como a produção da artemisina. Talvez, penso eu, esta seja a estratégia mais segura para utilização de GMOs atualmente: isolamento completo de organismos para a produção de um produto desejado em ambientes controlados.

Após a apresentação dos projetos, vejo os resultados de uma ótima preparação: o nível de detalhamento abarca bioética, biossegurança, designe de circuitos gênicos, discussão a respeito de diferentes chassis e etc. Ainda que às vezes de maneira inexperiente, o que não desabona o esforço, vejo discussões a respeito de diferentes estratégias que conciliem os ônus e bônus das novas abordagens criadas.

Estrutura molecular do Paclitaxel

Minha contribuição restringiu-se mais a elevar um pouco o nível dos questionamentos éticos, de biossegurança e de propriedade intelectual/comercial que identifiquei nos projetos. Não apenas as pessoas eram novas, mas o assunto em si é novo para a humanidade, o que leva a um nível ainda um pouco superficial das questões que emergem dessa tecnologia. Desta maneira, ainda que de forma restrita, espero ter colocado “bons empecilhos” necessários para a reflexão da bioengenharia em si.

Por fim, saio bastante satisfeito com o que vi. 20 e tantos jovens com o conhecimento suficiente para propagar uma visão menos preconceituosa da biotecnologia, capazes de pensar em projetos e nos desdobramentos dos mesmos, não importando que áreas forem seguir. Espero ainda que, caso algum dos alunos leia este texto, sinta-se orgulhoso do próprio trabalho e motivado a enfrentar o desafio de resolver problemas complexos como os apresentados.

As Incríveis Novas Reuniões do Clube de Biologia Sintética

bem vindo ao clube

É isso aí! Depois de um silêncio sepulcral no blog, uma medalha de prata no iGEM regional e mil projetos em andamento, retomamos oficialmente as reuniões do, agora “Incrível Novo Clube de Biologia Sintética”.

“Mas, Otto, porque ele agora é ‘Incrível’?”

Bem, na verdade eu não sei. Sugiro que você compareça para descobrirmos juntos. Mas eu juro de pés juntos que eu espero que seja incrível. Sabe porque? Porque vamos fazer tudo em um novo formato bem menos chato, mais participativo e… Com as transmissões por YouTube funcionando!

As reuniões terão duas partes: 20-30 minutos de uma apresentação temática pré-estabelecida e mais meia hora de reunião aberta para qualquer um levantar uma discussão, apresentar algo interessante que leu em algum lugar, divulgar uma ideia, dar notícias de projetos ou propor um novo tema para as próximas reuniões.

Nós até imprimimos cartazes lindões e espalhamos pela USP, olha só:

fotos vivi cartaz

A nossa filosofia de grupo também ficou mais definida e coesa: não, não somos um bando de alunos que fica fazendo times para o iGEM, somos um bando de alunos que forma bandos de alunos que discutem biotecnologia – e nesse processo, formamos espontaneamente equipes e grupos para diversas oportunidades (inclusive o iGEM).

Sobre o que de fato vocês planejam discutir?

Bem, até hoje discutimos projetos de bioengenharia, ou seja, envolvendo microrganismos geneticamente “engenheirados”. De novo: microrganismos, não Beagles ou ratinhos! (Até agora… Haha, BRINKS!)

Seguimos a abordagem da Biologia Sintética nisso tudo, que é tentar gerar metodologias e equipamentos mais baratos, rápidos e ainda precisos para fazer diversas coisas em biotecnologia, aplicando camadas de abstração (essa é pra vocês, exatas) para desenvolvimento de ideias. E tudo se preocupando com as questões éticas e, como costumamos chamar, de “Práticas Humanas”, envolvendo educação e informação sobre biotecnologia.

Portanto, estamos abertos a todos que querem fazer da Biologia uma ciência exata, na medida do possível – sem deixar de se preocupar em como isso impactará a sociedade.

“Eu não manjo nada de Bio. Não sei se vou aproveitar…”

Vai aproveitar sim! Somos um grupo interdisciplinar e vai ter muita gente que sabe o que você não sabe mas também você vai saber alguma coisa muito melhor do que muita gente também. Os conceitos de Biologia Molecular serão introduzidos durante os processos de discussão e nos preocuparemos que todos que não são da área possam entender – da mesma maneira que, o Marcelo (também escritor do blog), fez esse semestre um minicurso de modelagem matemática de sistemas biológicos para quem é de biológicas entender modelagem. O importante é aprender fazendo!

Quem pode participar?

Você é de exatas e quer aprender mais de biotecnologia? Pode vir!

Você é de biológicas e quer trabalhar de maneira “mais exata”? Venham aí!

Você é de humanas? Venha também pra colocar juízo e crítica nas nossas discussões!

Enfim: todos interessados podem participar! Principalmente se você acha que pode fazer mais com sua criatividade e iniciativa. Traga suas ideias, projetos e discussões!

O principal objetivo de tudo é: que seja divertido.

E também que todos aprendam nesse processo, é claro.

Quando e Onde!?

As reuniões serão todas as quartas feiras, começando nessa quarta, dia 30 de Outubro, das 18:30 às 19:30.

Tudo acontecerá, a priori, sempre na Biblioteca das Químicas, no campus da USP do Butantan, aqui:

Exibir mapa ampliado

E o resto?

Bem, ainda devemos divulgar muitas notícias (motivo pelo qual estivemos ocupados a ponto de deixar o blog paradão), dentre elas:

  • Teremos um site lindo e maravilhoso! Não seremos mais um blog que quer ser um site, mas um site que que tem um blog! (Ainda estaremos na plataforma do SBBr!)
  • Estamos discutindo oportunidades dentro da USP para maior apoio e formalização da iniciativa. Divulgaremos em breve, caso tudo dê certo.
  • Sim, fomos no iGEM regional de novo esse ano! Levamos prata outra vez, mas ficamos felicíssimos (tá, muito felizes, felicíssimos seria se fôssemos todos pra Boston também) com nosso trabalho, e principalmente, com o time brazuca da UFMG que emplacou o Brasil lá em Boston esse ano! Bão demais esse pessoal, seu!
  • Fizemos um jogo de cartas de biotecnologia envolvendo BioBricks! Ficou muito legal, deem uma olhada num preview das cartas:

pesquisador_fujita

Ainda estamos devendo um post bonitinho da experiência no iGEM deste ano, além de outros posts para ajudarem as outras iniciativas brasileiras que estão nascendo. Paciência, chegaremos lá, prometo!

Então, venham praticar uma desobediência tecnológica e criativa, pessoal! Aqui vai ter gente boa igual a você pra se divertir com ciência, empreendedorismo e interdisciplinariedade. 🙂

Jamboré Brasil!

Jamboré

Quem diria. A um ano atrás estávamos nós fazendo vaquinha virtual pra levar o Brasil para a competição internacional de máquinas geneticamente modificadas e hoje, ainda na luta, podemos compartilhar o fardo herdado da Unicamp de representar a ciência tupiniquim no iGEM. Que lindo isso.

Mais lindo ainda é que as equipes de Manaus, Belo Horizonte e São Paulo são amiguinhas! Numa das competições mais bizarras do mundo (o iGEM) o conceito de competição também é “distorcido”: ganha mais quem colabora mais – o “distorcido” deveria ser exatamente o contrário na ciência mundial hoje em dia, mas deixa pra lá! E é por isso que nós vamos nos reunir no primeiro encontro nacional de equipes do iGEM: para trocar experiências, fazer networking, se conhecer melhor e conversar bastante sobre coisas nerds, como Biologia Sintética, é claro. Afinal, a gente faz o que a gente ama, não é mesmo!?

Enfim! Nós das equipes do Brasil, que estamos aqui na raça, na gana, na teimosia pra fazer um Brasil e, “de tabela”, um mundo melhor, abrimos esse encontro de jovens interdisciplinares e amantes de biotecnologia para todo mundo! Sim, aqui na USP, em São Paulo! É o “Jamboré”! Porque Jamboree é “nas gringa” [fora do país], aqui é Jamboré!

Local e Data

Tudo vai acontecer neste sábado, dia 17 de Agosto, no Instituto de Química, no famigerado “Queijinho” (ou, Complexo Ana Rosa Kucinski, como foi rebatizado recentemente), sala A2. Veja o mapa aqui:

Visualizar Jamboré! em um mapa maior

Cronograma

As atividades vão ser de manhã e a tarde. Atividades infinitas!

Horário Atividade
10H – 10:30H Abertura: “Biologia Sintética, iGEM e Brasil”
10:30 – 12:00 Apresentação dos projetos brasileiros no iGEM 2013
12H – 14H Almoço
14H – 15:30H Play-teste de Jogo de Cartas sobre Biologia Sintética
15:30H – 15:50H Coffee-Break
15:50H – 17H Mesa Redonda sobre a formação das equipes do iGEM no Brasil

 

Pessoas de todas as áreas são bem vindas. Aqui interdisciplinariedade (e discussões estranhas) são nossa especialidade. Não esperamos que você saiba nada de Biologia Molecular ou modelagem matemática, para qualquer dúvida nós vamos estar ali para ajudar. Ou a piorar. Depende do ponto de vista.

O evento é aberto a todos fora e dentro da comunidade USP. Então se quiser um programa nerd de qualidade esse final de semana, venha para a Cidade Universitária!

Nosso grito de independência energética ainda está atravessado na garganta

Produzido a partir da cana-de-açúcar e conhecido pelos brasileiros há mais de 30 anos, o etanol foi a resposta nacional para a crise do petróleo e a busca de um combustível mais limpo. Entretanto, para encher o tanque do seu carro, é necessário meia tonelada de cana. E mais: o etanol tem apenas 2/3 da eficiência da gasolina e requer áreas que poderiam ser empregadas para o plantio de alimentos. O Projeto Pró-Álcool, criado na década de 70, parecia ser nosso grito de independência na área de energia automotiva. Mas este grito corre o risco de ficar atravessado na nossa garganta. Em 1975, uma tonelada de cana-de-açúcar era capaz de produzir 65 litros de álcool.  Quase quarenta anos depois, este número subiu para apenas 90 litros.

1

Em 2012, durante o encontro Rio +20, quarenta minivans abastecidas com etanol de segunda geração foram utlizadas no evento. A diferença do etanol de segunda geração é que este pode ser fabricado a partir da celulose, presente em qualquer parte da planta, como bagaço, palha e folhas. Essa nova tecnologia deve aumentar em 40% a produção sem que haja crescimento da área plantada e espera-se que atinja preços competitivos em 2016. Isso é muito importante pois o plantio da cana no Brasil já ocupa 8,1 milhões de hectares, uma área quase do tamanho de Portugal. A expansão desta cultura deslocaria pastos e outras plantações para o interior do país, intensificando o desmatamento, o uso de fertilizantes e o aumento dos preços.

imagesPor isso, diversas empresas, principalmente americanas, estão correndo atrás dos combustíveis conhecidos como “drop in fuels”, assim chamados pois utilizam a mesma infraestrutura de distribuição e armazenamento dos combustiveis fósseis e não exigem alterações no motor. A start-up Joule Unlimited pretende entregar o que eles chamam de Liquid Fuel from the Sunusando apenas três ingredientes: luz solar, CO2 e água não potável. Sem ocupar áreas agrícolas, alimentos nem água limpa, a empresa emprega cianobactérias geneticamente modificados para produzir lipídios e carboidratos que podem ser convertidos em etanol, gasolina, diesel e combustível para avião. A Audi está apostando nisso. Ela fez uma parceria com a Joule Unlimited para testar os combustíveis Sunflow™-E (etanol) e Sunflow™-D (diesel) e  oferecer um transporte pessoal sem emissão de CO2.Untitled4

Embora a primeira coisa que venha à mente quando se fala em petróleo seja combustível, ele na verdade está incorporado em muitos dos produtos que usamos no dia-a-dia. Fertilizantes, pesticidas, cimento, plástico, produtos farmacêuticos, roupas sintéticas são apenas alguns itens que dependem dele. Por isso, para a LS9 (Life Sustain 9-Billion), “o melhor substituto do petróleo é o petróleo”. A empresa que tem como co-fundador o cientista George Church está desenvolvendo uma E. coli capaz de produzir hidrocarbonetos sob medida utlizando uma variedade de fontes de carbono, como cana-de-açúcar e milho. O objetivo maior é desenvolver o micro-organismo para utilizar polissacarídeos não comestíveis ao invés de fontes de alimento. A tecnologia permite que sejam selecionados o comprimento da cadeia carbônica, ramificações, saturação e grupo funcional. O produto então formado é secretado pela bactéria e permite que seja facilmente removido do meio de cultura. Um dos produtos da LS9, é o UltraClean DieselTM, que já recebeu aprovação da EPA (Environment Protection Agency) para ser comercializado. Para a produção em massa a empresa adquiriu em 2010 uma planta de biodiesel em Okeechobee, na Florida onde pretende produzir incialmente entre 190 e 380 mil litros.

Mas o verdadeiro combustível de uma nação não é o petróleo, o etanol, a energia atômica ou solar, mas sim o capital financeiro e o capital humano que são investidos em P&D. Este é o caminho que temos que seguir. A biologia sintética pode ajudar a solucionar muitos dos nossos problemas de modo eficiente, utilizando micro-organismos que não dependam de terras aráveis, fontes de alimentos e água potável para produzir hidrocarbonetos. Investir em pesquisas, em novas tecnologias, em empreendedores e profissionais brasileiros é o que o país precisa para dar seu verdadeiro e definitivo grito de independência.

 

Referências: