Arquivo da categoria: Paleodiversidade

Cobras, sombra e água fresca. Enfim, campo!

Uma das maiores vantagens ou alegrias da carreira de paleontólogo é, em minha opinião, poder realizar trabalhos de campo. Como bióloga, eu poderia ter escolhido uma área de trabalho que se restringisse ao laboratório, ou somente à sala de aula. Mas escolhi atuar em algo que tem tudo isso e um plus: o campo. Mas, o que vem a ser uma saída a campo, TC (trabalho de campo), CC (campanha de campo), ou simplesmente “campo”?

É sim possível que na sua mente, neste momento, a imagem de Indiana Jones se forme e que você, mesmo que por um instante, acredite que todos os campos em paleontologia sejam sempre realizados em locais remotos, com cobras e muitas armadilhas. Bem, as cobras sempre estão lá. Junto com escorpiões, vespas e aranhas, elas adoram os paredões em que a gente trabalha. Mas não é necessário ir a locais remotos para encontrar fósseis. Eu mesma realizei as coletas da minha pós-graduação num afloramento de rocha à beira de uma estrada, muito próxima a uma cidade. Era só parar no acostamento e trabalhar.

Como já passamos da época de estabelecimento das diversas áreas científicas, processo que ocorreu por volta da transição entre os séc. XVIII e XIX, em que pouco se sabia e as áreas científicas (inclusive a geologia e paleontologia) estavam sendo delimitadas, atualmente os trabalhos de campo não são mais (em geral) tão desbravadores assim. Já temos todo um mapeamento geológico do território brasileiro, e com isso temos uma boa ideia da distribuição das rochas e de suas idades. Assim, antes de irmos a campo, olhamos o mapa e vemos onde estão as rochas que queremos procurar e que devem conter os fósseis da idade que estudamos.

Afloramento aberto pela construção de uma estrada, MT

O segundo passo nesta história é encontrar locais onde estas rochas afloram, ou seja, lugares em que elas estão disponíveis em superfície. Caso elas estiverem somente em subsuperfície, não teremos como acessá-las tão facilmente. Uma forma de acessar estas rochas ainda “escondidas” é com a obtenção de testemunhos de sondagens, muito úteis para os paleontólogos que trabalham com microfósseis. Como os testemunhos tem um volume de rocha pequeno, a maior quantidade de fósseis que eles podem carregar tem que ser de tamanhos muito pequenos, certo? No entanto, como eu trabalho com organismos macroscópicos (de tamanhos que variam de mm a cm), eu trabalho com rochas que aflorem na superfície terrestre.

E como fazemos para encontrar tais afloramentos rochosos? Com o mapa em mãos, sabendo onde as rochas escolhidas podem ocorrer, procuramos por locais onde naturalmente elas podem estar expostas, como paredões de cachoeiras, margens de rios, cânions, encostas. Existem outros processos que podem expor estas rochas, e são antrópicos: margens de estradas e ferrovias, minas, ou grandes obras que necessitem escavações, como as lavras, por exemplo.

Afloramento de rochas do Ordoviciano, em Goiás

Encontradas as rochas, o nosso trabalho árduo começa. Todo o afloramento é medido e descrito detalhadamente, estrato a estrato. Devemos delimitar o espaço e tempo de trabalho, para fins comparativos. E, enfim, podemos começar a quebrar as rochas com nossos martelos, a fim de procurar os fósseis. Cada fóssil encontrado tem sua posição registrada e recebe um número ainda em campo. Depois da coleta, o material é levado ao laboratório e uma nova etapa de análise se inicia.

Lembro-me da primeira vez que encontrei um fóssil, ainda na graduação. A sensação de encontrar um resto de um organismo que morreu há cerca de 400 milhões de anos, quase que completamente ao acaso (no sentido de que se eu não tivesse escolhido aquele ponto, mas outro, eu não teria tido sucesso; ou ainda: que se tivesse batido com o martelo de outro jeito, poderia ter estragado ou sequer percebido que aquele fóssil estava ali) foi perturbadora. Pense bem: não há como escolher o melhor lugar para se encontrar algo escondido entre as rochas. É um lance de sorte. Uma daquelas coisas que nos faz sentir pequenos frente à vastidão da história geológica e biológica da Terra, mas que também nos faz sentir como parte de algo imenso e maravilhoso. Poder conhecer um pouco do que foi a vida num passado tão distante é sim uma grande aventura, e um privilégio.

DAS CINZAS E DOS FÓSSEIS


http://orsm.com.br

No inverno aqui em Campinas, em geral seco, com bastante frequência ocorrem incêndios. Nessas ocasiões as casas, carros, etc. que estão perto ou que passam do lado do incêndio na estrada ficam cobertos daqueles fragmentos de plantas que vêm voando no vento, aqueles carvõezinhos. Pois esses fragmentos podem fossilizar e quiçá serem os únicos testemunhos da vegetação.

Uma das melhores evidências das mais antigas flores fósseis pertencem ao que restou de um incêndio da floresta, que no início do período Cretáceo (a uns 110 milhões de anos no passado, ou simplesmente Ma.) existia em Portugal.

De forma geral os fósseis vegetais produzidos por incêndios recebem o nome de carvões de queimada, ou charcoals em inglês. Eles são compostos por 60-90% de carbono e são conservados no registro fóssil por serem praticamente inertes. Neles há uma excelente preservação da morfologia e anatomia, muitas vezes até nível celular.

Este tipo de fossilização é tão antigo como o são as plantas na superfície do planeta, cujos registros mais antigos datam de uns 400 Ma. (Siluriano) ou um pouco mais… Isto indica que antes da vida povoar os continentes não existiam incêndios, talvez porque não houvesse nada para ser queimado. Contudo, evidências desses primeiros incêndios são encontradas em rochas de todos os continentes, o que indica que o processo de conquista do meio seco pela vida foi um evento que aconteceu por toda a superfície do planeta.

Os carvões de queimada ou charcoals, podem ser observados a olho nu ou no microscópio e a sua presença em grande quantidade está relacionada com os períodos do tempo geológicos com maior porcentagem de O2 na atmosfera que hoje em dia. como ocorreu durante os períodos Permiano (~298 a 252 Ma.) e Cretáceo (145 a 66 Ma.). Mas o que acontece para aumentar a concentração de O2 na atmosfera? Bom, se trata de momentos muito mais quentes que hoje e sem a presença de gelo nos polos. Assim, o nível relativo dos mares é mais alto, e como consequência os continentes possuem extensos mares interiores e rasos onde há uma enorme proliferação de recifes muito ricos em vida. Aqui no Brasil, durante o Cretáceo, o Nordeste era um enorme mar raso, após a separação entre a África e a América do Sul. Nesses mares interiores, por serem também quentes e com pouca circulação, ocorre a deposição maciça de carbonato de cálcio (CaCO2) e de matéria orgânica e, por conseguinte, o sequestro do C na crosta terrestre, elevando a concentração de O2 na atmosfera.

Fragmento de charcoal, visto em microscópio eletrônico de varredura. 1. Escala = 1mm; 2. Escala F= 500 µm.; 3. Escala = 50 µm; 4. 200 µm.

Voltando aos incêndios, com taxas de O2 elevadas, é muito mais fácil que a vegetação pegue fogo por ação de raios, vulcões, meteoros, etc. ou mesmo por combustão espontânea com mais oxigênio para oxidar a matéria orgânica pela queima. Os registros de incêndios, ou neste caso de paleoincêndios, são encontrados em rochas sedimentares ou, mais raramente, em rochas ígneas associadas a erupções vulcânicas. Os fragmentos de carvão de queimada são depositados tanto no continente como também nos mares, neste caso envolvendo o transporte dos fragmentos de charcoals pelo vento ou pela água, pois os carvões podem flutuar facilmente durante alguns dias até ficarem encharcados de água e afundar, possivelmente longe do local do incêndio e até mesmo no fundo do mar.

Estudos realizados em depósitos quaternários (2 Ma. até hoje) utilizam os registros dos paleoincêndios como evidências de mudanças climáticas e para caracterizar a presença de biomas com o Cerrado, que está intimamente associado com a presença do fogo. Nos estudos do Quaternário, a presença de charcoals é muitas vezes associada com climas mais secos que o atual ou até mesmo com a ação humana a partir dos últimos 10.000 anos. Outra grande vantagem nos estudos quaternários na utilização dos charcoals é a possibilidade de realizar, por meio deles, datações absolutas muito precisas utilizando o isótopo radiativo do carbono o C 14 o qual possui uma meia vida de 60.000 anos, bem como de estabelecer por meio do estudo de isótopos estáveis de C o tipo de vegetação que deu origem aos charcoals, indicando se tratava de uma vegetação mais aberta ou de uma floresta.

Assim, da próxima vez que passar perto de um incêndio ou encontrar uns carvões no campo, imagine as possibilidades que eles oferecem para um dia poder reconhecer ou reconstruir a paisagem atual.

 

 

Incêndio florestal, imagine a quantidade de charcoals sendo produzidos. http://www.meilogunotizie.net

O Carnaval dos microbichos

Faz um tempo que a cada carnaval fico com vontade de ir para Veneza (Itália) e utilizar uma máscara decorada e inspirada nos foraminíferos. Eles são microfósseis, pois estima-se que hoje em dia existam ao redor de 8.000 espécies, mas a grande maioria delas dificilmente alcança mais de 1mm. Pela sistemática, eles são protistas eucariontes cosmopolitas, na sua maioria marinhos, e pertencem ao Filo Granuloreticulosa, possuindo uma célula só e são aparentados com as amebas. Os foraminíferos em vida possuem pseudópodes (ou falsos pés) que os auxiliam em muitas funções como na fixação, flutuação, alimentação, respiração, coleta, etc.
Os foraminíferos secretam uma carapaça ou esqueleto externo, que recebe o nome de testa, que em muitos casos é composta por carbonato de cálcio na forma de cristais de calcita. A testa é preservada facilmente no registro sedimentar, principalmente marinho, sem precisar passar por um processo de fossilização. O formato das testas, ou seja, a sua morfologia externa é francamente espetacular e sumamente variada.

Foraminífero  belamente ornamentado (http://www.foraminifera.eu)

A enorme quantidade de testas de foraminíferos depositadas no fundo dos mares e oceanos, as famosas vazas de foraminíferos, fazem desse filo de protozoas um dos grupos de fósseis mais abundantes do registro fossilífero do nosso planeta nos últimos 500 milhões de anos. Na verdade, são bem menos famosos que os dinossauros e muito mais bem-sucedidos. Quem não ouviu falar das pirâmides do Egito, umas das sete maravilhas do mundo antigo? Pois bem, elas foram construídas com blocos de pedra calcaria formada pela deposição de foraminíferos ou vazas de foraminíferos.

As vazas de foraminíferos são mundialmente estudadas em testemunhos recuperados de perfurações que alcançam centenas de metros de profundidade. Esses registros ordenados são precisos e preciosos na hora de realizar correlações entre camadas de diferentes locais no planeta, datar camadas, calcular – por meio de isótopos estáveis de Oxigênio – a temperatura das águas na qual foi segregada a testa, ou seja, ter acesso a paleotemperaturas de épocas passadas, etc.

A imagem pertence a um mesmo foraminífero planctônico, a diferencia esta na presença de espinhos em um e sem os espinhos no outro (http://www.foraminifera.eu)

Pois bem, as testas dos foraminíferos, como já falei, são super-bonitas e ornamentadas e dependendo da forma como o seu dono habite o ambiente marinho são denominadas como planctônicos, se pertencem a indivíduos que vivem flutuando perto da superfície, ou bentônicos, se vivem no fundo. Nesse segundo caso, podem viver colados a outros organismos ou enterrados entre os grãos de areia. Claro que também a sua distribuição nos mares vai ser regida por parâmetros como temperatura, salinidade, nível de oxigênio, disponibilidade de alimento, etc.

Entre os grupos de foraminíferos que possuem testa de calcário, temos os de testa aglutinante ou Textulariina, os porcelânicos ou Miliolina, os de testa hialina ou Rotaliina e um grupo extinto há mais de 250 milhões de anos conhecido como de testa microgranular ou Fusilinina. A forma como os cristais de calcita se organizam para formar a testa confere ao protozoa diferentes propriedades para e xplorar o seu habitat, ou seja, viver em lugares variados.

Aspecto da testa aglutinante (http://www.foraminifera.eu)

Entre os grupos de hoje, os foraminíferos aglutinantes secretam um tipo de cimento e com auxílio dos pseudópodos (lembrando que são parecidos com as amebas) colhem diminutos fragmentos de conchas ou grãos de areia e rochas do fundo, que vão colando no cimento e com isso construindo a testa. Na maioria dos casos a testa possui um furo na ponta, para saída dos pseudópodes. Com esse tipo de testa os aglutinantes exploram locais com pouca disponibilidade de carbonato dissolvido na água, como a foz de rios ou mesmo as profundezas dos oceanos, abaixo dos 2.000 metros de profundidade.

Exemplares com testa porcelânica (http://www.marine.usf.edu)

Os foraminíferos com testa porcelânica segregam cristais de calcita que são depositados em todas direções, isto é, sem uma ordem definida, formando uma testa muito robusta e habitam o fundo de todos dos mares e em todas as latitudes.

Os foraminíferos hialinos constroem as suas testas depositando os cristais de calcita de forma ordenada, então as suas testas são transparentes e finamente perfuradas. Pelas perfurações emergem os pseudópodes que auxiliam na flutuação, sendo esse grupo o que reúne todas as espécies de foraminíferos planctônicos, embora também existam muitas formas bentônicas.

Fomaníniferos planctônicos de testa hialina (http://www.foraminifera.eu)

As testas podem, independente de como foram construídas, ser ornamentadas ou lisas, ter uma ou muitas câmaras dispostas em uma ou muitas fileiras, em linha ou enroladas, etc. etc. Então, com essa diversidade e com 500 milhões de anos de história não vai ser difícil eu fazer a minha máscara, as de todo um bloco ou mesmo as de todos os foliões com motivos de foraminíferos diferentes….

Como um tronco ou um osso vira pedra?

Quem já não se deparou com uma pedra (rocha) que um dia formou parte de um dinossauro ou era a rama mais alta de uma árvore? Visitando um museu ou mesmo no campo?

Pois bem o processo que converte os restos orgânicos (vegetais, animais, bacterianos, etc.) em fósseis como estes é denominado de permineralização e ocorre de forma mais ou menos rápida, claro sempre pensando no tempo geológico. O processo se inicia imediatamente após a queda do resto num ambiente de deposição de sedimentos (córrego, rio, lago, mar…) ou durante o soterramento num desses locais. O que acontece em geral, é que uma solução rica em sílica ou cálcio consegue preencher os espaços vazios entre as células, poros e no interior das células. Com o passar do tempo, a perda de água promovida pelo soterramento induz a formação de cristais de quartzo, no caso de uma solução rica em sílica ou calcita, no caso do cálcio. Esses cristais possuem tamanhos diminutos, da ordem de poucos micrometros (1/1000 de um milímetro), que preservam a anatomia original inclusive das células, e por ser muito estáveis no caso da sílica, permitem a manutenção dos fósseis por muitos milhões de anos. Esse processo de fossilização pode levar 50.000 anos ou menos o que, convenhamos, é quase nada no tempo geológico.

Tronco de conífera da Formação Teresina (260 milhões de anos) permineralizado por sílica. A. Corte longitudinal mostrando traqueides; B. Detalhe de um traqueide, notar os cristais de quartzo que formam a estrutura.

Além da pemineralização por sílica ou carbonato de cálcio, outros minerais como a pirita (sulfeto de ferro) podem permineralizar estruturas orgânicas. Até mesmo a formação de gelo pelo congelamento da água dentro dos tecidos orgânicos, pode ser considerada uma permineralização, logicamente que bem menos estável, pois o fóssil apodrecerá após o descongelamento, como é o caso dos mamutes que frequentemente são encontrados na Sibéria.

No Brasil, temos abundantes sítios com fósseis permineralizados, inclusive alguns com o registro de extensas florestas que existiram há mais de 250 milhões de anos, como a do Monumento Natural das Árvores Fossilizadas do Tocantins (MNAFTO), em Bielândia, distrito de Filadélfia, que possui uma extensão de mais de 32.000 hectares ou as florestas fósseis de Mata e de São Padro do Sul no Rio Grande do Sul, um pouco mais jovenzinhas, ou mesmo os registros do interior de São Paulo, que representam as florestas que habitavam as planícies de rios ou próximas à costa em climas quentes e secos. No geral eram compostas por árvores aparentadas com as araucárias, podocarpos, pinheiros e também por samambaias de grande porte e cavalinhas, com certeza sem plantas com flores. Nelas estão preservados troncos com tamanhos que alcançam os 30 metros de comprimento e 1 metro de diâmetro e, menos frequente, folhas. Aliás, a diversidade é fóssil é grande, o que faltam são pesquisadores para estudar tanto material.

Caule de samambaia permineralizado por sílica coletado na MNAPTO

Por último, o processo de permineralização foi o que permitiu a preservação das evidências de vida mais antigas que se conhecem na Terra, com cerca de 3465 milhões de anos, que chegaram até os nosso dias e tem sido interpretados como filamentos de colônias de bactérias fotossintetizantes conhecidas como cianobactérias… Então a permineralizacão é um processo que permite tanto a conservação dos maiores registros fósseis em tamanho como dos menores… é só ter as condições necessárias e o tempo…

Como será o nosso futuro? Que fósseis descreverão em milhões de anos à frente?

Por conta da virada do ano e o início de 2017, fiquei pensando em fechar as crônicas da vida no passado do estado de São Paulo, aproveitando para comentar acerca de qual é o registro da vida que atualmente está sendo incorporado às camadas de sedimentos que se estão depositando. Como a Carolina já descreveu no post dela, a inclusão de restos orgânicos (folhas, galhos, carcaças, conchas, etc.) nas camadas depende do tempo envolvido e da oportunidade, sendo que a parte da Paleontologia que estuda esse processo é conhecida como Tafonomia.

Mata de galeria, no rio Mogi-Guaçu, SP

Então, qual porção do que hoje apreciamos nas matas de galeria será preservado? E dos manguezais? Da Mata Atlântica? Do Cerrado? Será possível reconstruir a sua diversidade, ou ter uma ideia dela ao menos, com base no que hoje está sendo incorporado nas camadas sedimentares em formação?

 

Coleta de uma camada de folhas nas margens do rio Mogi-Guaçu, SP

 Uma das formas para responder a essas inquietudes, e ao meu modo de ver a mais simples, é pesquisar diretamente nos locais onde esses novos registros estão acontecendo, como por exemplo nas florestas ciliares ou também conhecidas como de galeria ou ripícolas, que se desenvolvem à beira dos rios, especialmente naqueles com muitas curvas ou meandros. Pela migração lateral do canal do rio, as curvas acabam se fechando e isolando o braço do rio. Pelo geral, a porção isolada somente recebe água durante as cheias. Assim, vão se formando pequenas lagoas rodeadas por vegetação, nas quais caem folhas, galhos, sementes, polens, esporos, insetos, etc. Nesse processo de acúmulo de restos orgânicos, os vegetais são os que aportam a maior quantidade de biomassa e podem chegar a formar verdadeiras camadas de restos, por vezes bastante espessas, com mais de 20 cm, que ao ser soterrados e prensados entre várias camadas de sedimentos (areia, lama, etc.) poderão se transformar em fósseis de folhas, galhos e sementes na forma de compressões e/ou impressões. A forma de acessar esses acúmulos pelo geral se faz abrindo uma trincheira.

 

Coleta do registro sedimentar utilizando um tubo de alumínio de dois metros.

Nos manguezais ou mesmo nas lagoas associadas aos meandros, por exemplo, se enfiarmos um tubo oco e resistente de uns dois metros de comprimento e a seguir tampar a extremidade superior, poderemos retira-lo da lama, com bastante esforço, e abri-lo de comprido, de forma a observar um registro ordenado da sucessão da deposição dos sedimentos em camadas, pelo geral com camadas de várias cores. As camadas mais escuras terão maior quantidade de matéria orgânica preservada e, por conseguinte, maior probabilidade de preservação. Nesse registro as amostras da base corresponderão aos sedimentos mais antigos e as mais recentes serão as do topo. Uma vez que os sedimentos dos manguezais são bem finos, a deposição será lenta, ou seja, para formar uma camada de 1 cm de espessura será necessário mais tempo envolvido do que em uma camada de areia grossa. Voltando ao registro retirado com o tubo, poderemos ter registrado algumas centenas de anos de deposição e nessas camadas estrarão preservadas assembleias de microrestos (pólens, esporos, diatomáceas, etc.) como também folhas, sementes, galhos entre outros.

Alternância de camadas de areia (em tons de cinza) e de restos vegetais (mais escuras)

Assim, utilizando essas acumulações mais “modernas” de restos orgânicos não fossilizados e que poderão se tornar fósseis um dia, é possível adquirir conhecimento acerca das variações na vegetação que foram produzidas como consequência de mudanças climáticas, ou de variações no nível dos mares ou induzidas pelo homem em escalas menores de tempo, como o último milênio, os últimos séculos, etc.

Conhecer e entender como acontece a entrada dos restos orgânicos no registro sedimentar também ajuda na hora de interpretar jazimentos fósseis pretéritos, para se ter uma ideia de onde provem os fósseis, como chegaram até o local de deposição, como foram fossilizados… entre outras coisas… e se o futuro também terá fósseis da vida que hoje vemos no nosso planeta, pelo menos no próximo um bilhão de anos… mas essa é outra história relacionada com a evolução do Sol.

Sobre dragões e fósseis

Como amante da paleontologia e, mais recentemente, praticante e apreciadora de wushu, a inspiração deste post surgiu como um desafio de tentar relacionar os dois temas de alguma forma. Me parece que alguns mitos são criados a partir de “verdades”…distorcidas, ou, com um toque de imaginação, digamos assim.

Dragão do quadrinho Zen pencils

Na arte marcial que conhecemos por “kung fu”, aqui no ocidente, existem diversos estilos de luta. Norte e Sul da China são conhecidos por estilos diferentes. O estilo do dragão é um estilo imitativo do Sul; neste, os movimentos devem ser compreendidos, internalizados (em contraposição, o adversário do dragão é o tigre e seu estilo é fundamentado em movimentos de força e memorização). Como o dragão, para os chineses, simboliza a água e a terra, no kung fu suas ações combinam força e leveza em movimentos que unem opostos, como: circular/reto, ou para cima/para baixo, por exemplo.

O dragão é uma figura comum na mitologia chinesa, desempenhando vários papéis como regular as chuvas, proteger os deuses (e o imperador), e ser a fonte da verdadeira sabedoria e da boa sorte. É, portanto, considerado um animal auspicioso, não malévolo. Por isso são extremamente comuns na arquitetura e ornamentação da antiga China. Não é à toa também que, por mais de uma vez na história, imperadores chineses regularam o uso das imagens de dragão em suas sedas e outros ornamentos, para que somente eles pudessem usá-las e, assim, demonstrar sua potência.

História “Never give up!” do quadrinho Zen Pencils

Apesar de ser um estilo imitativo no kung fu, nós todos sabemos que dragões (i.e., répteis serpentiformes voadores que cospem fogo) nunca existiram. Neste caso, a “imitação” vem das histórias e lendas passadas de geração em geração, sobre os supostos movimentos destes animais. Se, por um lado, a forma como se mexiam vem da imaginação das pessoas, de outro, a figura do animal em si tem uma origem interessante. Fósseis de dinossauros, ou de outros grandes répteis serpentiformes, ou até mesmo fósseis de baleias são, provavelmente, a fonte de inspiração para os mitos dos dragões (assim como de outros animais, lendas e deuses que existem mundo afora). Imagine os antigos chineses encontrando ossos de grandes proporções, com a forma de um lagarto, espalhados pelo chão… e mais, ossos duros como pedras! Na breve pesquisa que fiz para escrever este post eu li (aqui) que o fato de os ossos serem feitos de pedra (resultado do processo de fossilização) provavelmente levou as pessoas a pensar que era um animal que cuspia fogo, pois seus ossos resistiam a ele! Interessante, não?

Os mais antigos adornos chineses contendo imagens de dragões datam de cerca de 4700-2900 a.C. (Cultura Hongshan). Então é bem provável que antes disso os fósseis de grandes animais já tivessem sido descobertos naquela região do mundo. Naquela época não se tinha o conhecimento científico que temos hoje sobre fósseis e fossilização, extinções e da vastidão do tempo geológico, e estes restos eram interpretados como restos recentes de animais fantásticos, ou seja, como os dragões; hoje chamamos a eles de dinossauros (e afins).

Se você sabe mais sobre os diferentes estilos de wushu, sobre paleontologia, sobre dragões, ou simplesmente gostou do post, deixe-nos um comentário!!

Veja aqui um documentário sobre a relação entre dragões e dinossauros.
Entre aqui para apreciar a arte do Zen Pencils.

 

 

 

 

Micro/Macro: a união faz a força!

Imagem de micro e macro-organismos do quadrinho “Mikromakro” de Jens Harder

Com um telescópio nós conseguimos observar corpos celestes imensos que estão muito distantes, mas que mesmo assim nos causam assombro. Já com um microscópio é possível observar a -abundante- vida minúscula que nos cerca, mas que passa despercebida pela maioria de nós…

Escalas.

Para quem viaja: a escala é um ponto de parada.

Na música: é um grupo de notas musicais.

Na matemática: é uma razão entre grandezas que permitem uma comparação; e é exatamente esse conceito, matemático, que iremos usar neste post. Isso porque vamos falar de organismos que, se tivessem lemas, seriam: “tamanho não é documento” e “a união faz a força”, uma vez que seu tamanho é insignificante perto da dimensão do planeta Terra (comparando os tamanhos estamos usando o conceito matemático!), e que unidos eles são extremamente imporntantes para a manutenção de ciclos globais .

Imagem de bactérias do quadrinho “Mikromakro” de Jens Harder

Micro-organismos. Apesar de serem pequenos (menores que 1-2 mm), são muito abundantes. Abundância aqui significa que temos muitos indivíduos, do mesmo tipo de organismo (em biologia existe uma grande diferença entre abundância e diversidade. Mas esse é um tema para um próximo post.) E é a abundância que os torna extremamente significativo na manutenção de diversos ciclos do nosso planeta, como o ciclo do Carbono, por exemplo. Não faz muito tempo se dizia, inadvertidamente, que a Floresta Amazônica era o pulmão do planeta; já ouviu isso alguma vez? Pois é, e deve ter ouvido também que não é bem assim que a coisa funciona… que a razão O2/CO2 é mais controlada por micro-organismos fotossintetizantes extremamente abundantes que vivem nas águas do mar (lembrando que o mar recobre cerca de 70% da superfície do nosso planeta, o que sugere que estes organismos minúsculos tem um ambiente –bastante– espaçoso para viver) e que o CO2 produzido na Amazônia também é consumido por ali mesmo, não tendo tanto efeito mundial quanto se pensava.

Bom, por mais que eles sejam pequenos, eles estão sujeitos aos mesmos processos sofridos por qualquer outro organismo na superfície terrestre, o que significa que a maioria, ao completar seu ciclo de vida, é decomposta e seus constituintes retornam ao sistema, como aquela famosa frase de Lavoisier (1743-1794): “na natureza, nada se cria, nada se perde, tudo se transforma”. Mas, claro, alguns acabam escapando a esta norma, passam por processos físicos e químicos que os preservam nas rochas e formam o que chamamos de microfósseis. Os microfósseis podem ser organismos inteiros de tamanho diminuto (como foraminíferos, radiolários, dinoflagelados, algas), ou então, são partes pequenas de organismos maiores. Para exemplificar este último caso, pense que o pólen (micro) produzido por algumas plantas (macro) são partes pequenas (células reprodutivas) delas. Pólens fósseis são extremamente comuns no registro (de determinado período em diante, neste caso do Devoniano até os dias atuais) e seu estudo se chama paleopalinologia.

Você pode pensar que achar microfósseis deve ser extremamente difícil pois eles são muito pequenos. Mas, na realidade, como são -em geral- abundantes, os paleontólogos que trabalham com microfósseis são muito sortudos e não precisam levar grandes quantidades de rochas para o laboratório. Um pouco só (algumas gramas) já é o suficiente para se observar algumas centenas de indivíduos, utilizando um microscópio, claro.

Bem, já falamos que os micro-organismos são importantes pois são abundantes e que podem gerar fósseis. Pense sobre essas duas propriedades (abundância + fósseis) e misture-as com o tempo geológico: milhares de micro-organismos ao longo de centenas de ambientes diferentes que se sucederam ao longo das centenas de milhares de anos do tempo geológico. Pronto. É bastante material para que os micropaleontólogos trabalhem, né? As variações ambientais ocorridas ao longo do tempo podem ser detectadas pelo estudo de microfósseis, cada grupo estudado fornecendo um dado importante sobre o paleoambiente em que viveu.

Vamos aproveitar que este é o primeiro post de 2017 e aplicar o lema dos microfósseis em nossos dias daqui pra frente... a união faz a força! 
Que consigamos nos unir para melhorar nosso país; cada um fazendo a sua parte, para o bem de todos. E que a ciência no Brasil não esmoreça. Feliz 2017!

NO FINAL DO ÚLTIMO SEGUNDO DO TEMPO GEOLÓGICO: O QUATERNÁRIO

O Quaternário é dividido em duas épocas: o Pleistoceno, que vai de 2 Ma até 10.000 anos antes do presente e o Holoceno, que chega até hoje. A tendência, que levou ao resfriamento geral do planeta iniciado no Mioceno, se intensificou durante o Pleistoceno. Assim, o clima foi caracterizado por intervalos glaciais com momentos mais amenos como o que atualmente vivemos. Segundo as evidências indicam (registros de mudanças na distribuição da vegetação, alterações no registro sedimentar observadas em testemunhos retirado do oceano Pacifico e Atlântico, etc.) esses ciclos podem se ter repetido de 10 a 20 vezes com uma periodicidade de 100.000 anos nos últimos 2 Ma. Durante os intervalos glaciais o clima a nível global foi frio e seco, com o desenvolvimento de extensas calotas de gelo que cobriram aproximadamente 30% da superfície do planeta, especialmente nos continentes do hemisfério norte, enquanto que nos continentes do hemisfério sul o clima foi muito mais frio, seco e com glaciares de montanha extensos nos Andes.

As mudanças climáticas estão associadas a vários fatores influenciados por deriva continental, orogêneses, alterações nas concentrações do CO2 da atmosfera, correntes oceânicas, etc. No caso da deriva continental uma das causas foi o isolamento do continente antártico, iniciado com o rompimento do Gondwana e que levou à instalação da corrente marinha fria subantártica no hemisfério sul, hoje conhecida como corrente de Humboldt, responsável por serem tão geladas as águas da costa do Chile e do Peru. As mudanças na deriva continental também influenciaram na formação dos extensos lençóis de gelo continentais, no isolamento do oceano ártico e na formação de mares congelados no hemisfério norte. As orogenias, como a dos Andes e particularmente da Ásia central, com o soerguimento dos planaltos dos Himalaias e Tibete produziram um acúmulo de áreas elevadas a partir do Mioceno. Por outro lado, a consequência da explosiva expansão das florestas dominadas por angiospermas acontecida durante o Paleogeno incrementou o sequestro de carbono nos continentes na forma de jazidas de carvão, o que levou a uma redução na concentração do principal gás do efeito estufa da atmosfera. Todas essas alterações repercutiram de forma considerável nos ecossistemas que passaram a ser muito dinâmicos, e a nossa espécie surgiu nesse contexto de mudanças climáticas drásticas e rápidas, claro considerando a enorme dimensão do tempo geológico.

Pois bem, no sudeste do Brasil, embora não se tenha notícias de calotas de gelo dessa época, o clima também oscilou, alternando períodos muito secos e mais frios do que o atual, com momentos mais cálidos e úmidos como os de hoje. Os registros de vida no estado de São Paulo são mais abundantes para o final do Pleistoceno, onde são encontrados, por exemplo, no Município de Iporanga, dentro das cavernas e abismos do Parque Estadual Turístico do Alto Ribeira (PETAR), ossadas relacionadas à megafauna. Os registros são bastante abundantes embora a maioria dos esqueletos se apresentem desarticulados e misturados. Nesses há ossos, entre outros, de tigres dente de sabre (Smilodon), preguiças gigantes (Eremotherium, Lestodon, Ahytherium, Nothotherium; Figura 1), parentes dos elefantes conhecidos como Stegomastodon, tatus gigantes ou Glyptodon, e perissodáctilos como o Toxodon (Figura 2, endêmicos de América do Sul, de tamanho semelhante a um rinoceronte). Uma vez que os conjuntos de ossos se encontram muito misturados, podem ter correspondido a várias comunidades diferentes, mas representam uma composição da megafauna característica da região intertropical e, sem lugar a dúvida, muito diferente da fauna atual da região. O mesmo podemos comentar acerca da vegetação que, pelo tamanho da megafauna e pelos registros conhecidos, principalmente correspondentes a polens, era uma vegetação mais aberta que a atual.

Diferentes vistas do esqueleto de uma preguiça gigante, exemplar exposto no Museu de Ciências Naturais - PUC Minas, Belo Horizonte, MG.
Figura 1 – Diferentes vistas do esqueleto de uma preguiça gigante, exemplar exposto no Museu de Ciências Naturais – PUC Minas, Belo Horizonte, MG.

Da vegetação também temos registros a partir aproximadamente do final do Pleistoceno. Um dos mais extensos, inclusive para a América do Sul, foi encontrado ao perfurar a cratera deixada pelo impacto de um meteoro, fato acontecido possivelmente durante o Neogeno na região de Parelheiros, próxima à cidade de São Paulo. A cratera, conhecida como de Colônia, tem um diâmetro de 3,6 km e se calcula que esteja preenchida por cerca de 300 metros de sedimentos. Os testemunhos rasos estudados possuem uma extensão média de 8,5 m devido à dificuldade de se realizar a perfuração mais profunda e recuperar os sedimentos preservando o empilhamento original das camadas de forma manual. Para se obter um testemunho completo de todo o registro sedimentar presente na cratera seria necessário contar com uma estrutura de perfuração semelhante àquelas utilizadas para prospecção de petróleo, o que envolve um custo muito elevado. O estudo desses registros, principalmente utilizando estudos de conjuntos de microfósseis, como polens e esporos, mostraram a evolução da vegetação no local nos últimos 50.000 anos, que alternou de uma floresta com araucárias nos intervalos mais frios para a Mata Atlântica nos momentos de clima mais ameno como o de hoje, embora com diferentes espécies em cada um dos interglaciares identificados, sendo o último acontecido no Holoceno. Dessa forma, chegamos aos dias de hoje onde estão sendo incluídos dentro do registro sedimentar os restos de vida que virão nos próximos milhões de anos deverão tornar-se fósseis.

 

Vamos deixar o mamute extinto

Há poucos anos se vêm noticiando mundo a fora tentativas mirabolantes de trazer animais já extintos de volta à vida, como o grandioso mamute. Este grande animal pleistocênico é o maior alvo desta ideia por razões diferenciadas, dentre elas, a facilidade de encontrar seus corpos mumificados extremamente bem preservados devido ao aparecimento de diversos espécimes por conta do derretimento do gelo em regiões como a Sibéria. Não é de se estranhar que, vendo-os assim tão bem preservados, a ideia de “revivê-los” fica extremamente atraente, seja pelo fascínio que estes grandes animais despertam, seja pela ambição de ser dono de um grande feito como este.

Bebê mamute mumificado. Créditos: Martin Meissner
Bebê mamute mumificado. Créditos: Martin Meissner

Mas será que a interferência nos caminhos que foram traçados naturalmente pela história do nosso planeta seria realmente uma boa ideia? O que seria do pobre mamute, que fora adaptado para os períodos glaciais da Terra, a habitar grandes espaços, correr atrás de suas presas e se defender de seus predadores, bem ao modo da Era do Gelo? Os tempos eram outros, as características físicas e ambientais de nosso planeta eram outras.

O surgimento de novas tecnologias na área da biologia molecular tende a aguçar a mente dos pesquisadores mais ambiciosos, o que é excelente para novas descobertas, chances de desenvolvimento de cura e tratamento de doenças, e principalmente, um maior domínio e possibilidade de manipulação do genoma de inúmeras espécies, incluindo o ser humano. E por que não os mamutes?

Em meados de 2015, o geneticista George Church, de Harvard, e seus colaboradores, anunciaram que utilizaram uma técnica de “edição de genes chamada CRISPR (do inglês Clustered Regularly Interspaced Short Palindromic Repeats, ou seja, Repetições Palindrômicas Curtas Agrupadas e Regularmente Interespaçadas) para inserir genes de mamute em elefantes. Estes genes inseridos seriam os responsáveis pela expressão de alguns caracteres dos mamutes, como tamanho das orelhas mais reduzido, cor e comprimento dos pelos e a presença de gordura subcutânea. É claro que pesquisadores como estes têm em mente que, apesar da ideia soar simples, há muitas questões em jogo, como a reação das células à expressão desses genes, se de fato conseguiriam dar origem à tecidos especializados, etc.

Pensando em um futuro não muito distante, e se por acaso um experimento como este tivesse sucesso? E se nascesse um mamute de um elefante vivo? Outra questão importante a se pensar é com relação aos efeitos do meio externo ao fenótipo (características físicas do organismo que têm origem da expressão dos genes). Seria um híbrido com características tão semelhantes assim aos mamutes pleistocênicos? São inúmeras questões a serem pensadas além do experimento em laboratório. Pensando em um sucesso ainda maior (que é com relação à sobrevivência desses híbridos), até quanto tempo viveriam? Ou seriam saudáveis por quanto tempo? E penando na manutenção desses animais, teriam eles, obviamente, que ficarem restritos à ambientes polares, com alimentação fornecida e especializada, etc.

Quero deixar claro que não estou querendo levantar somente os aspectos negativos deste tipo de pesquisa, até por que acho que a ousadia é um estímulo para mover a Ciência, e nela há espaço para qualquer experimento, desde que esteja de acordo com as questões éticas. Mas o objetivo deste post é levantar as implicações à longo prazo e gerar uma reflexão do quanto valeria a pena realizar tal façanha. Apenas sou mais adepta da ideia de se utilizar técnicas como esta, por enquanto, para tentar auxiliar na luta contra a extinção de espécies atuais devido às ações antrópicas, por exemplo.

Como diz a famosa expressão, a natureza sabe o que faz.  Os eventos de extinção que ocorreram ao longo da história da vida na Terra, sejam eles por causa da própria evolução da geosfera (por exemplo, o movimento das placas tectônicas e vulcanismo, que expeliram enormes quantidades de gases na atmosfera), ou por interações ecológicas (competição entre espécies, predação, etc), ou como obra do acaso (como os impactos de corpos celestes), apesar de terem sido catastróficos para os seres que viviam nestes períodos, foram responsáveis pela “reciclagem” da vida na Terra, ou seja, possibilitaram o surgimento de novos organismos, de novos nichos, até a vida se moldar ao que conhecemos hoje. Estamos aqui devido às extinções ocorridas? Provavelmente elas têm grande parte nisso.

A evolução da vida tende a acompanhar as mudanças que a Terra vai sofrendo com o passar do tempo geológico, mas o tempo sentido pelo homem é curto demais, tem uma escala muito, mas muito menor. Então tendemos a não enxergar os benefícios causados por eventos catastróficos ou mudanças naturais, quanto menos ainda perceber os efeitos que o ambiente causa, à longo prazo, no sucesso ou “fracasso” da sobrevivência de uma espécie. Pensando desta maneira, apesar de também sermos agentes causadores de mudanças, nossas ações estão causando um prejuízo à biodiversidade do planeta muito mais além da conta para a recuperação natural dessas extinções provocadas. Mas isto seria uma discussão para outro post.

Quanto aos mamutes? Por mim é melhor deixá-los extintos, para o bem deles, e para o bem do nosso planeta. Sim, a natureza sabe o que faz, e às vezes o acaso faz bem também!

Mais próximo dos dias de hoje: como chegamos até aqui e quem ficou pelo caminho

Como os registros da Era Cenozoica, são bem mais novos, seus fósseis são abundantes e, em muitos casos, muito bem preservados. Antes de continuar vou fazer uma pausa para comentar que a Era Cenozoica é dividida em três períodos: Paleogeno, Neogeno e Quaternário. Estes períodos, por sua vez, são divididos em épocas, distribuídas da seguinte forma: Paleoceno, Eoceno e Oligoceno pertencem aos Paleogeno. O Neogeno, é formado pelo Mioceno e pelo Plioceno, e por último o Quaternário é dividido em Pleistoceno e Holoceno onde estamos há uns 10.000 anos.

Bacia de Taubaté, 1 e 2 são pólens de gimnospermas.
Figura 1- Bacia de Taubaté, 1 e 2 são pólens de gimnospermas.

Retomando o fio do registro fóssil no estado de São Paulo, como tinha adiantado no final do último texto, com a extinção em massa acontecida no final do Cretáceo e as mudanças na paleogeografia do nosso planeta, houve oportunidade para a renovação tanto da flora como da fauna ao redor do mundo. Estas mudanças foram influenciadas pela presença de regimes climáticos mais úmidos e quentes, que permitiram a distribuição de florestas, dominadas por angiospermas pelas regiões subtropicais (localizadas depois 23º de latitude norte e sul) e até no continente Antártico, que foi durante milhões de anos coberto por densas florestas até que, a partir do Mioceno, paulatinamente, o clima começou a mudar, ficando mais seco e frio, o que conduziria às grandes glaciações do Quaternário.

Os registros fósseis do Paleogeno e do início do Neogeno no estado apresentam florestas formadas por famílias de angiospermas (p.ex. leguminosas, gramíneas), de gimnospermas (Podocarpaceae) e samambaias, que existem ainda hoje, embora os gêneros e espécies possam ser diferentes dos atuais. As rochas sedimentares que contém os fósseis deste tempo foram depositadas dentro de um sistema de lagos distribuídas na margem atlântica que se estendia desde o sul do estado do Rio de Janeiro (Niterói) até o Paraná (Curitiba), e que hoje compreende, entre outras, as bacias de Taubaté (SP), Resende (RJ), Volta Redonda (RJ) e Itaboraí (RJ).

O conjunto e diversidade da vida preservada dentro da bacia de Taubaté (Oligoceno-Mioceno) é considerado como o mais rico desse tempo no Brasil. Os afloramentos onde os fósseis vêm sendo coletados desde mediados do século passado localizam-se, principalmente, nas pedreiras de argila da cidade de Taubaté. Na bacia são encontrados abundantes fósseis de folhas, sementes, polens (Figura 1), esporos, etc. A análise do conjunto dos vegetais preservados indica que no local estava presente uma mata subtropical úmida. Junto aos vegetais também encontramos registros de insetos, peixes (Figura 2), anfíbios, tartarugas, serpentes, jacarés, aves, mamíferos, além de evidências da sua atividade metabólica (icnofósseis) como excrementos, pegadas, galhas, etc. Os osteítes (peixes ósseos) são os vertebrados mais abundantes, contudo os mamíferos são de longe o grupo mais diversificado em espécies, entre os que deixaram registros fósseis. Dentre os mamíferos encontramos marsupiais identificados a partir de dentes e ossos das patas (tarsais), quirópteros (morcegos), além de dentes e mandíbulas de roedores.

Figura 2 - Osteite, Teleósteo muito abundante na Bacia de Taubaté. 1- Vista geral; 2, 3, 4, e 5 - microfotgorafias obtidas em Microscópio Eletrônico de Varredura (MEV); 2- Costelas; 3- Pirita framboidal associada à preservação dos tecidos; 4 e 5- Escama.
Figura 2 – Osteite, Teleósteo muito abundante na Bacia de Taubaté. 1- Vista geral; 2, 3, 4, e 5 – microfotgorafias obtidas em Microscópio Eletrônico de Varredura (MEV); 2- Costelas; 3- Pirita framboidal associada à preservação dos tecidos; 4 e 5- Escama.

Outros grupos de mamíferos que a partir deste momento se tornaram mais frequentes e que integraram a megafauna sul americana também foram coletados nas rochas sedimentares da bacia de Taubaté. Assim, por exemplo, encontramos os cingulata (tatus), com fósseis das suas características placas dérmicas que compõem a suas carapaças. Os Liptotermos formam parte desse grupo, embora hoje estejam extintos, e que reúnem um grupo de ungulados herbívoros que experimentaram uma extraordinária diversificação durante a Era Cenozoica. Além destes, temos também registros dos Astrapotheria, Nothoungulata e Pyrotheria, todos hoje extintos.

Por fim, os registros paulistas do Neogeno são representados por camadas sedimentares que contém conjuntos de microfósseis vegetais (polens) e que a partir deste momento (Mioceno) mostram evidências da deterioração climática relacionada ao início da glaciação no continente antártico. Esta tendência, que levará ao resfriamento geral do planeta, se manifesta nos conjuntos polínicos com o surgimento, diversificação e aumento da porcentagem de pólens de gimnospermas e algumas angiospermas (p.ex. Drimys).

No próximo capítulo, falarei acerca dos acontecimentos do Quaternário que merecem um texto à parte por causa da sua importância para a distribuição da vida como hoje a conhecemos.