Carbon sequestration by soils
Global warming is mainly caused by the increase of CO2 (carbon dioxide) concentration in the atmosphere, although other greenhouse gases also contribute to climate changes, like methane (CH4), which is even a more potent greenhouse gas than CO2. Both these gases originate from the burning of carbonaceous compounds, which may be fossil or modern in origin. This burning may be biological, in which case it is the product of respiration, or man made, as in the burning of oil or coal.
Most biological burning of carbon compounds comes from the decomposition of organic matter by microorganisms, such as bacteria and fungi, which act mostly upon oganic matter originated from plants. Some of this organic matter is highly resistant to microbial decomposition and ends up, after yet unclear biochemical changes, as soil organic matter, also known as humus or humic substances.
To prevent global climate changes, a number of measures have been suggested to slow or even stop CO2 increase in the atmosphere, from planting (and conserving) forests to fertilizing the ocean with iron to cause algal blooms. These measures would increase the carbon sequestered as plant biomass, since photosynthesis is basically the uptake of CO2 from the air to build plant tissues utilizing energy from the sun. What most people don’t know is that there is much more carbon stored as soil organic matter than as standing vegetation biomass.
There is possibly more carbon stored in some soils of the Amazon Rain Forest than in the forest itself! Current estimates for carbon stored in terrestrial vegetaion are 550 billion metric tons, while soils store at least 1200 billion metric tons, more than twice as much. What’s more, soil carbon storage is probably underestimated, because the carbon in deep layers of some tropical soils is generally not considered in soil carbon stocks estimates.
Carbon dioxide emitters from developed countries can balance their emissions by buying carbon credits from developing countries. Generally, these carbon credits are in the form of planting forests or paying to conserve them. Obviously, this is a good arrangement for both. But those who sell carbon credits may be losing money, as the planting of forests generally increase the carbon content in soils, which is not being considered. Soil organic matter is more stable than the organic matter in vegetation, so it’s more efficiently sequestered.
What some people do not understand about some tropical soils called Oxisols is that they are deep. These soils are the result of centuries of intense weathering, especially chemical weathering, under high temperatures and rainfall. Organisms also play an important role in the formation of these soils, notably plants exuding organic acids and other substances. The activity of mesofauna in these soils is impressive, and termites, earthworms and ants are very active in mixing soil material throughout the soil profile, making the Oxisols rather homogeneous vertically.
A large area of tropical rain forests, including Amazonia, is on Oxisols. Until recently, soil carbon stocks estimation only considered soil depth down to around one meter. It happens, though, that Oxisols may be much deeper than that and they can and do store organic carbon in deep subsurface horizons, which are more or less horizontal layers in the soil profile. In fact, subsurface carbon stocks in Oxisols may be twice the surficial stocks, as I found in my doctorate research.
Recent research has demonstrated that deep soil carbon is very stable, which is good when one considers carbon sequestration. Besides, this carbon is spacially separated from the agents that could decompose or mineralize it. These soils also have good natural physical characteristics, which can be maintained even after land use changes if they are properly managed, so greatly decreasing erosion risks. All this, in our view, make tropical Oxisols promising sinks for carbon sequestration and medium to long term storage in helping decrease atmospheric CO2 excess concentrations.