Experiência ALPHA do CERN mede a carga do anti-hidrogênio
Original em inglês porCian O’Luanaigh em 3 Jun 2014: CERN’s ALPHA experiment measures charge of antihydrogen.
Em um artigo publicado hoje na Nature Communications, a experiência ALPHA no Desacelerado Antipróton (Antiproton Decelerator = AD) relata a medição da carga elétrica de átomos de anti-hidrogênio, que revelou ser a mesma compatível com zero até a oitava casa decimal. Embora esse resultado não seja surpresa alguma, uma vez que os átomos de hidrogênio são eletricamente neutros, esta é a primeira vez que a carga de um anti-átomo foi medida com uma precisão tão alta.
“Esta foi a primeira vez que fomos capazes de estudas o anti-hidrogênio com alguma precisão”, relata o porta-voz da ALPHA, Jeffrey Hangst. “Estamos otimistas quanto ao fato de que a técnica de confinamento do ALPHA permitirá vários desses vislumbres no futuro. Aguardamos pelo reinício do programa AD em agosto, de forma poder continuar a estudar o anti-hidrogênio com uma precisão cada vez maior”.
As antipartículas deveriam ser idênticas às partículas de matéria, exceto pelo sinal da carga elétrica. Assim é que o átomo de hidrogênio é composto de um próton com carga +1 e um elétron com carga -1, o átomo de anti-hidrogênio consiste de um antipróton com carga -1 e um posítron com carga +1. Entretanto, também sabemos que matéria e antimatéria não opostos exatos – a natureza parece ter uma preferência de 1 contra 10 bilhões pela matéria sobre a antimatéria, o que torna importante medir as propriedades de matéria e antimatéria com grande precisão: o objetivo principal dos experimentos do AD do CERN. O ALPHA consegue isto por meio de um complexo sistema de confinamento de partículas que permite a produção e armazenagem de átomos de anti-hidrogênio por períodos suficientemente longos para estudá-los em detalhe. A compreensão da assimetria entre matéria e antimatéria é um dos maiores desafios da física atual. Qualquer diferença detectável entre matéria e antimatéria poderia ajudar a resolver o mistério e abrir uma janela para uma nova física.
Para medir a carga do anti-hidrogênio, a experiência ALPHA estudou as trajetórias dos átomos de anti-hidrogênio na presença de um campo elétrico. Se os átomos de anti-hidrogênio tivessem uma carga elétrica, o campo os desviaria, enquanto que átomos neutros não seriam afetados. O resultado, baseado em 386 eventos registrados, dá uma carga elétrica para o anti-hidrogênio de (-1.3±1.1±0.4) × 10-8, sendo os números “±” representativos das incertezas estatísticas e sistemáticas das medições.
Com o reinício da cadeia de aceleradores do CERN a caminho, o programa de pesquisa de antimatéria do laboratório também será reiniciado. Experimentos que incluem o ALPHA-2, uma versão melhorada da experiência ALPHA, vão colher dados, juntamente com as experiências ATRAP e ASACUSA, assim como o “novato” AEGIS que vai medir a influência da gravidade sobre o anti-hidrogênio.
Artigo na Nature Communications: “An experimental limit on the charge of antihydrogen
Antimatéria = Antigravidade (???)
University of California – Berkeley
A antimatéria é antigravidade?
Primeira medição direta do peso da antimatéria, comparado ao da matéria normal
IMAGEM: Físicos da UC Berkeley/LBNL se perguntam se o hidrogênio normal (esquerda) pesa o mesmo que o anti-hidrogênio (direita) |
||||
A antimatéria é um negócio esquisto Ela tem a carga elétrica oposta à da matéria normal e, quando se encontra com sua contraparte, as duas se aniquilam, gerando um clarão de luz.
Quatro físicos da Universidade da Califórnia em Berkeley estão se perguntando se a matéria e a antimatéria seriam afetadas pela gravidade de maneira diferente. Será que a antimatéria poderia cair para cima – ou seja, exibir antigravidade – ou cair para baixo com uma aceleração diferente da matéria normal?
Quase todo o mundo, inclusive os físicos, acham que a antimatéria provavelmente vai cair da mesma forma que a matéria normal, mas ninguém até agora deixou antimatéria cair para ver se isso é verdade, argumenta Joel Fajans, professor de física da UC Berkeley. E, embora existam muitos indícios indiretos de que antimatéria e matéria pesem a mesma coisa, todos eles dependem de suposições que podem não ser corretas. Alguns poucos teóricos argumentam que alguns busílis cosmológicos, tais como, por exemplo, por que existe mais matéria do que antimatéria, poderiam ser explicados se a antimatéria caísse para cima.
Em um novo artigo publicado online em 30 de abril na Nature Communications, os físicos da UC Berkeley e seus colegas da experiência ALPHA no CERN em Genebra, relatam a primeira medição direta do efeito da gravidade sobre a antimatéria, especificamente anti-hidrogênio em queda livre. Embora os resultados estejam longe de serem definitivos – a incerteza é cerca de 100 vezes maior do que a medição esperada – a experiência da UC Berkeley aponta na direção de uma resposta definitiva sobre a questão fundamental de se a antimatéria cai para cima ou para baixo.
“Esta é a primeira palavra, não a última”, diz Fajans. “Nós demos os primeiros passos na direção de uma experiência direta de questões que físicos e não-físicos têm matutado por mais de 50 anos. Certamente nós esperamos que a antimatéria caia para baixo, mas pode bem ser que tenhamos uma surpresa”.
Fajans e seu colega físico, professor Jonathan Wurtele, se valeram de dados do Aparato Laser de Física de Anti-hidrogênio (Antihydrogen Laser Physics Apparatus = ALPHA) no CERN. A experiência captura antiprótons e os combina com antielétrons (posítrons) para fabricar átomos de anti-hidrogênio, os quais são armazenados e estudados por uns poucos segundos em uma armadilha magnética. Depois, no entanto, a armadilha é desligada e os átomos caem para fora. Os dois pesquisadores perceberam que, analisando como o anti-hidrogênio cai da armadilha, eles poderiam estabelecer se a gravidade atuava sobre o anti-hidrogênio de maneira diferente da que atua sobre o hidrogênio.
O anti-hidrogênio não se comportou de maneira estranha, de forma que eles calcularam que ele não pode ser mais do que 110 vezes mais pesado do que o hidrogênio. Se a antimatéria for antigravitacional – coisa que eles ainda não podem descartar – ele não acelera para cima a mais de 65 Gs.
“Precisamos fazer melhor e esperamos fazê-lo nos próximos anos”, diz Wurtele. A experiência ALPHA está passando por aperfeiçoamentos e deve fornecer dados mais precisos quando voltar a operar em 2014.
A carga magnética do Antipróton
Na busca por compreender melhor a surpreendente falta de equilíbrio entre matéria e antimatéria no universo, membros da equipe ATRAP usaram um aparelho criogênico de armazenamento para confinar um único antipróton por semanas, enquanto mediam seu campo magnético com uma precisão 680 vezes maior do que tinha sido, até então, possível com outros processos. Da esquerda para a direita Mason Marshall, Kathryn Marable, Gerald Gabrielse e Jack DiSciacca. Crédito: Katherine Taylor/Harvard Public Affairs (via National Science Foudation) |
A equipe que estuda as propriedades da antimatéria no CERN, Antihydrogen trap research team (equipe de pesquisa por confinamento de anti-hidrogênio), ou, simplesmente, Colaboração ATRAP, manteve um solitário antipróton em uma Armadilha Penning, um dispositivo que mantém as partículas confinadas em campos magnéticos de modo a não interagirem com qualquer parte material do próprio dispositivo (se a partícula o fizesse, imediatamente se aniquilaria ao fazer contato com qualquer próton normal, coisa que aconteceria bem rápido, considerando que a carga elétrica negativa do antipróton seria atraída pela carga elétrica positiva dos prótons).
Com o antipróton confinado, os pesquisadores o bombardearam com sinais de rádio-frequência e, cada vez que a frequência correta era aplicada, o impacto do fóton de RF fazia com que o spin do antripróton fosse para a frente e para trás. A partir daí era só medir a frequência correta: quanto mais alta fosse a frequência, maior seria o campo magnético do antipróton. O resultado foi então comparado com o conhecidíssimo valor do campo magnético do próton comum.
Segundo o Modelo Padrão da Física de Partículas, o próton e o antipróton deveriam ter um campo magnético exatamente igual em força – apenas diferindo quanto à polaridade em relação a seu spin. E foi exatamente isto que os pesquisadores observaram – só que com uma precisão 680 vezes maior do que a de observações anteriores, conforme artigo publicado na edição de hoje de Physical Review Letters.
Você pode estar se perguntando: “para que então tiveram todo este trabalho, se o resultado foi exatamente o que era de se esperar?”
Armadilha Penning. Imagem de WikiMedia Commons. Link para o original |
Exatamente por isso: se o resultado fosse ligeiramente diferente, então haveria algum erro no Modelo Padrão e essa diferença poderia dar uma pista para um dos maiores problemas da Física, da Astrofísica e da Cosmologia: se o Big Bang criou quantidades exatamente iguais de matéria e antimatéria (como se supõe que fez, uma vez que, no universo atual que podemos estudar, sempre as partículas são criadas aos pares partícula-antipartícula), como é que o universo conhecido é composto quase que exclusivamente por matéria?
Gerald Gabrielse, o Professor “Leverett” de Física na Universidade Harvard, líder da equipe de pesquisa, comentou: “Teria sido mais divertido e teríamos mais pistas sobre o desequilíbrio [entre matéria e antimatéria] do universo, se tivéssemos observado que os dois campos magnéticos tivessem valores diferentes”.
Só que não… A precisão da medição cada vez mais confirma o que se esperava: o Modelo Padrão da Física de Partículas está correto – cada vez com mais casas decimais – e ainda não foi desta vez que o mistério do desaparecimento da antimatéria do universo foi desvendado.
###
Fontes: Press-release 13-049 da National Science Foundation e EurekAlert da AAAS