Decifrando as galáxias compactas do universo antigo

EurekAlert

Link para o original: Deciphering compact galaxies in the young universe

NATIONAL INSTITUTES OF NATURAL SCIENCES

IMAGE

Os pontos vermelhos representam os dados observados; a maior parte deles tem formas alongadas e as galáxias maiores tendem a ter uma elipticidade maior. As regiões em cinza representam as distribuições prováveis segundo cálculos de simulações em computador. Quando duas galáxias estão muito próximas, podem parecer uma única galáxia alongada, como mostram as figuras menores nas laterais.

Imagem cortesia de Ehime University

Um grupo de pesquisadores, empregando o instrumento Suprime-Cam do Telescópio Subaru, descobriu cerca de 80 jovens galáxias que existiram no universo primordial, em torno de 1,2 bilhões de anos após o Big Bang. A equipe, que tem membros da Ehime University, Nagoya University, Tohoku University, Space Telescope Science Institute (STScI) nos EUA e do California Institute of Technology, fizeram então análises detalhadas dos dados imageados dessas galáxias obtidas pela Advanced Camera for Surveys (ACS) do Telescópio Espacial Hubble. Ao menos 54 dessas galáxias têm imagens que permitem resolução espacial nas imagens da ACS. Entre estas, 8 galáxias exibem estruturas com dois componentes e as restantes 46 parecem ter estruturas alongadas. Através de pesquisas subsequentes, empregando uma simulação em computador, o grupo descobriu que as estruturas alongadas podem ter essa aparência se forem duas ou mais galáxias bem próximas entre si.

Estes resultados são um forte indício de que, após 1,2 bilhões de anos após o Big Bang, os aglomerados de galáxias do universo jovem cresceram, para se tornarem grandes galáxias através de fusões, o que, por sua vez, provoca uma ativa formação de estrelas. Esta pesquisa foi realizada coo parte do programa do legado do Telescópio Espacial Hubble, “Cosmic Evolution Survey (COSMOS)”. A poderosa capacidade de pesquisa do Telescópio Subaru forneceu a base de dados essencial para os objetos do estudo sobre o universo primevo.

A Importância do Estudo das Galáxias Primevas

No universo atual, a 13,8 bilhões de anos após o Big Bang, existem muitas galáxias como a nossa Via Láctea, que contém cerca de 200 bilhões de estrelas em um disco com cem mil anos luz de diâmetro. Entretanto, definiitivamente não havia galáxias como ela pouco depois do Big Bang.

Essas aglomerações pré-galáticas parecem ter se formado no universo cerca de 200 milhões de anos após o Big Bang. Elas eram nuvens de gás frio, muito menores do que as atuais galáxias gigantes (cem vezes menores), com massas menores (um milhão de vezes menores). As primeiras galáxias se formaram quando as primeiras estrelas nasceram nessas aglomerações de gás. Essas pequenas aglomerações galáticas começaram, então, a se fundir com aglomerações próximas e, eventualmente, formaram as grandes galáxias.

Muito esforço tem sido dispendido nessas buscas profundas para detectar galáxias ativas com formação de estrelas no universo jovem. Como resultado, já se sabe que as galáxias mais antigas ficam a mais de 13 bilhões de anos luz. Nós as vemos em uma época em que o universo tinha somente 800 milhões de anos (ou cerca de 6% de sua idade atual). Entretanto, uma vez que a mioria das galáxias do universo jovem eram bem pequenas, não se conseguiu estudar suas estruturas em detalhes.

A Exploração do Universo Primevo com o Telescópio Espacial Hubble e o Telescópio Subaru

Enquanto o grande campo de observação do Telescópio Subaru desempenhou um papel importante em localizar essas jovens galáxias, a alta resolução espacial do Telescópio Espacial Hubble foi necessária para investigar os detalhes de seus formatos e suas estruturas internas. A equipe de pesquisas olhou para um ponto a 12,6 bilhões de anos no passado com uma abordagem por duas vias. O primeiro passo foi usar o Telescópio Subaru para uma busca profunda das galáxias primitivas e prosseguir com a investigação de seus formatos com a Advanced Camera for Surveys (ACS) a borod do Hubble. A ACS revelou que 8 das 54 galáxias tiham estruturas duplas, parecendo com a fusão de duas galáxias¹.

Então, apareceu a dúvida sobre se as outras 46 galáxias observadas eram mesmo galáxias individuais. Aqui, a equipe de pesquisa questionou quantas dessas galáxias exibiam formatos alongados nas imagens do Hubble. Isto porque tais aspectos alongados, junto com uma correlação positiva entre elipticidade² e tamanho, são um forte indício de que duas galáxias são tão próximas entre si que, com a atual resolução máxima da ACS, não se pode distinguir uma coisa de outra.

Para verificar se a ideia de galáxias próximas em um espaço apertado era viável, os pesquisadores usaram as assim chamadas simulações em computador de Monte Carlo. Primeiro, o grupo colocou duas fontes artificiais em posições aleatórias, com váris separações angulares, sobrepondo-as às imagens reais da ACS. Depois, o grupo tentou extrair as imagens com o mesmo método para as verdadeiras observações da ACS e mediu suas elipticidades e tamanhos.

A distribuição simulada bateu muito bem com os resultados observados. Ou seja, a maioria das galáxias vistas como uma fonte individual nas imagens da ACS poderiam ser mesmo duas galáxias em fusão. Entretanto, a distância entre duas galáxias em fusão é tão pequena que nem a alta resolução do Hubble consegue distinguí-las!

Se a ideia for válida para galáxias que parecem ser individuais, é possível presumir que as galáxias com as maiores taxas de atividade tenham menor tamanho. Isso é uma decorrência de que tamanhos menores implicam em uma menor separação entre duas galáxias em fusão. Se for mesmo o caso, tais galáxias estariam passando por uma intensa fase de formação de estrelas causada pela própria fusão.

Por outro lado, algumas galáxias com os menores tamanhos são pares razoavelmente separados, porém o ângulo de visada as faz parecer que são apenas uma, ou são mesmo galáxias formadoras de estrelas isoladas. Estas têm basicamente o mesmo tamanho de galáxias grandes.

A equipe confirmou que a relação observada entre atividade de formação de estrelas e tamanho é consistente com a ideia aventada pela equipe.

Até agora, os formatos e as estruturas das pequenas galáxias foram investigados com a ACS no Hubble. Se a fonte tivesse sido identificada como única pela ACS, ela foi tratada como uma única galáxia e seus parâmetros morfológicos foram avaliados. Esta pesquisa sugere que uma tal galáxia pequena pode consistir de duas (ou, talvez, mais) galáxias tão próximas que não podem ser distinguidas mesmo pela grande resolução angular da ACS.

Olhando para o Futuro pelo Estudo do Passado

As teorias correntes de formação de galáxias prediz que pequenas galáxias no universo jovem evoluíram em grandes galáxias através de fusões sucessivas. A pergunta permanece: qual será o próximo passo nos estudos e observações dobre a formação de galáxias no universo jovem? Esta é uma fronteira que precisa dos futuros “super-telescópios”, tais como o Telescópio de Trinta Metros e o Telescópio Espacial James Webb. Eles permitirão as próximas descobertas no estudo da formação das primeiras galáxias e sua evolução.

###

Notas:

1. Um tamanho médio (ou seja, o diâmetro médio do círculo que engloba metade da luz total da galáxia) de galáxias individuais é de cerca de 5,5 mil anos luz. Uma distância média entre duas pequenas galáxias será de 13.000 anos luz.

2. A elipticidade é definida como 1 – b/a, onde a e b representam os raios maior e menor de uma eslipse. No caso de um círculo, a elipticidade será igual a zero, já que a = b. Um formato mais alongado corresponde a uma maior elispticidade.

Teóricos sugerem novo processo para sondar o começo do universo

Link para o original: Theorists propose a new method to probe the beginning of the universe

HARVARD-SMITHSONIAN CENTER FOR ASTROPHYSICS

Como começou o universo? E o que havia antes do Big Bang? Cosmologistas têm feito estas perguntas desde que se descobriu que nosso universo está se expandindo. As respostas não são fáceis de encontrar. O início do cosmo está velado e oculto das vistas de nossos mais poderosos telescópios. Ainda assim, as observações que fazemos hoje, podem nos dar pistas da origem no universo. Novas pesquisas sugerem uma nova maneira de sondar o início do espaço-tempo e determinar qual das teorias correntes está correta.

O cenário teórico mais largamente aceito para o começo do universo é a inflação que prediz que o universo se expandiu em taxas exponenciais nas primeiras nano-frações de segundo. Por outro lado, vários outros cenários alternativos foram sugeridos, alguns dos quais predizem que, antes do Big Bang, houve um Big Crunch. O truque está em encontrar medições que possam estabelecer uma distinção entre esses possíveis cenários.

Uma fonte de informações promissora acerca do começo do universo é o Fundo Cósmico de Micro-ondas (conhecido pela sua abreviatura em inglês, CMB) – o eco distante do Big Bang que permeia todo o espaço. Esse brilhareco parece, a uma primeira vista, ser suave e uniforme, porém, quando investigado mais a fundo, mostra pequeninas variações. Essas variações decorrem de flutuações quânticas presentes no nascimento do universo que foram esticadas na medida em que este se expandiu.

A abordagem convencional para distinguir entre os diferentes cenários, busca os possíveis traços de ondas gravitacionais, geradas durante o universo primordial, na CMB. “O que estamos propondo é uma nova abordagem que pode nos permitir revelar diretamente a história de evolução do universo primordial, a partir dos sinais astrofísicos. Esta história é diferente em cada cenário”, diz o co-autor Xingang Chen do Harvard-Smithsonian Center for Astrophysics (CfA) e da Universidade do Texas em Dallas.

Muito embora os estudos experimentais e teóricos deem pistas para as variações no universo primordial em termos de espaço, eles não o fazem para o elemento chave, o tempo. Sem um relógio para medir a passagem do tempo, a história da evolução do universo primordial não pode ser estabelecida sem dúvidas.

“Imagine que se pegasse os quadros de um filme e se empilhasse eles aleatoriamente. Se esses quadros não tiverem uma etioqueta de tempo, não será possível colocá-los na ordem certa. O universo primordial simplesmente explodiu, ou implodiu antes de explodir? Se não soubermos se o filme está correndo para a frente ou para trás, não podemos distinguir uma coisa da outra”, explica Chen.

Esta nova pesquisa sugere que este tal relógio existe e pode ser usado para medir a passagem do tempo no nascimento do universo. Esses relógios tomam a forma de partículas pesadas que são um produto esperado da “Teoria de Tudo” que vai integrar a mecânica quântica com a relatividade geral. Eles foram batizados de “relógios padrão primordiais”.

As partículas subatômicas pesadas se comportarão como um pêndulo, oscilando para frente e para trás de uma forma universal e padronizada. Elas podem fazê-lo por meio de oscilações quânticas, sem serem impelidas inicialmente. Essas oscilações quânticas vão agir como um tique-taque e adicionar as etiquetas de tempo aos quadros do filme da nossa analogia.

“Os tique-taques desses relógios padrão primordiais criariam as oscilações correspondentes no CMB, cujo padrão será forçosamente único para cada cenário”, diz o co-autor Yi Wang da Universidade de Ciência e Tecnologia de Hong Kong. Porém os presentes dados não são precisos o bastante para plotar variações tão pequenas.

Experiências correntes devem melhorar significativamente a situação. Projetos tais como o BICEP3 do CfA e o Telescópio Keck, assim como várias outras experiências correlatas pelo mundo inteiro, serão capazes de coletar dados extremamente precisos do CMB, ao mesmo tempo que prosseguem as buscas pela detecção de ondas gravitacionais. Se as oscilações dos relógios padrão primordiais forem suficientemente fortes, as experiências devem encontrá-los na próxima década. Indícios adicionais podem vir de outras linhas de investigação, tais como os mapas da estrutura em larga escala do universo que incluam as galáxias e o hidrogênio cósmico.

E, já que os relógios padrão primordiais seriam um componente da “Teoria de Tudo”, encontrá-los também proveria indícios para uma física além do Modelo Padrão em uma escala que os colisores de partículas na Terra não têm acesso.

###

Inflações secundárias? Pode ser…

Nova teoria de inflação secundária apresenta novas opções para evitar o problema de um excesso de matéria escura

Físicos sugerem que um período menor de expansão inflacionária nos instantes logo após o Big Bang podem explicar a quantidade estimada dessa matéria misteriosa

DOE/BROOKHAVEN NATIONAL LABORATORY

14 de janeiro de 2016 – UPTON, NY — A cosmologia padrão – ou seja, a Teoria do Big Bang, com seu período inicial de expansão exponencial – é o modelo mais aceito para nosso universo, no qual todo o espaço e tempo incharam como um balão, a partir de um ponto muito quente e muito denso, para virar uma vastidão homogênea e sempre em expansão. Essa teoria dá conta de vários fenômenos físicos que observamos. Mas e se isso não for tudo?

Uma nova teoria dos físicos do Laboratório Nacional de Brookhaven, do Laboratório Nacional do Acelerador Fermi e da Universidade Stony Brook, que será publicada online em 18 de janeiro em Physical Review Letters, sugere ter havido um segundo período inflacionário mais curto que pode dar conta da quantidade estimada de matéria escura no cosmos.

“Em geral, uma teoria fundamental da natureza pode explicar certos fenômenos, mas ela pode, no fim, não acabar dando a quantidade certa de matéria escura”, argumenta Hooman Davoudiasl, líder de grupo no Grupo Teórico de Altas Energias do Laboratório Nacional Brookhaven e um dos autores do artigo. “Se você acabar com pouca matéria escura, sempre pode sugerir uma nova fonte para esta, porém matéria escura demais é um problema”.

Medir a quantidade de matéria escura no universo não é uma tarefa fácil. Ao fim e ao cabo ela é escura, de forma que não interage de maneira significativa com a matéria comum. Não obstante, os efeitos gravitacionais da matéria escura dão aos cientistas uma boa ideia de quanto dela existe por aí. As melhores estimativas indicam que ela perfaz cerca de um quarto do total de massa-energia do universo, enquanto que a matéria comum – esta que compõe as estrelas, nosso planeta e nós mesmos – compreende apenas 5%. A matéria escura é a substância dominante no universo, o que levou os físicos a criar teorias e experiências para explorar suas propriedades e entender o que deu origem a ela.

Algumas teorias que apresentam explicações elegantes para certas esqusitices na física que nos deixam perplexos – por exemplo, a pasmante fraqueza da gravidade em comparação com as outras interações fundamentais (eletromagnética, nuclear forte e nuclear fraca) – não podem ser totalmente aceitas porque predizem mais matéria escura do que as observações empíricas podem apoiar.

Esta nova teoria soluciona este problema. Davoudiasl e seus colegas adicionam um novo passo à sequência de eventos comumente aceita na criação do espaço e tempo.

Na cosmologia padrão, a expansão exponencial do universo – chamada de inflação cósmica – teve início provavelmente logo aos 10-35 segundo depois do começo do tempo – isso é zero vírgula 34 zeros, um. Essa expansão explosiva de todo o espaço durou meras frações de uma fração de segundo, o que levou eventualmente a um universo quente, seguido de um período de resfriamento que continua até os presentes dias. Então, quando o universo tinha entre alguns segundos e alguns minutos de idade – ou seja, ficou frio o bastante – começou a formação dos elementos mais leves. Entre esses marcos, podem ter acontecido outros interlúdios inflacionários. argumenta Davoudiasl.

“Eles não teriam sido grandiosos ou tão violentos como o inicial, mas poderiam dar conta de uma diluição da matéria escura”, explica ele.

No começo, quando as temperaturas ultrapassavam bilhões de graus em um volume de espaço relativamente pequeno, as partículas de matéria escura podiam se chocar e se aniquilarem no contato, passando sua energia para os constituíntes da matéria comum – partículas tais como elétrons e quarks. Mas, na medida em que o universo continuou a se expandir e esfriar, as partículas de matéria escura se encontravam cada vez menos vezes e a taxa de aniquilação não conseguia dar conta da taxa de expansão.

“Neste ponto, a abundância de matéria escura foi cozinhada com o resto do bolo”, prossegue Davoudiasl. “Lembrem-se que a matéria escura interage de maneira muito fraca. Dessa forma, não pode continuar a existir uma taxa de aniquilação significativa em temperaturas mais baixas. A auto-aniquilação da matéria escura se torna ineficaz bem cedo e a quantidade de partículas de matéria escura fica congelada”.

No entanto, quanto mais fracas forem as interações da matéria escura – ou seja, quanto menos eficiente for a auto-aniquilação – maior deveria ser a abundância final de partículas de matéria escura. Na medida em que as experiências colocam restrições cada vez maiores na força das interações da matéria escura, algumas teorias correntes acabam por superestimar a quantidade de matéria escura no universo. Para colocar as teorias em alinhamento com as observações, Davoudiasl e colegas sugerem que aconteceu um outro período inflacionário, alimentado por interações em um “setor oculto” da física. Esse segundo período de inflação, mais suave, caracterizado por um rápido crescimento do volume, teria diluído a abundância primordial de partículas, potencialmente deixando o universo com a densidade de matéria escura que observamos atualmente.

“Definitivamente não é a cosmologia padrão, mas temos que aceitar que o universo pode não ser governado pela maneira padrão que pensamos”, disse ele. “Porém, não tivemos que construir alguma coisa complicada. Nós demonstramos que um modelo simples pode obter essa pequena quantidade de inflação no universo primevo e dar conta da quantidade de matéria escura que acreditamos haver por aí”.

Provar a teoria é outra coisa totalmente diferente. Davoudiasl diz que pode haver uma maneira de procurar por, pelo menos, as mais fracas interações entre o setor oculto e a matéria comum.

“Se esse período inflacionário secundário aconteceu, ele pode ser caracterizado por energias dentro do alcance de experiências em aceleradores tais como o Relativistic Heavy Ion Collider (RHIC) e o Large Hadron Collider,” diz ele. Somente o tempo dirá se os sinais de um setor oculto vão aparecer ns colisões dentro desses aceleradores, ou em outras instalações experimentais.

###

Esta semana no EurekAlert

ESO

Descoberto o primeiro planeta orbitando uma “gêmea” do Sol em um aglomerado estelar

 IMAGEM: Concepção artística de um dos três novos exoplanetas descobertos no aglomerado estelar Messier 67.

Clique aqui para mais informações.

O Observatório Europeu do Sul (ESO), no Chile, anunciou a descoberta de três planetas no aglomerado estelar Messier 67, um dos quais orbita uma estrela “gêmea” de nosso Sol.

Embora já se saiba que exoplanetas são comuns, pouquíssimos deles foram encontrados em aglomerados estelares, o que é até um pouco estranho, se considerarmos que a maioria das estrelas nasce dentro desses aglomerados..

Anna Brucalassi (do Instituto Max Planck de Física Extraterrestre, na Alemanha), principal autora do estudo diz: “No aglomerado Messier 67, as estrelas são todas da mesma idade e composição de nosso Sol. Isso faz desse aglomerado um laboratório perfeito para estudar quantos planetas podem se formar em um ambiente tão populoso e se eles tendem a se formar em torno de estrelas mais ou menos massivas”.

A equipe empregou o instrumento HARPS (High Accuracy Radial velocity Planet Searcher = Buscador de Planetas [por meio da medição da] Velocidade Angular de Alta Precisão), montado no telescópio de 3,6m no Observatório La Silla, cujos resultados foram cotejados com vários outros dados de observatórios pelo mundo inteiro.

O aglomerado fica a cerca de 2500 anos-luz de distância, na direção da constelação de Câncer, e contem cerca de 500 estrelas. Muitas das estrelas do aglomerado são mais tênues do que aquelas onde usualmente se procura por exoplanetas, o que levou as capacidades do HARPS ao limite. Os três planetas descobertos – dois deles orbitando estrelas similares ao Sol e um que orbita uma mais massiva que já evoluiu para o estágio de gigante vermelha – os dois primeiros tem uma massa de cerca de um terço da massa de Júpiter e orbitam sua estrela-mãe em períodos de sete e cinco dias, respectivamente. O terceiro leva 122 dias para orbitar a estrela-mãe e é mais massivo do que Júpiter.

Links

Artigo que relata a pesquisa: “Three planetary companions around M67 stars”, por A. Brucalassi et al., a ser publicado em Astronomy & Astrophysics
(pré-publicação online: – http://www.eso.org/public/archives/releases/sciencepapers/eso1402/eso1402a.pdf

Fotos do telescópio de 3,6m do ESO – http://www.eso.org/public/images/archive/search/?adv=&subject_name=3.6

 


California Institute of Technology

Himiko e a aurora do cosmo

 IMAGE: A composite color image of Himiko based on Hubble, Subaru, and Spitzer data. On the left is a Hubble image with the position of Himiko marked with a square. Top…Click here for more information.

Um dos mais fascinantes objetos descobertos pelo Telescópio Subaru – o telescópio de 8,2m operado pelo Observatório Astronômico Nacional do Japão, localizado no monte Mauna Kea no Hawaii – é uma “bolha espacial”, batizada de Himiko (uma lendária rainha do Japão antigo). Himiko apresenta três “bolhas” visíveis e foi identificada como uma enorme galáxia com um halo gasoso que cobre mais de 55.000 anos-luz. Himiko não só é enorme, como é muito distante e a imagem que vemos é de uma época cerca de 800 milhões de anos após o Big Bang, quando o universo tinha apenas 6% de seu tamanho atual e as estrelas e galáxias estavam apenas começando a se formar.

Em busca da resposta para como uma galáxia tão primeva poderia ter energia suficiente para aquecer uma nuvem de gás tão grande, uma equipe de astrofísicos da CalTech, da Universidade de Tóquio e do Centro Harvard-Smithsonian de Astrofísica combinou os resiltados de observações do Telescópio Espacial Hubble e do novo rádio-telescópio ALMA (Atacama Large Millimeter/submillimeter Array). E, junto com a resposta à pergunta inicial, obtiveram mais uma surpresa.

As imagens do Hubble – que detecta luz visível e utra-violeta – mostravam três aglomerados estelares que cobriam um espaço de 20.000 anos-luz cada; portanto, três galáxias típicas da época de Himiko, em processo de fusão, todas elas com intensa formação de estrelas que, somadas, equivalem a uma centena de massas solares por ano – o que é mais do que suficiente para explicar Himiko e seu halo gasoso. A tripla fusão de galáxias é, por si só, um evento raro.

A surpresa apareceu com os dados do ALMA. Embora Himiko estivesse brilhando nas faixas da luz visível e no ultra-violeta, nas faixas que o ALMA observa – submilimétrica e rádio-frequência – ela era quase apagada. Normalmente, regiões de intensa formação de estrelas criam nuvens compostas de carbono, oxigênio e silício (no jargão dos astrônomos, tudo mais massivo que hidrogênio e hélio é um “metal”) e essas nuvens quando aquecidas, reemitem a radiação ultra-violeta na faixa de rádio-frequência. Isso sugeria uma baixa “metalicidade” de Himiko.

A conclusão dos pesquisadores é que Himiko é tão antiga que é composta quase que exclusivamente por hidrogênio e hélio, elementos formados no próprio Big Bang. E antes de chegarem a esta conclusão, os cientistas tiveram que cuidadosamente descartar outras possibilidades, tais como a aparência de Himiko ser causada por um efeito tal como o de lente gravitacional ou por um gigantesco buraco negro no seu centro.

O artigo com os resultados é intitulado “An Intensely Star-Forming Galaxy at Z ~ 7 with Low Dust and Metal Content Revealed by Deep ALMA and HST Observations”, publicado na edição de 1/12/2013 do Astrophysical Journal

Qual será o formato do Universo?

Photobucket

Dados deixam em aberto a possibilidade de um Universo curvo

 

Representação da Sonda Wilkinson de Anisotropia de Micro-ondas, superposta a uma visualização do fundo cósmico de micro-ondas.
Crédito da imagem: NASA

Indícios dos ecos do Big Bang podem sugerir um universo em forma de sela.

11 de setembro de 2013

Original em inglês por: Charles Q. Choi, Contribuidor do ISNS Contributor

(ISNS) — O formato do universo pode ser tremendamente diferente do que se pensava, diz um grupo de pesquisadores.
Pesquisadores que investigam uma importante anomalia no eco do Big Bang, sugerem que a tessitura do universo pode ser, na verdade, curva como uma sela, o que subverte a ideia prevalecente atual de que a luz e tudo o mais que viaja através do espaço-tempo, o faz em uma linha reta em um universo plano. Em um universo em forma de sela, qualquer objeto que pareça estar se deslocando paralelamente a outro, na verdade acabará por se distanciar dele depois de vastas distâncias.
Não obstante, os cientistas acautelam para que podem existir outras explicações para essa anomalia. Nosso universo pode ter colidido com outro universo, logo após o Big Bang, ou a anomalia pode ser apenas um acaso estatístico.
Os pesquisadores começaram a notar a anomalia em questão há quase uma década, quando analisaram o fundo cósmico de micro-ondas, o “calor” deixado para trás pelo Big Bang. Os cientistas podem estudar as flutuações nos pontos quentes e frios do fundo cósmico de micro-ondas para aprenderem mais acerca da estrutura e da evolução do universo.
Os dados da Sonda Wilkinson de Anisotropia de Micro-ondas da NASA (Wilkinson Microwave Anisotropy Probe = WMAP), lançada em 2001, sugerem inesperadamente que o universo pode ser desequilibrado — pontos quentes e frios de um lado do cosmo parecem ser mais quentes e mais frios do que no outro. Os indícios dessa anomalia têm se acumulado com o tempo  e os dados obtidos pelo satélite Planck, lançado pela Agência Espacial Européia (ESA) em 2009, apoiam a existência da mesma anomaliay.
“As anomalias observadas no fundo cósmico de micro-ondas são intrigantes — elas podem ser um mero acaso estatístico, mas também podem ser um indício de processos físicos ainda desconhecidos que atuaram no nascimento do universo”, diz o pesquisador Andrew Liddle, cosmologista da Universidade de Edimburgo na Escócia.
Esse desequilíbrio contradiz a visão prevalente na cosmologia de que, momentos após o Big Bang, o universo aumentou de tamanho titanicamente. Esse surto de crescimento, chamado de “inflação”, teria aplainado o cosmo e feito com que ele parecesse sempre igual em qualquer direção.
Os novos cosmologistas sugerem que essas anomalias ocorrem porque o universo não é plano. Ao contrário, estes pesquisadores propõem que o universo é ligeiramente “aberto”, curvado de forma tal que duas linhas paralelas, as quais nunca convergem ou divergem em uma superfície plana, vão eventualmente se separar, como em uma superfície em forma de sela.
“Os raios de luz em um universo curvo parecem percorrer trajetórias curvas”, diz Liddle. “Eles estão seguindo as linhas mais curtas em um espaço curvo, da mesma forma que os aviões voam ao longo de grandes círculos ao redor da Terra”.
A ideia começa com o universo observável formando uma bolha, dentro de um “meta-universo” ainda maior. O evento do nascimento pode ter ativado flutuações na parede da bolha, as quais deixariam marcas: as perturbações em escala muito grande. Uma consequência disto seria essa assimetria no fundo cósmico de micro-ondas, observado pela WMAP e pelo Planck; outra seria um universo que parece plano, mas, na verdade, é curvo, além do horizonte observável.
“A quantidade de inflação que ocorre dentro da bolha determina o quão plano o universo é”, explica Liddle. “Queremos que seja o suficiente para que seja quase plano, mas não totalmente”.
Este conceito “é extremamente intrigante, particularmente por sugerir que pode existir toda uma nova física, logo depois da esquina”, diz o físico teórico Marc Kamionkowski da Universidade Johns Hopkins em Baltimore, que não participou da pesquisa. “Embora ainda seja apenas uma grande especulação, esse cenário de um universo aberto parece dar uma explicação mais natural para o fato da escala de distâncias da assimetria ser tão próxima da escala do horizonte atual do que qualquer outro cenário que eu conheço”.
Matthew Kleban, um físico teórico da Universidade de Nova York, que também não participou do estudo, disse que melhorar a compreensão da curvatura do universo é muito importante. “Dito isto, não é realmente um indício direto, mas é fascinante”, comentou Kleban.
Este conceito enfrenta a competição de várias outras explicações aventadas pelos cientistas para explicar a anomalia. Por exemplo, a possibilidade de que nosso universo tenha colidido com outro, conforme sugerem Kleban e seus colegas.
No entanto, todas essas explicações para a aparente anomalia no fundo cósmico de micro-ondas, que exigiria que as leis da física fossem re-escritas, podem ser, ao fim e ao cabo, irrelevantes.
“A maioria dos cosmologistas provavelmente acredita que as anomalias observadas são apenas um acaso estatístico e não uma propriedade real do universo, o que é um ponto de vista perfeitamente razoável”, concede Liddle.
Em 2014, a equipe do Planck poderá revelar se a anomalia é realmente um acaso estatísitico, quando liberar mais dados sobre o fundo cósmico de micro-ondas. A ideia de um universo em formato de sela pode ganhar apoio se a distribuição das temperaturas nos céus não se der ao longo de uma curva de sino.
Liddle e sua colega Marina Cortês detalham suas descobertas na edição de 13 de setembro de Physical Review Letters.

Charles Q. Choi é um escritor independente da cidade de Nova York que já escreveu para The New York Times, Scientific American, Wired, Science, Nature e vários outros noticiosos.

 

A carga magnética do Antipróton

Photo of  researchers examining a tubular structure to measure the magnetic charge of an antiproton.

Na busca por compreender melhor a surpreendente falta de equilíbrio entre matéria e antimatéria no universo, membros da equipe ATRAP usaram um aparelho criogênico de armazenamento para confinar um único antipróton por semanas, enquanto mediam seu campo magnético com uma precisão 680 vezes maior do que tinha sido, até então, possível com outros processos. Da esquerda para a direita Mason Marshall, Kathryn Marable, Gerald Gabrielse e Jack DiSciacca.

Crédito: Katherine Taylor/Harvard Public Affairs (via National Science Foudation)
Link para a imagem original, onde há outro link para download da imagem em alta resolução

A equipe que estuda as propriedades da antimatéria no CERN, Antihydrogen trap research team (equipe de pesquisa por confinamento de anti-hidrogênio), ou, simplesmente, Colaboração ATRAP, manteve um solitário antipróton em uma Armadilha Penning, um dispositivo que mantém as partículas confinadas em campos magnéticos de modo a não interagirem com qualquer parte material do próprio dispositivo (se a partícula o fizesse, imediatamente se aniquilaria ao fazer contato com qualquer próton normal, coisa que aconteceria bem rápido, considerando que a carga elétrica negativa do antipróton seria atraída pela carga elétrica positiva dos prótons).

Com o antipróton confinado, os pesquisadores o bombardearam com sinais de rádio-frequência e, cada vez que a frequência correta era aplicada, o impacto do fóton de RF fazia com que o spin do antripróton fosse para a frente e para trás. A partir daí era só medir a frequência correta: quanto mais alta fosse a frequência,  maior seria o campo magnético do antipróton. O resultado foi então comparado com o conhecidíssimo valor do campo magnético do próton comum.

Segundo o Modelo Padrão da Física de Partículas, o próton e o antipróton deveriam ter um campo magnético exatamente igual em força – apenas diferindo quanto à polaridade em relação a seu spin. E foi exatamente isto que os pesquisadores observaram – só que com uma precisão 680 vezes maior do que a de observações anteriores, conforme artigo publicado na edição de hoje de Physical Review Letters.

Você pode estar se perguntando: “para que então tiveram todo este trabalho, se o resultado foi exatamente o que era de se esperar?”

Armadilha Penning. Imagem de WikiMedia Commons. Link para o original

Exatamente por isso: se o resultado fosse ligeiramente diferente, então haveria algum erro no Modelo Padrão e essa diferença poderia dar uma pista para um dos maiores problemas da Física, da Astrofísica e da Cosmologia: se o Big Bang criou quantidades exatamente iguais de matéria e antimatéria (como se supõe que fez, uma vez que, no universo atual que podemos estudar, sempre as partículas são criadas aos pares partícula-antipartícula), como é que o universo conhecido é composto quase que exclusivamente por matéria?

Gerald Gabrielse, o Professor “Leverett” de Física na Universidade Harvard, líder da equipe de pesquisa, comentou: “Teria sido mais divertido e teríamos mais pistas sobre o desequilíbrio [entre matéria e antimatéria] do universo, se tivéssemos observado que os dois campos magnéticos tivessem valores diferentes”.

Só que não… A precisão da medição cada vez mais confirma o que se esperava: o Modelo Padrão da Física de Partículas está correto – cada vez com mais casas decimais – e ainda não foi desta vez que o mistério do desaparecimento da antimatéria do universo foi desvendado.

###

Fontes: Press-release 13-049 da National Science Foundation e EurekAlert da AAAS

E o universo ficou mais velho… e diferente

Telescópio do Polo Sul (WikiMedia Commons)

Telescópio do Polo Sul. Imagem da WikiMedia Commons.
Link para a imagem original.


Quando eu publiquei o post O universo antigo produzia mais estrelas do que se pensava, eu tive que escolher entre vários press-releases sobre o mesmo assunto. Eu traduzi o da Universidade de Chicago, mas havia também os da National Science Foundation, “Telescópios Financiados pela NSF no Polo Sul e Chile descobrem bursts de formação de estrelas no universo primitivo”, da Fundação Kavli, “Testemunhando starbursts em galáxias jovens”, da Universidade do Arizona, “[O Telescópio] ALMA expõe  fábricas de estrelas escondidas no universo jovem”, do National Radio Astronomy Observatory, “[O Telescópio] ALMA descobre “monstruosas” galáxias starburst no universo jovem”, da Carnegie Institution, “Descobertas galáxias antigas e extremamente ativas”, e outros dois com o mesmo título: “[O Telescópio] ALMA reescreve a história do baby boom estelar do Universo”, um da Universidade McGill e outro do European South Observatory.

É claro que todo este fuzuê sobre a descoberta tinha um motivo bem claro: os cálculos dos astrofísicos sobre a linha-do-tempo da formação de estrelas, galáxias e do próprio universo continham algum erro.

Imediatamente me ocorreu entrar em contato com o scibling Ethan Siegel do Starts With a Bang, mas diversas outras coisas (combinadas com meu raro talento em procrastinar) foram “deixando-para-depois” e, quando finalmente eu acessei o blog dele, me deparei com o post “O que todos deveriam saber sobre o universo, na véspera [da divulgação dos dados] do [Telescópio Espacial] Planck”. Bem… se Ethan esperava alguma novidade importante dos dados do Planck, eu também poderia…

Imagem do Fundo Cósmico de Micro-ondas obtida pelo Satélite Planck.
Link para a imagem original.


Agora, esta figura já é conhecida por todos e as agências de notícias já comentaram que o Universo é, pelo menos, 80 milhões de anos mais velho do que se calculava. Mas, como eu esperava, Ethan chama a atenção para diversas outras novidades em seu post “Do que é feito todo o Universo, graças ao Planck”. E eu vou tomar a liberdade de kibar desavergonhadamente o post dele. Espero que me perdoem se eu não reproduzir algumas das ilustrações do post do Ethan porque elas são demasiado técnicas. Por mais que eu ame a física quântica e a astrofísica, quando começam a argumentar “se o hamiltoniano é hermitiano”, eu me sinto como o cachorrinho que caiu do caminhão de mudanças…

Comparação da Resolução das imagens Cobe, WMAP e Planck.

Comparação da Resolução das imagens Cobe, WMAP e Planck. Crédito: NASA Jet Propulsion Laboratory, CalTech.

Link para a imagem original.

A primeira coisa que Ethan enfatiza é a qualidade da imagem fornecida pelo Planck. Como diz ele, na década de 1990 o satélite  Cosmic Background Explorer (COBE ou Explorador do Fundo Cósmico) nos deu uma primeira imagem difusa do Fundo Cósmico de Micro-ondas (Cosmic Microwave Background, ou simplesmente CMB). Se você está pensando naquele eco do Big Bang descoberto quase que por acaso por Penzias e Wilson em 1965, está correto! A primeira imagem disto foi obtida na década de 1990 pelo satélite Cobe, com uma resolução de imagem de cerca de 7 graus, e a sonda Wilkinson Microwave Anisotropy Probe (WMAP) da NASA obteve, em 2006, após muita filtragem dos ruídos das emissões “atuais”, uma imagem bem mais nítida do CMB, com uma resolução de cerca de meio grau. Agora, também após um exaustivo processo de filtragem do ruído, o Planck chegou ao limite de resolução possível; Ethan enfatiza que o problema não é o da sensibilidade dos instrumentos do Planck, mas da própria natureza do universo!

A segunda coisa que ele realça é que o universo não só é composto de mais matéria do que se pensava, como também está se expandindo mais devagar do que se calculava. O Parâmetro de Hubble medido pelo Planck é tão menor do que aquele que se usava que, se fosse ele a única diferença encontrada, significaria que o universo seria um bilhão de anos mais velho do que se pensava! (Só que não…) As quantidades de matéria normal e escura são bem maiores do que se acreditava, sobrando uma fatia menor para a energia escura. Em lugar de 73% de energia escura, o Planck nos diz que é algo na faixa de 68 a 69%; a matéria escura deve ficar entre 26 a 26,5% e a matéria bariônica (ou “normal”, da qual somos feitos nós e as estrelas) não é mais só 4,6% do universo: o número subiu para 4,9%. Ah!… Sim… E, em tanto quanto o Planck tem a nos dizer, não há uma “curvatura” no universo: ele é “plano”.

Em outras palavras, existe um pouco mais de matéria normal, uma quantidade significativamente maior de matéria escura e uma quantidade significativamente menor de energia escura do que pensávamos! De forma que, enquanto a taxa de expansão menor nos diz que o universo é mais velho do que acreditávamos, o aumento de matéria (e diminuição da energia escura) nos diz que o universo é mais jovem do que seria de outra forma!

Um universo que fosse composto por 100% de matéria normal + matéria escura, teria apenas uns 10 bilhões de anos, porém o nosso parece ser dividido em cerca de 31,5% de matéria-total e 68,5% de energia escura. De forma que, quando ajustamos nossos atuais dados, chegamos a um universo com 13,81 bilhões de anos, ou seja: 80 milhões de anos mais velho do que nossa melhor estimativa anterior.

Outra coisa que se procurou entre os dados do Planck foi a “assinatura” de ondas gravitacionais primevas, o que corroboraria certos modelos da inflação do universo e descartaria outros. Os dados de polarização ainda estão sendo analisados, mas, por enquanto, nada definitivo emergiu.

Finalmente, os dados confirmam algo muito esquisito, já notado anteriormente: existe um alinhamento das anomalias locais do CMB com o eixo de nossa galáxia, algo que os astrofísicos chamam jocosamente de “eixo do mal”.


Crédito da imagem: ESA e a Colaboração Planck (essa eu não achei o original e kibei direto do blog do Ethan)

O universo antigo produzia mais estrelas do que se pensava


University of Chicago

“Ruidos” nos dados levam à surpreendente descoberta de um nascedouro de estrelas

 IMAGEM: Isto é uma concepção artística de uma das fontes descobertas pelo Telescópio do Polo Sul, com base em informações do ALMA e do Telescópio Espacial Hubble.

Clique aqui para mais informações.

Por — Steve Koppes and Marcus Woo

Quando uma leva de brilhantes objetos cósmicos apareceu pela primeira vez nos mapas feitos com dados obtidos pelo Telescópio do Polo Sul, os astrônomos do Instituto Kavli de Física Cosmológica da Universidade de Chicago viram isto apenas como um aborrecimento inevitável.

As fontes luminosas interferiam com os esforços para medir com maior precisão o fundo cósmico de micro-ondas — o brilho remanescente do big bang. No entanto, os astrônomos logo perceberam que tinham feito uma rara descoberta na varredura ampla dos céus feita pelo Telescópio do Polo Sul. Os espectros de alguns dos objetos brilhante – o arco-íris de luz que eles emitem – eram inconsistentes com o que os astrônomos esperavam de uma população de rádio-galáxias bem conhecida.

Pelo contrário, os objetos pareciam ser galáxias cheias de poeira e com uma alta taxa de formação de estrelas. Esse tipo de galáxia deveria ser facilmente identificável nas varreduras dos céus na faixa infravermelha, só que não havia coisa alguma conhecida que correspondesse ao que o Telescópio do Polo Sul tinha descoberto. Eles tinham que estar extremamente distantes para escaparem da detecção do infravermelho e, portanto, tinham que ser extremamente luminosos. Intrigados, os astrônomos realizaram um imageamento detalhado do local indicado com o novo Telescópio ALMA (Atacama Large Millimeter Array) no Deserto de Atacama, no Chile. Estas observações mostraram que as galáxias poeirentas estavam prenhes de estrelas em formação muito antes do que se previa na história do cosmo.

 IMAGEM: A luz emitida por uma galáxia distante é defletida pela gravidade de uma galáxia mais próxima, conforme previsto na Teoria da Relatividade Geral de Einstein.

Clique aqui para mais informações.

Joaquin Vieira, atualmente um doutor do California Institute of Technology, encabeça uma equipe que relata a descoberta na edição de 14 de março da Nature e em dois outros artigos que serão publicados no Astrophysical Journal.

“Nós mal podíamos esperar o ALMA ficar pronto para que pudéssemos realizar essas observações”, relata Vieira, com mestrado em 2005 e PhD em 2009, que baseou sua pesquisa de doutorado na UChicago na descoberta de fontes extra-galáticas. “As fontes que descobrimos com o Telescópio do Polo Sul ficavam tão distantes no céu do Sul que nenhum telescópio no Hemisfério Norte as podia observar. Nós temos o raro privilégio de estarmos entre os primeiros astrônomos a usarem o ALMA.”

Vieira tem trabalhado com o Telescópio do Polo sul desde o início, tendo ajudado a construir o telescópio e sua câmera, diz John Carlstrom, Professor de Serviços Distinguidos S. Chandrasekhar em Astronomia e Astrofísica na UChicago. “Ele esteve envolvido desde o chão, ou do gelo para ser mais preciso”, diz Carlstrom, que chefia a colaboração do TPS e é um co-autor do artigo na Nature.

 IMAGEM: Esta foto do prato de 10 metros do Telescópio do Polo Sul foi tirada em janeiro de 2013, logo depois da instalação de seu escudo extendido.

Clique aqui para mais informações.

Uma produção prodigiosa de estrelas

As galáxias starburst produzem estrelas a uma taxa prodigiosa, criando o equivalente a um milhar de novos sóis anualmente. Vieira e seus colegas descobriram starbursts que estavam parindo estrelas quando o universo tinha apenas um bilhão de anos de idade. Antes disto, os astrônomos duvidavam que as galáxias pudessem formar novas estrelas tão cedo na história do universo.

Brilhando com a energia de um trilhão de sóis (ou mais), essas galáxias recém-descobertas são vistas como eram mais ou menos há 12 bilhões de anos, mostrando uma “foto de infância” das galáxias mais maciças nas vizinhanças cósmicas da Terra atualmente. “Quanto mais distante for a galáxia, mais se está olhando para o passado, de forma que, ao medir suas distâncias, nós podemos alinhavar uma linha de tempo sobre o quão vigorosamente o universo vem fazendo novas estrelas nos diferentes estágios de sua existência de 13,7 bilhões de anos”, explica Vieira.

Os astrônomos descobriram dúzias dessas galáxias com o Telescópio do Polo Sul, um prato de 10 metros na Antártica que varre o céu na faixa de comprimento de onda milimétrico (situada entre as faixas de rádio e infravermelho do espectro eletromagnético). Então a equipe deu uma olhada mais detalhada, usando o ALMA no Chile. “Essas não são galáxias normais”, diz Vieira. “Elas formavam estrelas a uma taxa extraordinária quando o universo ainda era muito jovem — nós ficamos muito surpresos em encontrar galáxias assim tão cedo na história do universo”.

As novas observações representam alguns dos mais significativos resultados científicos do ALMA até agora. Vieira afirmou que “Não poderíamos ter feito isto sem a combinação do TPS e do ALMA”, acrescentando que “O ALMA é tão sensível que vai mudar nossa visão do universo de várias maneiras diferentes”.

Os  astrônomos usaram somente 16 dos 66 pratos que eventualmente comporão o ALMA, que é o mais poderoso telescópio que funciona nos comprimentos de onda milimétrico e sub-milimétrico. O ALMA começou a operar no ano passado.

Análise dos dados do ALMA

A análise dos dados do ALMA mostraram que mais de 30% das novas galáxias começaram a existir a apenas um bilhão de anos depois do big bang. Só nove dessas galáxias eram anteriormente conhecidas – o número dessas galáxias quase que dobrou, dando novos dados valiosos que auxiliarão outros pesquisadores a limitar e refinar modelos de computador de formação de estrelas e galáxias no universo primitivo.

A equipe de Vieira estabelece a distância dessas poeirentas galáxias starburst a partir das emissões de seus gases e da própria poeira. Antes, os astrônomos tinham que depender de uma complicada combinação de observações indiretas ópticas e de rádio, precisando de muitos telescópios para estudar as galáxias. Porém a sensibilidade sem precedentes do ALMA e sua capacidade de medir os espectros permitiu aos astrônomos fazer suas observações e analisá-las em um único passo. Como resultado, as novas distâncias são mais confiáveis e representam a melhor amostra, até agora, dessa população de galáxias primitivas.

As propriedades exclusivas desses objetos também ajudou nas medições. Primeiro, as galáxias observadas por acaso estavam sob o efeito de lentes gravitacionais — um fenômeno previsto por Einstein, no qual uma galáxia mais próxima encurva a luz de uma galáxia mais ao fundo, como uma lente de aumento. Esse efeito de lente faz com que as galáxias mais ao fundo pareçam mais brilhantes, o que reduz o tempo necessário para observá-las com um telescópio umas 100 vezes.

Segundo, os astrônomos tiraram vantagem de uma característica fortuita dos espectros dessas galáxias. Normalmente, galáxias mais distantes aparecem mais esmaecidas. Mas acontece que o universo em expansão desvia os espectros de emissão de uma maneira tal que a luz que recebemos na faixa milimétrica não é atenuada para fontes que estejam mais distantes de nós. Consequentemente, as galáxias aparecem, nessas faixas de comprimento de onda, com o mesmo brilho, não importa a distância.

Os novos resultados representam aproximadamente um quarto do número total de fontes que Vieira e seus colegas descobriram com o Telescópio do Polo Sul. Eles preveem encontrar ainda mais dessas galáxias starbust poeirentas e esperam que algumas sejam de épocas ainda mais antigas do universo, à medida em que continuam analisando seus dados.

 

###

Nota do tradutor: eu escolhi este press-release entre vários outros que relatam a mesma descoberta. Essencialmente, todos contém as declarações de Vieira e cada instituição “puxa a brasa para sua sardinha”, como faz a UChicago ao descrever os títulos de Vieira neste aqui.

Em cada buraco negro, um universo inteiro

Photobucket

Traduzido de: Every Black Hole Contains a New Universe

 

Um físico apresenta uma solução para os atuais mistérios do cosmos.

17 de maio de 2012

 

Por Nikodem Poplawski, Colunista Convidado do Inside Science Minds 
Inside Science Minds

Inside Science Minds apresenta uma série de colunistas convidados e perspectivas pessoais apresentadas por cientistas, engenheiros, matemáticos e outros membros da comunidade científica que expõem as ideias mais interessantes na ciência atual. 


 

Nikodem Poplawski

Imagem em tamanho original
Nikodem Poplawski exibe um “tornado em um tubo”. A garrafa de cima simboliza um buraco negro, os gargalos conectados representam um “buraco de verme” e a garrafa de baixo simboliza o universo em expansão no recém-formado outro lado do buraco de verme.
Crédito: Cortesia da Universidade de Indiana.


(ISM) – Nosso universo pode existir dentro de um buraco negro. Isso pode soar estranho, mas pode ser realmente a melhor explicação de como o universo começou e daquilo que observamos hoje. É uma teoria que vem sendo explorada nas últimas décadas por um pequeno grupo de cientistas, inclusive eu.

Em que pese seu sucesso, existem questões importantes não solucionadas pela teoria-padrão do Big Bang, a qual implica que o universo começou em uma “singularidade” aparentemente impossível, um ponto infinitamente pequeno que continha uma concentração de matéria infinitamente grande, que se expandiu até o tamanho que observamos hoje. A teoria da inflação, uma expansão super-rápida do espaço que foi proposta nas recentes décadas, preenche várias lacunas importantes, tais como por que pequenas irregularidades na concentração da matéria do universo primordial coalesceram em grandes corpos celestes tais como galáxias e aglomerados de galáxias.

No entanto, essas teorias deixam algumas importantes perguntas sem respostas. Por exemplo: O que deu início ao Big Bang? O que fez a inflação terminar? Qual é a fonte da misteriosa energia escura que aparentemente está fazendo o universo acelerar sua expansão?

A ideia de que nosso universo está contido inteiramente em um buraco negro, fornece respostas para esses problemas e muitos outros. Ela elimina a noção de singularidades fisicamente impossíveis em nosso universo. E ela é compatível com as duas principais teorias na física.

A primeira é a Relatividade Geral, a moderna teoria da gravidade. Ela descreve o universo nas maiores escalas. Qualquer evento no universo acontece em um ponto do espaço e do tempo, ou espaço-tempo. Um objeto maciço como o Sol distorce ou “curva” o espaço-tempo, tal como uma bola de boliche em repouso sobre uma lona. A mossa gravitacional causada pelo Sol altera o movimento da Terra e dos outros planetas que o orbitam. Esse “puxão” do Sol é percebido por nós como a força da gravidade.

A segunda é a mecânica quântica, que descreve o universo nas menores escalas, tais como o nível dos átomos. No entanto, a mecânica quântica e a relatividade geral são, atualmente, duas teorias separadas. Os físicos se esforçam em tentar combinar as duas em uma única teoria de “gravidade quântica”, de forma a descrever adequadamente fenômenos importantes, inclusive o comportamento de partículas subatômicas dentro dos buracos negros.

Uma adaptação, da década de 1960, da relatividade geral, chamada a teoria da gravidade Einstein-Cartan-Sciama-Kibble, leva em conta os efeitos da mecânica quântica. Ela não só representa um passo na direção da gravidade quântica, como também leva a um quadro alternativo do universo. Esta variante da relatividade geral incorpora uma importante propriedade quântica, conhecida como spin. As partículas tais como elétrons e átomos possuem spin, o momento angular interno que é análogo à rotação de um patinador que gira no gelo.

Neste quadro, os spins das partículas interagem com o espaço-tempo e o dotam de uma propriedade chamada “torção”. Para entender o que é “torção”, imagine o espaço-tempo não como uma lona bidimensional, mas como uma haste flexível unidimensional. Dobrar a haste corresponder a encurvar o espaço-tempo e torcer a haste corresponde a uma torção no espaço-tempo. Se haste for fina, você pode ver ela dobrada, mas é muito difícil saber se a haste está ou não torcida.

A torção no espaço-tempo só seria significativa no universo primordial, ou em buracos negros. Nesses ambientes extremos, a torção do espaço-tempo se manifestaria como uma força repulsiva que atuaria em sentido contrário à força gravitacional da curvatura do espaço. Tal como na versão padrão da relatividade geral, as estrelas muito maciças acabam colapsando em buracos negros: regiões do espaço de onde nada, nem mesmo a luz, pode escapar.

Então, aqui está como a torção funcionaria nos momentos inciais de nosso universo dentro de um buraco negro. Inicialmente, a atração gravitacional entre as partículas suplantaria as forças repulsivas da torção, fazendo com que a matéria colapsasse em uma região menor ainda do espaço. Mas eventualmente a torção se tornaria muito forte e impediria que a matéria se comprimisse até um ponto de densidade infinita. Não obstante, a matéria ainda estaria aglomerada em um estado de alta densidade. A enormemente alta energia gravitacional neste estado altamente aglomerado da matéria causaria uma intensa produção de partículas, uma vez que a energia pode ser convertida em matéria. Esse processo aumentaria ainda mais a massa no interior do buraco negro.

O número crescente de partículas com spin resultaria em níveis maiores de torção do espaço-tempo. A torção repulsiva frearia o colapso e criaria um big-bounce [nota do tradutor: não dá para traduzir… “bounce” é o “quique”, o movimento de volta de, por exemplo, uma bola que bate em uma parede], tal como uma bola de futebol que tenha sido espremida e escape. O rápido recuo depois de um tal big bounce poderia ser o que levou à nosso universo em expansão. O resultado desse recuo é compatível com as observações sobre o formato, a geometria e a distribuição de massas do universo.

Por sua vez, o mecanismo de torção sugere um espantoso cenário: cada buraco negro produziria um novo universo dentro dele. Se isso for verdade, então a primeira matéria de nosso universo veio de algum outro lugar. Então, nosso universo pode estar no interior de um buraco negro que existe em outro universo. Da mesma forma que não podemos ver o que acontece dentro de um buraco negro no cosmos, quaisquer observadores no universo original não poderiam observar o que acontece no nosso.

O movimento da matéria através da fronteira do buraco negro, chamada de “horizonte de eventos”, somente aconteceria em uma direção, o que forneceria uma direção para o tempo que nós percebemos como se movendo “para a frente”. A seta do tempo em nosso universo, portanto, seria herdada, através da torção, de nosso universo original.

A torção também pode explicar o desequilíbrio observado entre matéria e antimatéria no universo. Por causa da torção, a matéria sempre decairia nos familiares quarks e elétrons, e a antimatéria decairia em “matéria escura”, uma forma misteriosa e invisível de matéria que parece ser responsável pela maior parte da matéria do universo.

Black Hole IMage

Imagem em tamnho original
No centro da galáxia espiral M81 fica um buraco negro super maciço com cerca de 70 milhões de vezes a massa de nosso Sol. Crédito: X-ray: NASA / CXC / Wisconsin /D.Pooley & CfA / .Zezas; Optical: NASA/ESA/CfA/A.Zezas; UV: NASA/JPL-Caltech/CfA/J.Huchra et al.; IR: NASA/JPL-Caltech/CfA
Credit: NASA et al.


Finalmente, a torção pode ser a fonte da “energia escura”, uma forma misteriosa de energia que permeia todo o espaço e aumenta a taxa de expansão de nosso universo. Uma geometria com torção produz naturalmente uma “constante cosmológica”, um tipo de força adicional que é a maneira mais simples de  explicar a energia escura. Dessa forma, a observada aceleração da expansão do universo pode acabar sendo o maior indício em favor da torção.

Portanto a torção propicia um fundamento teórico para um cenário onde o interior de cada buraco negro se torna um novo universo. Ela também parece um remédio para vários dos maiores problemas atuais da teoria da gravidade e da cosmologia. Os físicos ainda precisam combinar a teoria Einstein-Cartan-Sciama-Kibble inteiramente com a mecânica quântica, para formar uma teoria da gravidade quântica. E, embora resolva algumas questões importantes, ela levanta outras novas. Por exemplo, o que o que sabemos sobre o universo original e o buraco negro dentro do qual nosso universo reside? Quantas camadas de universos originais poderíamos ter? Como podemos verificar se nosso universo existe dentro de um buraco negro?

Essa última pergunta pode potencialmente ser investigada: uma vez que todas as estrelas e, por consequência, todos os buracos negros giram, nosso universo teria herdado a direção de rotação de nosso buraco negro como “direção preferencial”. Existem indícios recentemente revelados, a partir da observação de mais de 15.000 galáxias, que em um hemisfério do universo a maioria das galáxias espirais é “levógira” (gira para a esquerda), ou seja: gira no sentido dos ponteiros do relógio, enquanto que no outro hemisfério existem mais galáxias “destrógiras” – giram no sentido anti-horário. Seja qual for o caso, eu acredito que incluir a torção na geometria do espaço-tempo é um passo correto na direção de uma teoria cosmológica bem sucedida.

Nikodem Poplawski é um físico teórico da Universidade de Indiana.

Sobre ScienceBlogs Brasil | Anuncie com ScienceBlogs Brasil | Política de Privacidade | Termos e Condições | Contato


ScienceBlogs por Seed Media Group. Group. ©2006-2011 Seed Media Group LLC. Todos direitos garantidos.


Páginas da Seed Media Group Seed Media Group | ScienceBlogs | SEEDMAGAZINE.COM