O intenso magnetismo de Smith


National Radio Astronomy Observatory

Um “campo de força” magnético protegerá a gigante Nuvem de Smith durante a (próxima) colisão com a Via Láctea

 IMAGEM: Concepção artística da Nuvem de Smith em seu mergulho em direção ao disco da Via Láctea.

Clique aqui para mais informações.

Pode ser que a destruição não seja o que aguarda a Nuvem de Smith¹, uma gigantesca nuvem de gás intergalático (principalmente hidrogênio) que está em rota de colisão com a Via Láctea. Os astrônomos que a examinaram usando o conjunto de antenas de base muito grande (Very Large Array = VLA) Karl G. Jansky da Fundação Nacional de Ciências dos EUA (NSF) e o Telescópio Robert C. Byrd em Green Bank (GBT), descobriram um campo magnético bem lá dentro da nuvem, o que pode servir de “escudo” para ela quando mergulhar no disco de nossa galáxia.

Esta descoberta pode ajudar a explicar como as assim chamadas nuvens de alta velocidade (high velocity clouds = HVCs) conseguem ficar quase intactas quando se fundem com os discos de galáxias, onde vão fornecer o combustível novo para a formação de uma nova geração de estrelas.

Atualmente, a Nuvem de Smith está mergulhando em direção da Via Láctea a mais de 250 km/seg e o impacto é previsto para aproximadamente 30 milhões de anos². Quando isto acontecer, isto vai criar uma espetacular torrente de criação de estrelas, acreditam os astrônomos. Mas antes disso, ela tem que sobreviver à travessia do halo, ou atmosfera, de gás quente ionizado que circunda a Via Láctea.

“A atmosfera superior, de milhões de graus, da galáxia deveria destruir essas nuvens de hidrogênio antes que elas conseguissem chegar ao disco, onde a maioria das estrelas se forma”, diz Alex Hill, um astrônomo da Australia’s Commonwealth Scientific and Industrial Research Organization (CSIRO) e autor principal de um artigo publicado no Astrophysical Journal. “Novas observações mostram uma dessas nuvens em pleno processo de ruptura, no entanto um campo magnético protetor serve de escudo para a nuvem e pode ajudá-la a sobreviver a seu mergulho”.

Muitas centenas de HVCs enxameiam em torno de nossa galáxia, mas suas órbitas raramente correspondem à rotação da Via Láctea. Isto leva os astrônomos a considerarem que as HVCs são as sobras do material de construção das galáxias, ou que são os esparsos escombros remanescentes de encontros entre galáxias, há bilhões de anos.

Embora tenham grandes massas, o gás que constitui as HVCs é muito tênue e simulações em computadores predizem que elas não têm a rusticidade necessária para sobreviver ao mergulho através do halo, até o disco da Via Láctea.

“Sempre tivemos problemas para compreender como as HVCs conseguem chegar ao disco galático”, diz Hill. “Há um bom motivo para crer que campos magnéticos possam impedir que eles “queimem” no halo, tal como um meteorito queima na atmosfera terrestre”.

Apesar de termos o melhor indício da existência de um campo magnético dentro de uma HVC, a origem da Nuvem de Smith continua a ser um mistério. “O campo que observamos agora, é grande demais para ter existido no mesmo estado quando a nuvem se formou”, argumenta Hill. “O campo provavelmente foi ampliado pelo movimento da nuvem através do halo”.

Pesquisas anteriores indicam que a Nuvem de Smith já sobreviveu pelo menos uma vez à travessia do disco de nossa galáxia e – a cerca de 8.000 anos-luz do disco – está apenas começando agora o processo de re-entrada.

“A Nuvem de Smith é ímpar entre as nuvens de alta velocidade porque ela interage claramente e se funde com a Via Láctea”, observou Felix J. Lockman, astrônomo do National Radio Astronomy Observatory (NRAO) em Green Bank, West Virginia. “Sua aparência semelhante a um cometa mostra que ela já está sentindo a influência da Via Láctea”.

Uma vez que a Nuvem de Smith parece não ter estrela alguma, o único modo de observá-la é com rádio-telescópios extremamente sensíveis, tais como o GBT, capaz de detectar a fraca emissão do hidrogênio neutro. Se fosse visível ao olho nu, a Nuvem de Smith cobriria uma área do céu do tamanho da constelação de Orion.

Quando a Nuvem de Smith eventualmente se fundir com a Via Láctea, poderá produzir um brilhante anel de estrelas, semelhante a outro relativamente próximo de nosso Sol, conhecido como o Cinturão de Gould.

“Nossa galáxia está em um ambiente incrivelmente dinâmico”, conclui Hill, “e a forma com a qual ela interage com esse ambiente é o que determina se estrelas como o Sol vão continuar se formando”.

 

###
Notas do Tradutor:
1 – A Nuvem de Smith leva o nome de solteira da astrônoma (Gail Bieger) que a descobriu em 1963, quando era estudante de astronomia na Universidade Leiden na Holanda.
2 – A página Smith’s Cloud da WikiPedia (em inglês) aponta uma velocidade mais modesta de 73 ± 26 km/seg e uma previsão de impacto de 27 milhões de anos.

O planeta das impossibilidades possíveis


Harvard-Smithsonian Center for Astrophysics

Planeta misterioso intriga os astrônomos

 IMAGEM: Concepção artística de Kepler-78b, o planeta que não devia existir.

Clique aqui para mais informações.

Kepler-78b é um planeta que nem deveria existir. Este mundo de lava escaldante gira em torno de sua estrela a cada oito horas e meia a uma distância de menos de dois milhões de quilômetros – uma das órbitas mais apertadas que se conhece. Segundo as teorias correntes sobre a formação de planetas ,ele nem poderia se ter formado, tão perto de sua estrela, nem poderia ter se movido para lá.

“Esse planeta é um completo mistério”, diz o astrônomo David Latham do Centro Harvard-Smithsonian de Astrofísica (CfA, na sigla em inglês). “Não sabemos como ele se formou ou como ele chegou aonde está hoje. O que sabemos é que não vai durar para sempre”.

“Kepler-78b vai acabar sendo engolido pela estrela muito em breve, em termos astronômicos”, concorda o astrônomo do CfA Dimitar Sasselov.

Kepler-78b não é somente um mundo misterioso; ele é o primeiro planeta do tamanho da Terra, com uma densidade igual à da Terra, conhecido. Kepler-78b é cerca de 20% maior que a Terra, com um diâmetro de 15.000 km e pesa quase o dobro. Disso resulta que ele tem uma densidade semelhante à da Terra, o que, por sua vez, sugere que ele tem uma composição semelhante à da Terra: rochas e ferro.

 IMAGEM: Ilustração comparativa da Terra com o planeta Kepler-78b.

Clique aqui para mais informações.

A órbita apertada de Kepler-78b apresenta mais um desafio aos teóricos. Quando esse sistema planetário estava em formação, a jovem estrela era maior do que é agora. Ou seja, a atual órbita de Kepler-78b ficaria dentro da estrela mais gorda.

“Ele não pode ter se formado nesta posição porque não dá para se formar um planeta dentro de uma estrela. Ele não pode ter se formado mais distante e migrado para dentro, porque, se fosse assim, ele teria acabado mergulhando direto para dentro da estrela. Este planeta é um enigma”, explica Sasselov.

Segundo Latham, Kepler-78b é membro de uma nova classe de planetas recentemente identificados pela espaçonave Kepler da NASA. Esses planetas recentemente encontrados orbitam suas estrela em períodos menores que 12 horas. Eles também são pequenos, com um tamanho próximo do da Terra. Kepler-78b é o primeiro desta classe a ter sua massa medida.

“Kepler-78b é o próprio exemplo dessa nova classe de planetas”, observa Latham.

 IMAGEM: Diagrama ilustrativo da órbita apertada de Kepler-78b em torno de sua estrela.

Clique aqui para mais informações.

A equipe estudou o Kepler-78b usando um espectrografo de alta precisão recentemente posto em funcionamento, o HARPS-North, no Observatório de Roque de los Muchachos em La Palma. Eles coordenaram seu trabalho com outra equipe independente que usou o espectrógrafo HIRES no Observatório Keck. As medições efetuadas por ambas as equipes foram concordantes, o que aumenta a confiabilidade dos resultados.

Kepler-78b é um mundo condenado. As marés gravitacionais vão puxá-lo para mais perto ainda da estrela. Eventualmente, ele vai chegar tão perto que a gravidade da estrela vai rompê-lo em pedaços. Os teóricos predizem que Kepler-78b vai desaparecer nos próximos 3 bilhões de anos.

Curiosamente, nosso sistema solar pode ter tido um planeta como Kepler-78b. Mas, se teve, esse planeta foi destruído há muito tempo e não deixou vestígios para os astrônomos de hoje.

Kepler-78b orbita um estrela semelhante ao Sol, tipo G, localizada a 400 anos-luz da Terra na direção da constelação do Cisne (Cygnus).

 

###

 

Nota do tradutor: o título deste post é um trocadilho com o título do livro de Louis Pauwels e Jacques Bergier, “O planeta das possibilidades impossíveis”, mas nada tem a ver com o assim chamado “realismo fantástico” .

Por que a bateria do seu laptop viciou…


ETH Zurich

Por que as baterias de íon de lítio falham

 IMAGEM: Partículas de um eletrodo de óxido de estanho, passando por mudanças estruturais durante o carregamento (1 a 3) e descarregamento (3 e 4).

Clique aqui para mais informações.

As baterias de íon de lítio estão presentes em nossos telefones celulares, laptops e câmeras digitais. Existem poucos dispositivos eletrônicos portáteis que não dependam dessas fontes de energia. Atualmente, os eletrodos das baterias contém materiais ativos conhecidos como compostos de intercalação. Esses materiais armazenam carga em suas estruturas químicas sem sofrerem uma mudança estrutural substancial. Isto torna essas baterias comparativamente duráveis e seguras. No entanto, esses materiais de intercalação têm uma limitação: a pequena densidade de energia, a quantidade de energia que pode ser armazenada por unidade de volume e massa.

Na procura poe baterias com mais densidade de energia, os cientistas realizaram experiências por mais de 20 anos com materiais capazes de fazerem e desfazerem liga com o lítio repetitivamente. As experiências em escala de laboratório mostraram que baterias feitas com esses materiais possuem densidades de energia muitas vezes superiores às dos materiais de intercalação; no entanto, esses materiais que fazem ligas ainda não são muito empregados pela indústria porque sua duração é limitada. Martin Ebner, estudante de Ph.D. no Laboratório de Nanoeletrônica do Departamento de Tecnologia da Informação e Engenharia Elétrica (D-ITET) explica: “sua capacidade tipicamente se atenua após um par de ciclos carga-descarga”. Isto é atribuído a uma enorme expansão – de até três vezes – do material do eletrodo durante o carregamento. Durante o descarregamento, o material se contrai novamente, mas não volta a seu estado original. As partículas do eletrodo se separam, a estrutura do eletrodo se desintegra e os fragmentos perdem o contato com o restante da célula.

Observando as baterias durante o funcionamento com raios-x

Para compreender melhor a complexa degradação eletroquímica e mecânica do eletrodo, bem como obter novos dados para o desenvolvimento de baterias melhores, Martin Ebner e a Professora Vanessa Wood do ETH, chefe do Laboratório de Nanoeletrônica do D-ITET, perceberam a necessidade de estudar o funcionamento de um eletrodo de bateria com um processo não invasivo. Dessa forma, eles se voltarm para um instrumento de imageamento desenvolvido pelo Professor Marco Stampanoni do ETH. O Professsor Stampanoni, é catedrático no Instituto de Engenharia Biomédica do D-ITET e opera o feixe de raios-x para tomografia microscópica da Fonte de Luz Suíça, a instalação de síncrotron no Instituto Paul Scherrer. A radiação síncrotron de raios-x, de espectro puro e intensa, permite a rápida aquisição de imagens de raios-x de alta definição que podem ser montadas por computação em filmes tridimensionais.

Os pesquisadores observaram o interior da bateria enquanto ela carregava e descarregava ao longo de 15 horas. Com isso conseguiram montar filmes inéditos que registraram os mecanismos de degradação que ocorrem nas baterias e quantificaram os processos que acontecem com cada uma das milhares de partículas dos eletrodos. Os resultados deste estudo serão publicados na Science; uma versão pré-impressão está disponível online na Science Express.

Mudanças estruturais irreversíveis

Os dados mostram que as partículas de óxido de estanho (SnO) se expandem durante o carregamento devido ao influxo de íons de lítio, o que causa um aumento no volume das partículas. Os cientistas demonstram que a litificação acontece em um processo de fora para dentro, que progride da superfície da partícula até seu núcleo. O material que sofre esta reação, se expande linearmente com a carga armazenada. As imagens de raios-x mostram que o carregamento destrói a estrutura da partícula de modo irreversível, formando rachaduras dentro das partículas. “A formação de rachaduras não é aleatória”, enfatiza Ebner. As rachaduras crescem em locais onde a retícula do cristal contém defeitos pré-existentes. Durante o descarregamento, o volume das partículas diminui; entretanto, o material não volta a seu estado original; portanto, o processo não é completamente reversível.

A mudança de volume das partículas individuais acarreta a expansão de todo o eletrodo, de 50 micrômetros até 120 micrômetros. Porém, durante o descarregamento, o eletrodo só se contrai até 80 micrômetros. Esta deformação permanente do eletrodo demonstra que o polímero agregante que une o eletrodo, ainda não está otimizado para materiais de grande expansão volumétrica. Isto é algo crítico para o desempenho de uma bateria, porque a deformação do agregante faz com que as partículas fiquem desconectadas do eletrodo e  bateria perca capacidade.

Além de demonstrar que a microscopia tomográfica por raios-x permite a observação de mudanças morfológicas nas partículas e eletrodos, os pesquisadores demonstraram que esta técnica pode também ser empregada para a obtenção de informações químicas quantitativas e com resolução espacial. Por exemplo, os pesquisadores analisaram a composição química por todo o eletrodo, para procurar por diferenças na dinâmica de litificação ao nível das partículas individuais e comparar isto ao comportamento médio das partículas. Esta abordagem é essencial para a compreensão da influência do tamanho e formato das partículas e a homogeneidade do eletrodo sobre o desempenho da bateria.

Tais vislumbres do funcionamento da bateria não seriam possíveis sem o dispositivo avançado de tomografia com raios-x da Fonte de Luz Suíça. “A visualização das baterias durante o funcionamento era praticamente impossível até os recentes avanços na tomografia por raios-x. Graças às instalações de qualidade mundialmente reconhecidas, desenvolvidas pelo Professor Stampanoni e sua equipe, fomos capazes de observar a bateria funcionando”, acrescenta entusiasticamente Wood.

Alternativas para os materiais cristalinos

Os pesquisadores escolheram o óxido de estanho como material modelo porque ele passa por uma série de transformações complexas, também presentes em outros materiais, o que permite uma compreensão mais profunda do comportamento de vários materiais para baterias. Essas observações fornecem a base para o desenvolvimento de novos materiais para eletrodos e estruturas de eletrodos que sejam tolerantes a expansão volumétrica. Para o Prof. Wood, os resultados de seu trabalho indicam os benefícios do uso de materiais amorfos ou com nano-estrutura, em lugar dos cristalinos. “Na busca por novos materiais, se deve ter em mente que eles só têm interesse para a indústria se puderem ser produzidos em largas quantidades e a baixo custo. Mesmo assim, os materiais amorfos e de nano-estrutura oferecem um campo grande o suficiente para inovações”, enfatiza Wood.

 

###

 

Referencia

Ebner M, Marone F, Stampanoni M, Wood V. Visualization and quantification of electrochemical and mechanical degradation in Lithium ion batteries. Science Express, publicado online em 17 de outubro de 2013.

Novidades acerca das Supernovas

Queen’s University Belfast

Cientistas da Queen’s University lançam novas luzes sobre a morte de estrelas

Estudo sobre supernovas será publicado na Nature em 17 de outubro.

Os astrônomos da Queen’s University lançaram novas luzes sobre as mais raras e mais brilhantes explosões de estrelas jamais descobertas no universo.

Credit: ESO/L.Calçada

Crédito: ESO/L.Calçada

A pesquisa, será publicada na edição de 17 de outubro da Nature – uma das publicações científicas mais prestigiosas do mundo. Ela propõe que as supernovas – estrelas explodidas – mais luminosas são energizadas por estrelas de nêutrons pequenas e incrivelmente densas, com campos magnéticos gigantescos que giram a centenas de vezes por segundo.

Os cientistas do Centro de Pesquisas Astrofísicas da Queen’s observaram duas supernovas super-luminosas – duas das estrelas explodidas mais luminosas do universo – por mais de um ano. Ao contrário das teorias correntes, que sugerem que as supernovas mais brilhantes são causadas pela explosão de estrelas super-massivas, as descobertas sugerem que sua origem pode ser melhor explicada por um tipo de explosão dentro do núcleo da estrela que cria uma estrela magnética menor, porém extremamente densa e que gira muito rápido.

Matt Nicholl, um estudante pesquisador do Centro de Pesquisas de Astrofísica na Escola de Matemática e Física da Queen’s, é o autor principal do artigo. Segundo ele: “As supernovas são vários bilhões de vezes mais brilhantes do que o Sol e, na verdade, são tão brilhantes que os astrônomos amadores as buscam regularmente nas galáxias próximas. Há décadas que se sabe que o calor e a luz dessas supernovas vêm de poderosas ondas de choque e material radioativo”.

“Porém foram recentemente encontradas algumas supernovas muito inusitadas que são brilhantes demais para serem explicadas desse jeito. Elas são centenas de vezes mais brilhantes do que aquelas encontradas ao longo dos últimos 50 anos e a origem de suas propriedades extremadas é algo muito misterioso”.

“Alguns físicos teóricos predisseram que estes tipos de explosão se originavam das maiores estrelas do universo se destruindo de maneira quase igual a uma bomba termonuclear. No entanto, os dados que obtivemos não corroboram essa teoria”.

“Na explosão de uma supernova, as camadas externas da estrela são violentamente ejetadas, enquanto seu núcleo colapsa para formam uma estrela de nêutrons extremamente densa – que pesa o mesmo que o Sol, mas com um diâmetro de poucas dezenas de quilômetros. Acreditamos que, em um pequeno número de casos, a estrela de nêutrons tenha um campo magnético muito forte e que gire incrivelmente rápido – cerca de 300 vezes por segundo. Na medida em que a rotação abranda, ela pode transferir energia da rotação [NT: leia-se: momento angular] para toda a supernova, através do magnetismo, tornando-a muito mais brilhante do que o normal. Os dados que obtivemos concordam com essa previsão quase que exatamente”.

Os astrônomos da Queen’s lideraram uma equipe internacional de cientistas neste estudo, empregando alguns dos telescópios mais poderosos do mundo. Grande parte dos dados coletados o foi com o Pan-STARRS – o Telescópio de Pesquisa Panorâmica e Sistema Rápido de Resposta. Com base no Monte Haleakala no Hawaii, o Pan-STARRS tem a maior câmera digital do mundo e pode cobrir uma área com 40 vezes o tamanho da Lua cheia em uma única foto.

Este estudo é um dos projetos financiados por um fundo de € 2,3 milhões do Conselho de Pesquisas Europeu, administrado pelo Professor Stephen Smartt, Diretor do Centro de Astrofísica da Queen’s, a partir de 2012, para condução de pesquisas internacionais sobre as primeiras supernovas do universo.

O Professor Smartt declarou: “Estas são supernovas realmente especiais. Já que elas são tão brilhantes, podemos usá-las como luzes de navegação no universo muito distante. Como a luz viaja pelo espaço a uma velocidade fixa, à medida em que olhamos mais distante, vemos imagens de um passado constantemente mais distante no tempo. Ao compreendermos os processos que levam a essas estonteantes explosões, podemos sondar o universo tal como ele era logo após seu nascimento. Nossa meta é achar essas supernovas do universo primitivo e observá-las a produzir os primeiros elementos químicos criados no universo”.

Link para o artigo completo na Nature: www.nature.com/nature/journal/v502/n7471/full/nature12569.html

Grafeno já era!… Conheça o Carbyno


Rice University

Nota do tradutor: o nome “Carbyne” em inglês pode ter vários significados. No caso específico, “carbyne” se refere ao (teoricamente possível) poliacetileno (-C≡C-)n e eu chamei de “carbyno”, fazendo um aportuguesamento do termo em inglês, com “y” e tudo.

O tradutor também deseja enfatizar que observou que este “press-release” é exageradamente bombástico, ao descrever uma substância que, apesar de ser teoricamente possível, ainda não foi sintetizada em quantidades suficientes para testar na prática as qualidades apregoadas, e a “American Chemical Society” é chegada a apregoar “progressos” que acabam não dando em nada…

O novo campeão dos Carbonos

Os teóricos da Universidade Rice calculam que as cadeias de carbyno, com um átomo de espessura, pode ser o material mais forte que pode existir

 IMAGEM: Concepção artística da aparência de uma cadeia de carbyno.

Clique aqui para mais informações.

HOUSTON – (9 de outubro de 2013) – O Carbyno será o mais forte de toda uma nova classe de materiais microscópicos, quando e se alguém puder sintetizá-lo em grande escala.

Se conseguirem, vão descobrir que as nano-hastes ou nano-cordas têm uma pletora de propriedades notáveis e úteis, tal como descreve um novo artigo do físico teórico Boris Yakobson, da Universidade Rice, e seu grupo. O artigo será publicado nesta semana na publicação Nano da American Chemical Society.

O Carbyno é uma cadeia de átomos de carbono ligada por ligações, ou duplas, ou, alternadamente, simples e triplas. Isso o faz um material realmente unidimensional, diferentemente das folhas de grafeno, com um único átomo de espessura, que têm um topo e um fundo, ou nano-tubos ocos que têm um lado de dentro e outro de fora.

De acordo com o retrato traçado pelos cálculos de Yakobson e seu grupo:

  • A resistência à tração – a capacidade de suportar o esticamento – supera “a de qualquer outro material conhecido” e é o dobro da do grafeno. (Os cientistas já calcularam que seria necessário um elefante, se equilibrando em cima de um lápis, para perfurar uma folha de grafeno)
  • Seu módulo de elasticidade (Young) é o dobro do grafeno e dos nano-tubos de carbono, e cerca de três vezes o do diamante.
  • Esticar o carbyno tão pouco como 10%, altera sua banda proibida (electronic band gap) significativamente.
  • Se for dotado de alças moleculares em suas extremidades, também pode ser torcido para alterar sua banda proibida. Com uma rotação de 90 graus, ele se torna um semi-condutor magnético.
  • Cadeias de carbyno podem receber moléculas colaterais, o que pode torná-las capazes de armazenar energia.
  • O material é estável a temperatura ambiente, resistindo bem à reticulação com cadeias próximas.

Isto é um notável conjunto de qualidades para uma simples cadeia de átomos de carono, como diz Yakobson.

“Se pode encará-lo como uma fita de grafeno extremamente fina, reduzida a um único átomo, ou um nano-tubo extremamente fino”, diz Yakobson. Poderia ser útil para sistemas nano-mecânicos, em dispositivos spintrônicos, como sensores, como materiais leves e fortes para aplicações mecânicas, ou para armazenagem de energia.

“Quaisquer que sejam as aplicações”, prossegue ele, “em termos acadêmicos é muito instigante conhecer a mais forte molécula possível”.

Com base nos cálculos, ele declara que o carbyno pode ser o mais alto estado de energia possível para o carbono estável. “Usualmente nos preocupamos em encontrar o “estado fundamental“, a configuração de átomos com a menor energia possível”, explica Yakobson. “No caso do carbono, este seria a grafite, seguida pelo diamante, nano-tubos e, por fim, fulerenos. Porém, ninguém se pergunta sobre a mais alta configuração de energia. Acreditamos que esta possa sê-lo, uma estrutura estável com a maior energia possível”.

As teorias sobre o carbyno começaram a aparecer no século XIX e a primeira tentativa de sintetizá-lo foi feita na URSS em 1960. Desde então, o carbyno tem sido observado em grafite comprimida, foi detectado em poeira interestelar e foi criado em pequenas quantidades pelos cientistas experimentais.

“Eu sempre me interessei pela estabilidade de fios ou qualquer outra coisa extremamente finos, e o quão fina uma haste se pode fazer com uma determinada substância química”, diz Yakobson. “Nós publicamos um artigo, há 10 anos, sobre silício, no qual explorávamos o que acontece com um nano-fio de silício na medida em que fica mais fino. Para mim, isto era apenas parte da mesma pergunta”.

Os pesquisadores da Rice, sob a liderança do estudante de pós-graduação Mingjie Liu e o pesquisador pós-doutorado Vasilii Artyukhov, tinham conhecimento de vários artigos que descreviam uma ou outra propriedade do carbyno. Eles se dispuseram a detalhar o  carbyno com modelos de computação, usando regras de lógica de primeira ordem pra estabelecer as interações energéticas dos átomos, segundo Artyukhov.

 IMAGEM: Nano-cordas ou nano-hastes de carbyno, uma cadeia de átomos de carbono, seriam mais fortes do que o carbeno ou o diamante (se puderem ser manufaturadas).

Clique aqui para mais informações.

“Nossa intenção era reunir tudo, construir um quadro mecânico completo do carbyno como material”, disse Artyukhov. “O fato dele ter sido observado nos diz que ele ao menos é estável sob tensão, senão simplesmente teria sido destruído”.

Yakobson diz que os pesquisadores ficaram surpresos em encontrar uma fixa proibida no carbyno tão sensível à torção. “Ele vai ser útil como um sensor para torção ou campos magnéticos, se conseguirmos um meio de fixá-lo a alguma coisa que o faça se enrolar”, diz ele. “Nós não estávamos procurando especificamente por isto; foi algo que surgiu como um produto colateral”.

“Isso é o que é bom em estudar as coisas cuidadosamente”, acrescenta Artyukhov.

Outra descoberta de grande interesse é a barreira de energia que impede os átomos em cadeias de carbono adjacentes de colapsarem umas sobre as outras. “Quando se fala de material teórico, é sempre bom ser cuidadoso para verificar se ele reage com ele próprio”, diz Artyukhov. “Isto nunca tinha sido realmente investigado para o carbyno”.

A literatura parecia indicar que o carbyno “não era estável e se desfaria em grafite ou fuligem”, diz ele.

Ao contrário, os pesquisadores descobriram que os átomos de carbono em cadeias separadas poderiam sobrepujar a barreira em um ponto, mas a rigidez das hastes iria impedir que elas se juntassem em outro local, ao menos em temperatura ambiente. “Iriam ficar parecidas com asas de borboleta”, disse Artyukhov.

“Novelos poderiam ficar grudados, mas não colapsariam inteiramente”, acrescenta Yakobson. “Isso poderia criar uma rede, altamente porosa e randômica, que poderia ser boa para adsorção”. Artyukhov diz que a área específica do carbyno é cerca de cinco vezes a do grafeno.

[Nota do tradutor: Alerta para hype escandaloso!] Quando o artigo da equipe ficou disponível neste verão nos arXiv, os noticiários científicos e mesmo alguns noticiários populares ficaram tão entusiasmados com os cálculos que começaram a especular sobre o artigo e suas implicações, antes que a equipe o submetesse à revisão por pares. Agora que o artigo inteiro está pronto para a publicação, os pesquisadores dizem que vão levar suas investigações em novas direções.

Eles estão examinando mais rigorosamente a condutividade do carbyno e cogitando também sobre outros elementos. “Conversamos sobre examinarmos diferentes elementos da tabela periódica para ver se alguns deles podem formar cadeias unidimensionais”, disse Yakobson.

 

###

 

O estudante de pós-graduação da Rice, Fangbo Xu e o ex-pesquisador pós-doutorado, Hoonkyung Lee, agora professor da Universidade Konkuk na Coréia do Sul, são os co-autores do artigo.

Extrato do artigo em http://pubs.acs.org/doi/abs/10.1021/nn404177r

O prêmio Nobel de Física de 2013

Photobucket

Foto de Englert: Pnicolet via Wikimedia Commons | Foto de Higgs: G-M Greuel via Wikimedia Commons | Imagem composta por Lalena Lancaster

Comitê do Nobel também menciona os experimentos do Large Hadron Collider como confirmação da partícula de Higgs.

8 de outubro de 2013
Por: 

Ben P. Stein, Diretor do Inside Science

(ISNS) – O Prêmio Nobel de Física de 2013 foi concedido ao cientista belga François Englert e ao cientista britânico Peter W. Higgs “pela descoberta teórica de um mecanismo que contribui para nossa compreensão da origem da massa das partículas subatômicas e que foi recentemente confirmado pela descoberta da partícula fundamental prevista, pelos experimentos ATLAS e CMS do Large Hadron Collider do CERN”.

Em 1964, Englert, em conjunto com um colega já falecido, Robert Brout, e Higgs publicaram, independentemente, artigos que davam uma explicação sobre como algumas partículas subatômicas, tais como elétrons e quarks, adquirem massa. Segundo seu trabalho teórico, essas partículas intergiriam com um campo invisível, existente no universo, agora conhecido como o Mecanismo de Higgs, para adquirirem suas massas. Em 4 de julho de 2012, dois grupos de pesquisas no Large Hadron Collider (LHC), no laboratório do CERN de física de partículas na Europa anunciaram a detecção de uma partícula que, como mais tarde foi confirmado, vem desse campo invisível.

“Ambos [os teóricos] fizeram uma contribuição para a explicação da origem da massa e estas contribuições não podem ser individualizadas. Afinal, o que eles fizeram foi essencial para o Modelo Padrão da Física de Partículas”, declarou Olga Botner, da Universidade de Uppsala na Suécia, ao anunciar o prêmio.

“Não surpresa alguma”, comento Drew Baden, um físico da Universidade de Maryland, em College Park, “e é uma história realmente interessante”.

Há cinquenta anos, os físicos enfrentavam um enorme problema. Eles sabiam que o universo era composto por partículas fundamentais, tais como elétrons, prótons e nêutrons, que serviam como peças para a montagem da matéria. Estas partículas eram governadas por forças, tais como o eletromagnetismo, que as punham em movimento. Entretanto, este Modelo Padrão da física de partículas tinha sérias limitações. Ele não podia explicar porque alguns objetos — tais como os elétrons — tinham massa e outros, tais como os fótons, não tinham. Pelo Modelo Padrão de 1963, nada teria massa e zuniria pelo universo afora na velocidade da luz. Não seria possível a formação de átomos e moléculas e as estrelas, planetas, galáxias e as pessoas não poderiam existir.

É aí que entra em cena um grupo de teóricos — físicos que pretendem descrever a natureza através da matemática — para resolver o problema de porque certas partículas no universo têm massa, enquanto outras não.

A resposta veio com a percepção de que o universo está imerso em campos. Por exemplo, o campo eletromagnético permeia o espaço e faz com que objetos com carga positiva sejam atraídos por outros com carga negativa. As forças eletromagnéticas são exercidas entre os objetos através da troca de fótons.

Na década de 1960, vários teóricos descobriram independentemente que tinham a solução para o enigma das massas para o Modelo Padrão. A solução que eles apresentaram envolvia a existência de outro campo invisível, agora conhecido como Campo de Higgs. Algumas partículas, tais como os fótons, não são afetadas por ele enquanto o atravessam. Outras, tais como os elétrons, experimentam uma resistência a seu movimento, ou inércia, o que lhes confere massa.

“Até a descoberta do Higgs, não havia um fiapo de indício experimental”, comenta Baden, um físico da equipe do CMS no LHC. Em lugar disso, segundo ele, o conceito todo veio de uma solução matemática para um problema, que mostrava como as partículas poderiam adquirir massa.

Vários teóricos descobriram a solução de Higgs. Primeiro, Englert e seu colega Brout, publicaram um artigo que previa esse campo invisível. Peter Higgs, de maneira independente, publicou um artigo que previa que uma partícula, que veio a ser denominada Bóson de Higgs, poderia ser emitida pelo campo, tal como os fótons são emitidos pelo campo eletromagnético. Outro grupo de teóricos, Gerald Guralnik, C. Richard Hagen e Tom Kibble, porteriormente publicaram independentemente um artigo que predizia o mesmo mecanismo.

Baden disse que a premiação simultânea para Englert e Higgs “uma solução de compromisso muito bonita”, assim como o reconhecimento dos experimentais do LHC que detectaram a partícula. Englert e Higgs “puseram a bola em movimento” quanto à ideia da existência de um campo invisível que permeia o espaço.

Ao longo de décadas, o Higgs permaneceu como a peça que faltava no Modelo Padrão. Ele explciava porque algumas partículas fundamentais tinham massa. No entanto, ele era incrivelmente difícil de detectar. Segundo as previsões, o próprio Higgs tinha massa. E ele era muito pesado, muito mais pesado do que qualquer outra partícula fundamental até então detectada. Para extrair uma partícula do campo de Higgs é necessária uma enorme quantidade de energia.

Somente depois da construção pelo CERN do LHC que os físicos puderam extrair de modo confiável as partículas de Higgs desse campo invisível. O LHC começou a funcionar em 2008.

O LHC acelera feixes de 500 trilhões de prótons — as partículas positivamente carregadas do núcleo dos átomos — até 99,99999 % da velocidade da luz, ou seja, uma energia de 4 teraeletron-volts, ou TeV. É o equivalente à energia de um trem em  disparada, concentrada em um raio de prótons subatômicos. O LHC esmaga dois desses feixes, um de encontro ao outro, para criar jorros de partículas. A famosa equação de Einstein, E=mc², diz que a energia pode ser convertida em massa e vice versa. A partir da pura energia dessa colisão, podem emergir novas partículas, totalmente diferentes dos prótons iniciais.

Em 4 de julho de 2012, os físicos das duas colaborações experimentais do LHC, ATLAS e CMS, anunciaram que tinham confirmado a existência de uma partícula parecida com o previsto Higgs. Sua massa aproximada era de 125 gigaelectron volts, ou GeV, muito maior do que qualquer outra partícula fundamental e cerca de 100 vezes mais pesada do que um próton. Durante o último ano, os cientistas confirmaram que  partículas observada era mesmo o Higgs. Dados anteriores, obtidos pelo acelerador Tevatron do Laboratório Nacional Fermi, também confirmavam alguns indícios da existência desta partícula.

Porém, com a confirmação do Higgs, os enigmas do universo estão longe de estarem solucionados. Embora o Higgs possa ser a última peça principal do Modelo Padrão, os físicos entendem que o Modelo Padrão ainda está incompleto. Por exemplo, ele só descreve três das quatro forças fundamentais do universo e deixa de fora a gravidade.

“Em minha opinião, o principal e mais fundamental problema ainda não resolvido, apesar de alguns progressos, é o problema da gravidade quântica, a quantização da gravidade”, declarou Englert, em uma coletiva de imprensa, imediatamente após o anúncio do Prêmio Nobel de 2013.

Englert também lembrou as questões da supersimetria, matéria escura e energia escura, mistérios que ainda estão por resolver.

O Modelo Padrão somente descreve a matéria comum do universo, o que agora se supõe compreender apenas um quinto da matéria existente no universo. Ele não prevê a matéria escura invisível, nem a energia escura, que foram o objeto do Prêmio Nobel de Física em 2011.

Peter Higgs não foi entrevistado quando do anúncio do Nobel por estar em gozo de férias.

Então, os teóricos e experimentalistas continuam com um monte de questões para responder. As soluções para essas questões provavelmente serão objetos dos próximos Prêmios Nobel de Física.


Ben P. Stein, diretor do Inside Science, vem cobrindo a física como escritor de ciências e editor desde 1991.

Um novo tipo de microscópio: Microscópio de Nêutrons

Massachusetts Institute of Technology

Novo tipo de microscópio usa nêutrons

Dispositivo pode abrir novas áreas de pesquisa de materiais e de amostras biológicas em pequeníssimas escalas

Original em inglês por: David L. Chandler, MIT News Office
4 de outubro de 2013
 

New kind of microscope uses neutrons

O pequeno protótipo de microscópio de nêutrons da equipe, pronto para os testes iniciais no Laboratório do Reator Nuclear do MIT. Os espelhos do microscópio ficam dentro da pequena caixa de metal, acima e à direita.

FOTO CORTESIA DOS PESQUISADORES (CLIQUE PARA AMPLIAR)

Pesquisadores do MIT, em conjunto com seus parceiros da NASA, desenvolveram um novo conceito para um microscópio que usará nêutrons — partículas subatômicas sem carga elétrica — em lugar de feixes de luz ou de elétrons, para criar imagens de alta resolução.

Entre outras características,  os instrumentos com base em nêutrons têm a capacidade de sondar o interior de objetos metálicos — tais como células combustíveis, baterias e motores, mesmo com estes em funcionamento — para aprender detalhes de sua estrutura interna. Os instrumentos de nêutrons também são peculiarmente sensíveis às propriedades magnéticas e aos elementos mais leves que são importantes em materiais biológicos.

O novo conceito foi delineado em uma série de artigos de pesquisas, neste ano, inclusive um publicado nesta semana em Nature Communications  por Dazhi Liu, pesquisador pós-doutorado do MIT, Boris Khaykovich, cientista pesquisador, professor David Moncton e quatro outros.

Moncton, um professor adjunto de física de diretor do Laboratório do Reator Nuclear do MIT, diz que foi Khaykovich quem propôs em primeiro lugar a ideia de adaptar um conceito já com 60 anos de focalizar raios-X com o uso de espelhos, para o desafio de construir um microscópio de nêutrons de alto desempenho. Até agora, a maioria dos instrumentos de nêutrons eram semelhantes a uma câmera pinhole: sistemas grosseiros de imageamento que apenas deixavam a luz passar através de um pequeno orifício. Sem eficientes componentes ópticos, tais dispositivos produziam imagens fracas com pouca resolução.

Além do pinhole

“Para os nêutrons, não havia dispositivos de focalização de alta qualidade”, prossegue Moncton. “Essencialmente todos os instrumentos de nêutrons, desenvolvidos ao longo de meio século, eram efetivamente câmeras pinhole”. Com relação a este novo avanço, diz ele que “Estamos levando o campo de imageamento com nêutrons das câmeras pinhole para uma era de genuína óptica”.

“O novo dispositivo de espelhos funciona como a lente formadora de imagens de um microscópio óptico”, acrescenta Liu.

Uma vez que os nêutrons interagem minimamente com a matéria, é difícil focalizar feixes deles para criar um telescópio ou microscópio. No entanto, em 1952 Hans Wolter propôs um conceito básico para raios-X, que foi mais tarde desenvolvido, sob os auspícios da NASA, para telescópios tais como o Observatório Espacial Chandra de Raios-X (projetado e gerenciado pelos cientistas do MIT). Feixes de nêutrons interagem fracamente, de forma muito semelhantes aos raios-X, e podem ser focalizados por um sistema óptico similar.

É um fato bem conhecido que a luz pode ser refletida por superfícies normalmente não refletivas, contanto que incidam sobre tal superfície em um ângulo bem aberto; isto é o princípio físico básico por trás das miragens dos desertos. Usando o mesmo princípio, espelhos com certos revestimentos podem refletir nêutrons incidentes em ângulos abertos.

Um dispositivo menor e mais preciso

O instrumento atual emprega vários cilindros refletores, aninhados um no interior do outro, de forma a aumentar a área de superfície disponível para a reflexão. O dispositivo resultante pode melhorar o desempenho dos sistemas de imageamento por nêutrons existentes por um fator de cerca de 50, segundo os pesquisadores — o que permite imagens mais nítidas, instrumentos muito menores, ou ambas as coisas.

A equipe primeiro projetou e otimizou o conceito digitalmente, então fabricou um pequeno instrumento de teste como prova-de-conceito, e demonstrou seu desempenho, usando uma instalação de feixe de nêutrons no Laboratório do Reator Nuclear do MIT. Trabalhos posteriores que necessitavam de um espectro de energias de nêutrons diferente, foram realizados no Laboratório Nacional Oak Ridge (ORNL) e no Instituto Nacional de Padrões e Tecnologia (NIST).

Um tal instrumento poderia ser usado para observar e caracterizar vários tipos de materiais e amostras biológicas; outros processos, não geradores de imagens, que exploram a dispersão de nêutrons, poderiam ser também beneficiados. Uma vez que os feixes de nêutrons têm energia relativamente baixa, eles são “uma sonda de dispersão muito mais sensível”, segundo Moncton, para fenômenos tais como “de que forma os átomos ou os momentos magnéticos se movem dentro de um material”.

Os pesquisadores planejam, a seguir, a construção de um sistema otimizado de microscopia a nêutrons em colaboração com o NIST, que já dispõe de uma grande instalação de pesquisas com feixes de nêutrons. Este novo instrumento deve custar uns poucos milhões de dólares.

Moncton sublinha o fato de que um recente avanço importante neste campo foi a construção de uma instalação de US$ 1,4 bilhões que provê um aumento de dez vezes no fluxo de nêutrons. “Dado o custo da produção dos feixes de nêutrons, é essencial equipá-los com o sistema óptico mais eficiente possível”.

Roger Pynn, um cientista de materiais da Universidade da Califórnia em Santa Barbara, que não esteve envolvido nesta pesquisa, diz que “Eu esperava que isso levasse a algumas grandes novidades no imageamento por nêutrons… Isso apresenta o potencial para algumas aplicações realmente novas da dispersão de nêutrons — algo que não é visto há algum tempo”.

Além dos pesquisadores do MIT, a equipe inclui Mikhail Gubarev e Brian Ramsey do Centro Marshall de Voo Espacial da NASA, e Lee Robertson e Lowell Crow do ORNL. O trabalho foi financiado pelo Departamento de Energia do Governo dos EUA.

Sobre ScienceBlogs Brasil | Anuncie com ScienceBlogs Brasil | Política de Privacidade | Termos e Condições | Contato


ScienceBlogs por Seed Media Group. Group. ©2006-2011 Seed Media Group LLC. Todos direitos garantidos.


Páginas da Seed Media Group Seed Media Group | ScienceBlogs | SEEDMAGAZINE.COM