Uma gota de determinismo para a física quântica (mas, será mesmo?…)

Gotas causando ondulaçõess. Cortesia Shutterstock

Gotas causando ondulações.

Imagem cortesia de Shutterstock

Uma das coisas mais abracadabrantes para nós leigos é a tal “dualidade onda-partícula“. Um raio de um elétron parece estar em todos os lugares (na verdade não é mesmo “em todos os lugares”; apenas “em qualquer lugar de um determinado volume de espaço-tempo) enquanto ninguém está olhando, se comportando como uma onda (descrita por equações que definem o tal volume definido de espaço-tempo).

Mas basta você observar (entenda-se: “fazer uma medição”) o tal elétron e ele se comporta como um corpúsculo com carga elétrica, momento, momento angular e tal e coisa… Os budistas sustentam que “tudo é ilusão e impermanente”, mas isso já levar as coisas para o lado do misticismo. Além do que, experimente por sua mão em um fio “vivo” e desencapado que os elétrons vão mostrar para você que são bem reais e dolorosos.

No entanto, eu aprendi em meu curso secundário que esta tal dualidade onda-partícula foi uma ideia sugerida pelo físico francês Louis de Broglie e mais tarde, lendo um livro do próprio de Broglie sobre o assunto, ele meio que assume a paternidade deste abracadabra. Só que não é exatamente verdade que de Broglie julgasse que elétrons e outros “bixos” fossem mesmo ora onda, ora partícula. Ele, na verdade, propunha que as partículas andavam à deriva sobre as ondas do campo correspondente (o que implicava na existência de “variáveis ocultas”), algo assim como escolhos à deriva sobre as ondas do mar (é sempre bom lembrar que as ondas do mar são algo bidimensional e as ondas dos campos das forças fundamentais são tri(tetra)dimensionais).

Ao fim de muita discussão, prevaleceu o que se chama de “Interpretação de Copenhagen”, formulada por Niels Bohr e Werner Heisenberg que, em suma, diz que uma partícula é apenas uma probabilidade até que interaja com outra, quando passa por um “colapso da função de onda”. Essa interpretação levou a algumas críticas fortes – a mais conhecida é o “Gato de Schrödinger”, onde o gato está vivo e morto ao mesmo tempo, enquanto não se abrir a caixa – mas uma suposta “prova”, encontrada por John von Neumann, da impossibilidade de existirem “variáveis ocultas”, foi alegremente aceita, sem maiores exames (mais de 30 anos depois, descobriram que von Neumann estava errado, mas azeite, azar, azia…).

Em 1952 o Físico David Bohm ressuscitou a teoria das ondas-piloto, mas a comunidade da física não recebeu muito bem suas propostas. Afinal, a Equação de Schrödinger funciona muito bem e a Mecânica proposta por Bohm pressupõe que o comportamento das partículas é influenciado, ao fim e ao cabo, por todo o universo (o que parece misticismo e, com efeito, foi alegremente recebido por diversos místicos).

A famosa “dupla-fenda”

Experiência da dupla fenda. Imagem de Wikimedia Commons. (por Lookang com agradecimentos a Fu-Kwun Hwang e o autor do Easy Java Simulation = Francisco Esquembre).

Uma famosa “prova” da dualidade onda-partícula é a “dupla fenda“. Um feixe de elétrons é disparado contra uma antepara onde há duas fendas que permitem que alguns elétrons passem e, depois, se choquem contra uma tela sensível. Imediatamente se forma um padrão de interferência, como se ondas se reforçassem ou anulassem mutuamente. Mas, quando se cria um dispositivo para identificar a fenda por onde os elétrons passaram, o padrão de interferência desaparece.

Bom… A “pegadinha” é que se trata de um feixe de elétrons, não de um elétron isolado. A ideia de que “o elétron interfere com ele próprio” é “licença poética”. As ondas dos lugares geométricos, definidos pela equação de onda do elétron é que interferem entre si. Quando se identifica a fenda por onde passa cada elétron, na verdade você está interceptando o feixe e, é óbvio, não há mais “onda” alguma; há partículas.

O mesmo tipo de experimento funciona com fótons (e isso vai causar um probleminha para a novidade descrita a seguir).

Uma gota “quântica”

Agora, pesquisadores em Paris realizaram uma série de experiências fazendo vibrar uma superfície banhada com óleo de silício e descobriram que, em uma frequência particular, uma gotícula começa a saltar pela superfície do óleo. E que a trajetória dessa gotícula é guiada pelo contorno ondulado do banho, gerado pelas ondas causadas pela própria gotícula: uma interação entre onda e partícula muito semelhante àquilo proposto por de Broglie e suas ondas-piloto.

Na interpretação de de Broglie – Bohm, cada elétron passa através de uma única fenda, carregada por uma onda-piloto que – ela sim – passa pelas duas fendas ao mesmo tempo. Tal como uma série de escolhos levados a uma praia pelas ondas do mar que tivessem que, antes de chegar à praia, passar por uma barreira com duas fendas. Cada um dos objetos flutuantes passaria por apenas uma das fendas e iriam se distribuir, depois delas, segundo o padrão de interferência dessas ondas.

Os resultados finais são os mesmos: a Mecânica de Bohm é tão capaz de prever onde cada elétron vai passar como a Mecânica Quântica “Tradicional” (ou seja: não é capaz). A distribuição dos efeitos é sempre uma função estatística.

As gotículas também parecem capazes de reproduzir o “Efeito de Túnel“, formarem “Partículas Compostas“, em órbitas mutuamente estáveis, e exibir comportamentos análogos ao spin quântico e à atração eletromagnética. Quando confinadas a “currais” (áreas circulares cercadas), formam anéis concêntricos muito semelhantes às ondas estacionárias geradas por elétrons confinados em “currais quânticos”.

A coincidência das ondas estacionárias é surpreendente, não é mesmo?

Eu adorei a ideia de poder imaginar as partículas subatômicas como verdadeiras partículas, surfando sobre as ondas do espaço-tempo causadas pelos campos fundamentais.

Só que me dei conta que, no caso do fóton, a própria onda é a “partícula”. E lá se foram pelo ralo todas as lindas analogias…


Fonte: Fluid Tests Hint at Concrete Quantum Reality, Quanta Magazine; também publicado na Wired com o título Have We Been Interpreting Quantum Mechanics Wrong This Whole Time?

Gotículas líquidas dão pistas sobre comportamentos quânticos

Photobucket
Traduzido de: Liquid Droplets Reveal Clues To Quantum Behavior

Uma gota de fluido, ao atingir a superfície de um banho fluido, produz ondas que, por sua vez, impelem a gotícula ao longo do banho. Crédito da imagem: Dan Harris (licença de uso da Creative Commons)

Uma experiência que pode revelar os detalhes de pequena escala do universo.

Original publicado em: 2 de agosto de 2013
Por: Charles Q. Choi, Contribudor do ISNS 
(ISNS) — Depois que uma gotícula cai em um recipiente de fluido sob vibração, o que ela faz a seguir pode ajudar a resolver mistérios fundamentais da física quântica. Agora os cientistas mapearam o comportamento dessas gotículas em maior detalhe do que jamais conseguido e descobriram que elas podem se mover de novos jeitos.
Se um recipiente de fluido vibrar com pouca intensidade, a gotícula que cai nele simplesmente desaparece no líquido. No entanto, se a vibração tiver a vibração exata, a gotícula pode quicar no mesmo lugar ou mesmo percorrer a superfície do fluido. Ela pode até se comportar de modo ainda mais bizarro. Dependendo de como o líquido for agitado, ela pode mudar regularmente o tamanho de seus saltos, ou ziguezaguear de maneira imprevisível.
Cada vez mais os cientistas descobrem que o comportamento desconcertante dessas gotículas peripatéticas imita estranhos efeitos que só foram observados anteriormente em nível microscópico no domínio quântico, onde os objetos podem aparentemente existir em dois ou mais lugares ao mesmo tempo, ou girar em duas direções opostas simultaneamente.
Por exemplo, uma das famosas descobertas da física quântica é que as partículas, que seria de se esperar que agissem como bolas de bilhar, podem se comportar como ondas que se poderia observar em um laguinho. Se uma onda que viaja na superfície da água, encontrar uma barreira com duas fendas, é possível que, do outro lado da barreira, surjam duas ondas, criando uma série de ondulações conhecidas como um padrão de interferência. Elétrons e outras partículas quânticas que atinjam uma tela com dois orifícios nela, vão gerar padrões de interferência semelhantes, se comportando essencialmente tanto como uma partícula, como uma onda em diferentes partes de seu caminho.
Acontece que as ondulações geradas por uma gotícula, quando elas passam por fendas em barreiras submersas em um recipiente de fluido sob vibração, recriam o mesmo padrão de ondas. “De uma certa forma ela se comporta como uma partícula, de outra forma, como uma onda”, declara o pesquisador John Bush, um professor de matemática aplicada e dinâmica de fluidos do Instituto de Tecnologia de Massachusetts (Massachusetts Institute of Technology = MIT).
O jeito com o qual essas gotículas se comportam corresponde a uma tentativa, por muito tempo negligenciada, para explicar o comportamento ondulatório das partículas quânticas. Nos primórdios da física quântica, o físico francês Louis de Broglie sugeriu que as partículas quânticas eram transportadas por ondas-guia de algum tipo, tal como uma boia o é pela maré. Mas como não foi descoberto qualquer exemplo físico para a assim chamada teoria da onda-guia, ela foi quase inteiramente abandonada — até o aparecimento dessas gotículas saltitantes e fluidos sob vibração, descobertos em 2005 pelo físico francês Yves Couder, o primeiro exemplo real da teoria da onda-guia, desde sua proposição, há mais de 80 anos, segundo Bush.
Estas recentes descobertas podem reacender a questão sobre se existe um fundamento secreto para a física quântica. Sistemas de ondas-guia são caóticos, assim como os sistemas meteorológicos – eles são sensíveis a perturbações de uma forma que pode fazê-los se comportarem de maneira probabilística, igual às partículas quânticas.
“Se os sistemas de ondas-guia puder reproduzir os mistérios da mecânica quântica com uma dinâmica observável, existe a possibilidade de que eles possam fornecer pistas sobre como a dinâmica pode funcionar na escala quântica”, declara Bush.
Agora Bush e seus colegas realizaram a análise mais detalhada até hoje de como as gotículas quicam e caminham em fluidos vibrantes. Eles também descobriram, inesperadamente, um novo tipo exótico de gotícula caminhante: aquelas com um passo variável, onde as velocidades com as quais quicam para cima e para baixo.
Os cientistas exploraram como gotículas de diferentes tamanhos e viscosidades – seu nível de resistência ao fluxo – se comportavam em fluido vibrado em frequências variantes. O dispositivo experimental compreendia um prato circular, cheio de óleo de silicone, agitado na vertical por um vibrador industrial. As gotículas, com tamanhos variando de 400 a 1000 mícrons — ou seja, de 4 a 10 vezes o tamanho médio de um cabelo humano — foram criadas mergulhando-se rapidamente uma agulha no fluido. E câmeras de alta velocidade ajudaram a medir o tamanho das gotículas e registrar seu comportamento.
“As experiências eram extremamente delicadas, sensíveis a vibrações de origem externa”, comenta Bush. “Nós temíamos os efeitos da passagem dos trens do metrô”.
Ainda é algo incerto o que as descobertas dos pesquisadores podem revelar, embora os resultados estejam encorpando os modelos teóricos que Bush e seus colegas desenvolveram para descrever o comportamento dessas gotículas. Seus trabalhos podem melhorar as chances de descobrir análogos líquidos ao domínio quântico, segundo Bush. As descobertas de suas recentes pesquisas foram detalhadas em um trio de artigos a serem publicados em agosto, dois deles em Journal of Fluid Mechanics  e o terceiro em Physics of Fluids.
“Agora dispomos de todo um novo enfoque para o problema de descrever o domínio quântico”, declarou o físico teórico Antony Valentini da Universidade Clemson na Carolina do Sul, que não participou deste estudo.
“Esses modelos analógicos certamente vão sugerir novas ideias teóricas, assim como nos inspirar a repensar as ideias originais de de Broglie dos anos 1920. Os modelos provavelmente também vão sugerir novas maneiras de resolver a mecânica quântica, assim como o quanto a teoria quântica pode ser modificada”.

Charles Q. Choi é um escritor de ciências freelance da Cidade de Nova York, que já escreveu para o The New York Times, Scientific American, Wired, Science, Nature  e várias outras publicações.

Sobre ScienceBlogs Brasil | Anuncie com ScienceBlogs Brasil | Política de Privacidade | Termos e Condições | Contato


ScienceBlogs por Seed Media Group. Group. ©2006-2011 Seed Media Group LLC. Todos direitos garantidos.


Páginas da Seed Media Group Seed Media Group | ScienceBlogs | SEEDMAGAZINE.COM