Sondando a expansão do universo

Inside Science News Service

Link para o original: Astrophysics Probe Expansion Of The Universe

smiling-nebulae_top

Galáxias distorcidas por lentes gravitacionais aparecem nesta imagem do Telescópio Espacial Hubble. Crédito da Imagem: NASA/ESA

Imagens de galáxias distorcidas são um novo recurso para o estudo da matéria escura e da energia escura.

25 de abril de 2015.
Autor: Ramin Skibba, Contribuidor do ISNS.

(Inside Science) – O universo é cheio de galáxias, mas a gravidade distorce as imagens que obtemos delas. Os astrofísicos da Dark Energy Survey criaram catálogos gigantescos dos formatos distorcidos de 24 milhões de galáxias distantes, tornando possível uma sondagem da estrutura subjacente do universo em rápida expansão.

Os cientistas da Dark Energy Survey investigaram a “rede cósmica” de galáxias no mínimo tão grandes quanto a Via Láctea — assim como os aglomerados ocultos de matéria escura. Suas descobertas foram apresentadas no encontro de 17 de abril da American Physical Society em Salt Lake City.

A matéria escura não pode ser vista diretamente, entretanto, tal como um animal pode inferir a existência de um predador ao ver sua sombra, os astrofísicos inferem a distribuição da matéria escura pela detecção de seus efeitos gravitacionais. Segundo a Teoria da Relatividade de Einstein, um objeto massivo pode distorcer a tessitura do espaço-tempo, desviando a trajetória dos raios de luz que emanam de galáxias no fundo, apliando e distorcendo as imagens.

Existe entre cinco e seis vezes mais matéria escura do que matéria comum que inclui galáxias, estrelas, nebulosas e planetas. Porém, uma rede de aglomerados de matéria escura preenche o universo, o que faz com que, se olharmos para longe o bastante, poderemos observar suas “lentes cósmicas” em qualquer direção. O efeito dessas lentes é extremamente pequeno, mas colete-se um número suficiente de imagens e os cientistas serão capazes de realizar estudos estatísticos sobre elas. Os astronomos da DES acabam de fazer exatamente isto. Eles bisbilhotaram milhões de gigabytes de dados e produziram um mapa preliminar da localização de 24 milhões de galáxias, indicando as regiões mais densamente povoadas com galáxias, cada uma delas com centenas de bilhões de estrelas.

“Eu nem consigo descrever como esse mapa é fabuloso”, declarou Michael Troxel, astrofísico da Universidade de Manchester, no Reino Unido, e membro da colaboração.

Troxel e seus colegas agora estão usando este mapa detalhado das galáxias distorcidas para reconstruir a armação da matéria escura do universo. Durante este processo, eles panejam fazer i maior mapa da distribuição da matéria escura já feito. Sua meta é completar o projeto até o final de 2016.

Seu levantamento de cinco anos, começado em 2013, usa a câmera de 570 megapixels montada no Telescópio Blanco de 4 metros nas montanhas do Norte do Chile. A colaboração inclui mais de 400 cientistas de sete apíses. Ao final, eles terão mapeado um oitavo do céu  noturno.

Além do estudo da distribuição de galáxias, Troxel e seus colegas também compararam seus mapas com as medições da radiação deixada pelo Big Bang, chamada de Fundo Cósmico de Micro-ondas que é medido pelo Telescópio do Polo Sul e pelo satélite Planck. Isto permite aos cientistas examinarem as conexões entre o universo primevo e as galáxias que vemos hoje.

Em particular, eles buscam medir a taxa de expansão do universo da maneira mais precisa possível. Não desmentindo seu nome, a Dark Energy Survey está sendo usada para determinar como a misteriosa “energia escura” está acelerando esta expansão. Segundo Troxel, até agora suas descobertas estão consistentes com aquelas obtidas por outros astrofísicos que usam o satélite Planck.

Mas eles ainda estão preocupados com incertezas que podem dar um viés a suas conclusões. “Nós não temos controle sobre o tempo ou a atmosfera”, argumentou o astrofísico da New York University Boris Leistedt, outro membro da colaboração. Segundo ele, é um ponto crítico controlar esses efeitos e se assegurar que os dados não sejam afetados pelos mesmos.

Seu colega, Ravi Gupta do Argonne National Laboratory, concorda. Segundo ele, “esta nova era de cosmologia de precisão apresenta novos desafios”.

Gupta não estuda galáxias, mas supenovas, as explosões de estelas moribundas, as quais as sensíveis câmeras da DES também capturam. Uma vez que tenham compreendido o quão luminosas essas explosões deveriam ser, cada vez que virem uma supernova nascer, eles poderão estimar o quão distante ela está e isto dá uma nova ferramenta para medir a expansão do universo. Gupta e sua equipe observaram recentemente dúzias de supernovas “superluminosas”, até 100 vezes mais brilhantes do que a variedade mais comum. Elas podem ser vistas a dezenas de milhões de anos luz de distância e ele espera poder usá-las para examinar a expansão do universo em seu passado mais profundo.

“O desafio corrente é o de calibrar as medições realizadas e reduzir as incertezas sistêmicas”, diz Shirley Ho, uma astrofísica da Carnegie Mellon University, não participante da colaboração. Ela ansia pela publicação dos dados e dos mapas do primeiro ano da DES , “que serão algo entusiasmante para se trabalhar com”, segundo ela. E acrescenta: “Os cientistas da Dark Energy Survey são os primeiros a po0r limites na cosmologia pela correlação entre os dados das lentes gravitacionais e o fundo cósmico de micro-ondas. Isto é muito legal”.


Ramin Skibba é um escritor de ciências que trabalha em Santa Cruz e San Diego, California. Seu twitter é @raminskibba.

CAST explora o lado negro do universo

Original em inglês por Corinne Pralavorio – 18 Set 2015. Última atualização em 21 Set 2015.

Vídeo em timelapse do CAST seguindo o Sol pela manhã e à tarde (Vídeo: Madalin-Mihai Rosu/CERN)

Pelos próximos 10 dias o Telescópio de Áxions Solares do CERN (CERN’s Axion Solar Telescope  – CAST) receberá os raios do Sol. O curso do Sol só fica visível da janela da instalação do CAST duas vezes por ano, em março e setembro. Os cientistas vão se aproveitar desses poucos dias para melhorar o alinhamento do detector com o Sol até um décimo de um radiano.

No período fora desse alinhamento, o CAST segue o Sol, mas não consegue vê-lo. O experimento com astropartículas procura por áxions solares, partículas hipotéticas que, se acredita, interagem de modo tão fraco com a matéria comum que passam livremente pelas paredes. É para detectar essas partículas elusivas que o detector do CAST segue o movimento do Sol por uma hora e meia no nascente e outras hora e meia durante o poente.

Os áxions foram propostos como solução para solucionar uma discrepância entre a teoria do infinitamente pequeno e o que é realmente observado. Eles foram batizados com uma marca de sabão em pó porque sua existência pode permitir a “limpeza” da teoria. Se eles existirem, os áxions podem também ser bons candidatos para a vaga de matéria escura do universo.. Acredita-se que a matéria escura represente 80% da matéria do universo, porém sua verdadeira natureza ainda é desconhecida.

Depois de 12 anos de pesquisa, o CAST (ainda) não detectou áxions solares, mas já estabeleceu os limites mais restritivos para sua força de interação. Por conta disso, a experiência se tornou a referência global sobre o assunto.

 Pesquisadores e membros da colaboração CAST instalam seus equipamentos para alinhar o telescópio com a posição do Sol. (Imagem: Sophia Bennett/CERN)

Ao longo de dois anos, a colaboração que envolve cerca de 70 pesquisadores de 20 e tantos institutos, também procurou por outro tipo de partícula hipotética: camaleões. Estas foram propostas para soluconar o problema da energia escura. A energia escura que, como seu nome sugere, permanece misteriosa e indetectável, e tida como representante de 70% de toda a energia do universo e como responsável pela expansão observada no cosmos. Teorias propõem que essa energia escura seja uma quinta força fundamental e que as partículas camaleão podem comprovar a existência dessa força. Elas foram batizadas com o nome do réptil porque, se acredita, elas podem interagir de formas diferentes segundo a densidade do material com quem interagem.

Se as camaleões existirem, elas poderiam, tal como os áxions, ser também produzidas pelo Sol e detectadas pelo CAST. A colaboração acaba de instalar dois novos detectores nas extremidades na ponta do magneto. E também está se preparando para instalar um sensor inovativo com uma membrana ultra fina, capaz de detectar um deslocamento da ordem de 10-15 metros – o tamanho de um núcleo atômico!

Em busca da matéria escura

Dark Energy Survey cria um guia detalhado para encontrar a matéria escura 

A análise dos dados ajudará os cientistas a compreender o papel da matéria escura na formação das galáxias

DOE/FERMI NATIONAL ACCELERATOR LABORATORY

IMAGE
IMAGEM: Este é o primeiro mapa do Dark Energy Survey que detalha a distribuição da matéria escura ao longo de uma grande área dos céus. As cores representam as densidades projetadas: vermelho e amarelo, as de maior densidade. O mapa de matéria escura reflete o quadro atual de distribuição de massas no universo, onde grandes filamentos de matéria se alinham com galáxias e aglomerados de galáxias. Os aglomerados de galáxias são representados pelas manchas cinzentas no mapa – manchas maiores representam aglomerados maiores. Este mapa cobre 3% da área dos céus que será eventualmente pesquisada pelo DES em sua missão de cinco anos.

CRÉDITO: DARK ENERGY SURVEY

 

Os cientistas do Dark Energy Survey divulgaram o primeiro de uma série de mapas da matéria escura no cosmos. Esses mapas, criados com uma das câmeras digitais mais poderosas do mundo, são os maiores mapas contínuos com este nível de detalhe e ajudarão nossa compreensão do papel da matéria escura na formação das galáxias. A análise da granulação da matéria escura nos mapas também permitirá aos cientistas exploraram a natureza da msiteriosa energia escura que se acredita estar causando a aceleração da expansão do universo.

Os novos mapas foram divulgados hoje na reunião de abril da American Physical Society em Baltimore, Maryland. Eles foram criados a partir dos dados obtidos pela Câmera de Energia Escura (Dark Energy Camera), um dispositivo de imageamento de  570 megapixels que é o principal instrumento do Dark Energy Survey (DES).

A matéria escura, a misteriosa substância que responde por cerca de um quatro do universo, é invisível até para os mais sensíveis instrumentos astronômicos porque não emite ou absorve luz. Mas seus efeitos podem ser vistos através do estudo de um fenômeno chamado de lente gravitacional – a distorção que ocorre quando a gravidade da matéria escura desvia a luz em torno de galáxias distantes. A compreensão do papel da matéria escura é parte do programa de pesquisa para quantificar o papel da energia escura, o objetivo principal deste levantamento.

A presente análise foi liderada por Vinu Vikram do Argonne National Laboratory (então na Universidade de Pennsylvania) e Chihway Chang do ETH Zurich. Vikram, Chang e seus colaboradores na Penn, no ETH Zurich, na Universidade de Portsmouth, na Universidade de Manchester e outras instituições associadas ao DES, trabalharam por mais de um ano para validar os mapas das lentes gravitacionais.

“Nós medimos as distorções quase imperceptíveis nas aparências de cerca de 2 milhões de galáxias para construir esses novos mapas”, declarou Vikram. “Eles são um testemunho, não só da sensibilidade da Câmera de Energia Escura, como também do rigoroso trabalho de nossa equipe de análise de lentes gravitacionais para compreender sua sensibilidade tão bem que fomos capazes de obter resultados de tamanha precisão”.

A câmera foi construída e testada no Fermi National Accelerator Laboratory, do Departamento de Energia do governo dos EUA, e montada no telescópio de 4 metros Victor M. Blanco no Observatório Internacional de Cerro Tololo no Chile. Os dados foram processados no Centro Nacional de Aplicações de Supercomputação na Universidade de Illinois em Urbana-Champaign.

O mapa da matéria escura divulgado hoje resulta das primeiras observações do DES e cobre 3% da área dos céus que será coberta nos cinco anos da missão do DES.  O levantamento acaba de completar seu segundo ano. Na medida em que os cientistas expandirem suas buscas, serão capazes de testar as correntes teorias cosmológicas, comparando as quantidades de matéria visível e escura.

As teorias correntes sugerem que, uma vez que existe muito mais  matéria escura do que matéria visível no universo, as galáxias devem se formar onde estejam presentes grandes concentrações de matéria escura (e, portanto, maior atração gravitacional). Até agora, as análises do DES sustentam esta hipótese: os mapas mostram grandes filamentos de matéria ao longo dos quais as galáxias e aglomerados de galáxias de matéria visível existem, assim como grandes vazios onde existem poucas galáxias. Os estudos subsequentes de alguns filamentos e vazios, assim como o enorme volume de dados coletados pelo levantamento, revelarão mais acerca desta interação entre massa e luz.

“Nossa análise, até agora, é coerente com o quadro previsto para nosso universo”, diz Chang. “Ao darmos um zoom para dentro dos mapas, pudemos medir como a matéria escura envolve galáxias de diferentes tipos e como evoluem em conjunto ao longo do tempo cósmico. Estamos ansiosos para usar os novos dados que estão chegando para podermos realizar testes mais precisos ainda dos modelos teóricos”

###

O Universo está acelerando?… Não tão depressa…

UNIVERSIDADE DO ARIZONA

Traduzido de: “Accelerating Universe? Not so fast”.

Certos tipos de supernovas, ou estrelas que passam por uma explosão, são mais diferentes do que se pensava, foi o que uma equipe de astrônomos da Univesidade do Arizona descobriu. Os resultados, relatados em dois artigos no Astrophysical Journal, têm implicações sobre importantes questões cosmológicas, tais como o quão rápido o universo vem se expandindo desde o Big Bang.

Mais importante ainda, as descobertas sugerem a possibilidade de que a aceleração da expansão do universo pode não ser tão grande quanto os livros texto dizem.

A equipe, liderada pelo astrônomo Peter A. Milne da UA, descobriu que as supernovas tipo Ia que eram consideradas tão uniformes que os cosmologistas as usavam como “faróis cósmicos” para medir as profundidades do universo, na verdade constituem duas populações diferentes. As descobertas são análogas a examinar uma seleção de lâmpadas de 100 W de uma loja de ferragens e descobrir que as luminosidades das mesmas variam.

“Descobrimos que as diferenças não são aleatórias, mas levam a separar as supernovas tipo Ia em dois grupos, onde o grupo que é minoria em nossas proximidades, é maioria nas grandes distâncias – e portanto quando o universo era mais jovem”, diz Milne, astrônomo associado do Departamento de Astronomia da UA e do Observatório Steward. “Existem populações diferentes lá fora e isso não era reconhecido. A suposição geral era que, perto ou longe, as supernovas tipo Ia eram as mesmas. Não parece ser esse o caso”.

A descoberta lança uma nova luz sobre a ideia atualmente aceita de que o universo está se expandindo cada vez mais rápido, esgarçado por uma força pouco entendida, batizada de energia escura. Esta ideia se baseia em observações que resultaram no Prêmio Nobel de Física de 2011, concedido aa três cientistas, entre os quais o ex-aluno da UA Brian P. Schmidt.

Os laureados com o Nobel descobriram independentemente que várias supernovas aparentavam ser mais tênues do que o previsto porque tinham se movido mais para longe da Terra do que deveriam, se o universo estivesse se expandindo em uma taxa constante. Isso indicava que a taxa com a qual as estrelas e galáxias estão se separando umas das outras estaria aumentando; em outras palavras, algo estava esgarçando o universo cada vez mais rápido.

“A ideia subjacente a este raciocínio” explica Milne, “é que as supernovas tipo Ia têm sempre a mesma luminosidade — todas elas acabam de modo bem semelhante quando explodem. Assim que souberam o motivo, passaram a usar essas estrelas como marcos quilométricos para medir o universo distante”.

“As supernovas muito distantes deveriam ser iguais às próximas porque se pareciam com elas, mas, porque elas são menos brilhantes do que se esperaria, isto levou à conclusão de que elas estão mais longe do que se pensava, o que, por sua vez, levou à conclusão de que o universo está se expandindo mais depressa do que no passado”.

Milne e seus coautores — Ryan J. Foley da Universidade do Illinois em Urbana-Champaign, Peter J. Brown da Universidade Texas A&M  e Gautham Narayan do Observatório Astronômico Ótico Nacional (National Optical Astronomy Observatory = or NOAO) em Tucson — observaram uma grande amostra de supernovas tipo Ia em ultravioleta e luz visível. Para este estudo, eles combinaram observações feitas com o Telescópio Espacial Hubble com as feitas pelo satélite Swift da NASA.

Os dados coletados pelo Swift foram cruciais porque as diferenças entre as populações — pequenos desvios para o vermelho ou para o azul — são sutis na luz visível que tinha sido utilizada para detectar as supernovas tipo Ia anteriormente, mas só ficaram óbvias com as observações posteriores com o Swift na faixa do ultravioleta.

“Estes são grandes resultados”, comentou Neil Gehrels, principal investigador do satélite Swift, coautor do primeiro artigo. “Estou encantado que o Swift tenha proporcionado observações tão importantes, relacionadas com uma meta totalmente independente de sua missão primária. Isto demonstra a flexibilidade de nosso satélite em responder prontamente a novos fenômenos”.

“A percepção de que existiam dois grupos de supernovas tipo Ia começou com os dados do Swift”, diz Milne. “Então analisamos outros conjuntos de dados para ver se víamos o mesmo. E descobrimos que a tendência estava presente em todos os conjuntos de dados”.

“À medida em que se volta atrás no tempo, vemos uma mudança na população de supernovas”, acrescenta ele. “A explosão tem algo de diferente, algo que não salta aos olhos na faixa de luz visível, mas visível no ultravioleta”.

“Como ninguém tinha percebido isto antes, todas essas supernovas eram enfiadas no mesmo saco. No entanto, se você olhar para 10 delas nas proximidades, elas estarão mais “avermelhadas” do que outra amostra de 10 supernovas mais distantes”.

Os autores concluem que alguns relatos de aceleração da expansão do universo podem ser explicados por diferenças na coloração entre os dois grupos de supernovas, o que daria uma aceleração menor do que a inicialmente calculada. Isto, por sua vez, levaria a menos energia escura do que se calcula correntemente.  .

“Nossa proposta é que nossos dados sugerem que pode haver menos energia escura do que dizem os atuais livros texto, no entanto não conseguimos traduzir isto em números”, disse Milne. “Até nosso artigo, as duas populações de supernovas eram tratadas como sendo da mesma população. Para obter a resposta final, será necessário realizar todo o trabalho de novo, separadamente para as populações azul e vermelha”.

 

###

O artigo da pesquisa está disponível online em http://iopscience.iop.org/0004-637X/803/1/20/.

E o universo ficou mais velho… e diferente

Telescópio do Polo Sul (WikiMedia Commons)

Telescópio do Polo Sul. Imagem da WikiMedia Commons.
Link para a imagem original.


Quando eu publiquei o post O universo antigo produzia mais estrelas do que se pensava, eu tive que escolher entre vários press-releases sobre o mesmo assunto. Eu traduzi o da Universidade de Chicago, mas havia também os da National Science Foundation, “Telescópios Financiados pela NSF no Polo Sul e Chile descobrem bursts de formação de estrelas no universo primitivo”, da Fundação Kavli, “Testemunhando starbursts em galáxias jovens”, da Universidade do Arizona, “[O Telescópio] ALMA expõe  fábricas de estrelas escondidas no universo jovem”, do National Radio Astronomy Observatory, “[O Telescópio] ALMA descobre “monstruosas” galáxias starburst no universo jovem”, da Carnegie Institution, “Descobertas galáxias antigas e extremamente ativas”, e outros dois com o mesmo título: “[O Telescópio] ALMA reescreve a história do baby boom estelar do Universo”, um da Universidade McGill e outro do European South Observatory.

É claro que todo este fuzuê sobre a descoberta tinha um motivo bem claro: os cálculos dos astrofísicos sobre a linha-do-tempo da formação de estrelas, galáxias e do próprio universo continham algum erro.

Imediatamente me ocorreu entrar em contato com o scibling Ethan Siegel do Starts With a Bang, mas diversas outras coisas (combinadas com meu raro talento em procrastinar) foram “deixando-para-depois” e, quando finalmente eu acessei o blog dele, me deparei com o post “O que todos deveriam saber sobre o universo, na véspera [da divulgação dos dados] do [Telescópio Espacial] Planck”. Bem… se Ethan esperava alguma novidade importante dos dados do Planck, eu também poderia…

Imagem do Fundo Cósmico de Micro-ondas obtida pelo Satélite Planck.
Link para a imagem original.


Agora, esta figura já é conhecida por todos e as agências de notícias já comentaram que o Universo é, pelo menos, 80 milhões de anos mais velho do que se calculava. Mas, como eu esperava, Ethan chama a atenção para diversas outras novidades em seu post “Do que é feito todo o Universo, graças ao Planck”. E eu vou tomar a liberdade de kibar desavergonhadamente o post dele. Espero que me perdoem se eu não reproduzir algumas das ilustrações do post do Ethan porque elas são demasiado técnicas. Por mais que eu ame a física quântica e a astrofísica, quando começam a argumentar “se o hamiltoniano é hermitiano”, eu me sinto como o cachorrinho que caiu do caminhão de mudanças…

Comparação da Resolução das imagens Cobe, WMAP e Planck.

Comparação da Resolução das imagens Cobe, WMAP e Planck. Crédito: NASA Jet Propulsion Laboratory, CalTech.

Link para a imagem original.

A primeira coisa que Ethan enfatiza é a qualidade da imagem fornecida pelo Planck. Como diz ele, na década de 1990 o satélite  Cosmic Background Explorer (COBE ou Explorador do Fundo Cósmico) nos deu uma primeira imagem difusa do Fundo Cósmico de Micro-ondas (Cosmic Microwave Background, ou simplesmente CMB). Se você está pensando naquele eco do Big Bang descoberto quase que por acaso por Penzias e Wilson em 1965, está correto! A primeira imagem disto foi obtida na década de 1990 pelo satélite Cobe, com uma resolução de imagem de cerca de 7 graus, e a sonda Wilkinson Microwave Anisotropy Probe (WMAP) da NASA obteve, em 2006, após muita filtragem dos ruídos das emissões “atuais”, uma imagem bem mais nítida do CMB, com uma resolução de cerca de meio grau. Agora, também após um exaustivo processo de filtragem do ruído, o Planck chegou ao limite de resolução possível; Ethan enfatiza que o problema não é o da sensibilidade dos instrumentos do Planck, mas da própria natureza do universo!

A segunda coisa que ele realça é que o universo não só é composto de mais matéria do que se pensava, como também está se expandindo mais devagar do que se calculava. O Parâmetro de Hubble medido pelo Planck é tão menor do que aquele que se usava que, se fosse ele a única diferença encontrada, significaria que o universo seria um bilhão de anos mais velho do que se pensava! (Só que não…) As quantidades de matéria normal e escura são bem maiores do que se acreditava, sobrando uma fatia menor para a energia escura. Em lugar de 73% de energia escura, o Planck nos diz que é algo na faixa de 68 a 69%; a matéria escura deve ficar entre 26 a 26,5% e a matéria bariônica (ou “normal”, da qual somos feitos nós e as estrelas) não é mais só 4,6% do universo: o número subiu para 4,9%. Ah!… Sim… E, em tanto quanto o Planck tem a nos dizer, não há uma “curvatura” no universo: ele é “plano”.

Em outras palavras, existe um pouco mais de matéria normal, uma quantidade significativamente maior de matéria escura e uma quantidade significativamente menor de energia escura do que pensávamos! De forma que, enquanto a taxa de expansão menor nos diz que o universo é mais velho do que acreditávamos, o aumento de matéria (e diminuição da energia escura) nos diz que o universo é mais jovem do que seria de outra forma!

Um universo que fosse composto por 100% de matéria normal + matéria escura, teria apenas uns 10 bilhões de anos, porém o nosso parece ser dividido em cerca de 31,5% de matéria-total e 68,5% de energia escura. De forma que, quando ajustamos nossos atuais dados, chegamos a um universo com 13,81 bilhões de anos, ou seja: 80 milhões de anos mais velho do que nossa melhor estimativa anterior.

Outra coisa que se procurou entre os dados do Planck foi a “assinatura” de ondas gravitacionais primevas, o que corroboraria certos modelos da inflação do universo e descartaria outros. Os dados de polarização ainda estão sendo analisados, mas, por enquanto, nada definitivo emergiu.

Finalmente, os dados confirmam algo muito esquisito, já notado anteriormente: existe um alinhamento das anomalias locais do CMB com o eixo de nossa galáxia, algo que os astrofísicos chamam jocosamente de “eixo do mal”.


Crédito da imagem: ESA e a Colaboração Planck (essa eu não achei o original e kibei direto do blog do Ethan)

Essa é quente: temperaturas (absolutas) negativas

Max-Planck-Gesellschaft

Uma temperatura abaixo do zero absoluto

Átomos a temperaturas absolutas negativas são os sistemas mais quentes do mundo

 IMAGEM: Uma temperatura negativa quente: Em uma temperatura absoluta negativa, a distribuição de energia das partículas se inverte, em comparação com uma temperatura positiva.Clique aqui para mais informações (em inglês).

O que é corriqueiro para a maior parte das pessoas durante o inverno, até agora era impossível na física: uma temperatura negativa. Na escala Celsius, uma temperatura negativa só é surpreendente durante o verão. Na escala absoluta de temperaturas – também chamada de escala Kelvin – usada pelos físicos, não é possível ir abaixo do zero – pelo menos não no sentido de ficar mais frio do que zero Kelvin. Segundo o significado de temperatura para a física, a temperatura de um gás é determinada pelo movimento caótico de suas partículas – quanto mais frio um gás, mais lentas serão suas partículas. A zero kelvin (menos 273 graus Celsius) as partículas param de se mover e toda a desordem desaparece. Desta forma, nada pode ser mais frio do que o zero absoluto na escala Kelvin. Os físicos da Universidade Ludwig-Maximilians em Munique e do Instituto Max Planck de Óptica Quântica criaram agora em laboratório um gás atômico que, não obstante, apresenta valores Kelvin negativos. Estas temperaturas absolutas negativas causam várias consequências aparentemente absurdas: embora os átomos se atraiam mutuamente e criem uma pressão negativa, o gás não entra em colapso – um comportamento igualmente postulado para a energia escura na cosmologia. Máquinas supostamente impossíveis, tais como um motor de combustão com uma eficiência termodinâmica maior que 100%, também podem ser imaginadas com a ajuda de temperaturas absolutas negativas.

Para levar água à fervura, é preciso adicionar energia. À medida em que a água se aquece, as moléculas de água têm sua energia cinética aumentada ao longo do tempo e se movem cada vez mais rápido em média. Ainda assim, cada molécula individual tem uma energia cinética diferente – desde muito lentas até muito rápidas. Os estados de baixa energia são mais prováveis do que os estados de alta energia, isto é, somente algumas partículas se movem muito rápido. Na física, esta distribuição [de estados] é chamada de distribuição de Boltzmann. Os físicos que trabalham com Ulrich Schneider e Immanuel Bloch agora obtiveram um gás no qual esta distribuição é precisamente invertida: muitas partículas têm altas energias e umas poucas têm baixas energias. Esta inversão da distribuição de energia se traduz como se as partículas tivessem assumido uma temperatura negativa.

“A distribuição de Boltzmann invertida é o marco da temperatura absoluta negativa e foi isso o que conseguimos”, diz Ulrich Schneider. “Entretando o gás não é mais frio do que zero kelvin, porém mais quente”, explica o físico: “É mais quente ainda do que quaisquer temperaturas positivas – a escala de temperaturas simplesmente não termina no infinito; ao invés disso, ela salta para valores negativos”.

Uma temperatura negativa só pode ser obtida com um limite superior para a energia

O significado de uma temperatura absoluta negativa pode ser melhor ilustrado com esferas rolantes em um terreno montanhoso, onde os vales representam uma baixa energia potencial e os topos uma alta energia. Quanto mais rápido as esferas se moverem, mais alta será sua energia cinética: se começarmos com uma temperatura positiva e aumentarmos a energia total das esferas, aquecendo-as, as esferas vão se espalhar, cada vez mais, pelas regiões de alta energia. Se fosse possível aquecer as esferas a uma temperatura infinita, haveria uma probabilidade igual de as encontrarmos em qualquer ponto do terreno, sem qualquer diferença da energia potencial. Se fosse possível adicionar ainda mais energia e aquecer as esferas ainda mais, elas tenderiam a ser reunir em estados de alta energia e ficariam ainda mais quentes do que em uma temperatura infinita. A distribuição de Boltzmann seria invertida e a temperatura, portanto, seria negativa. À primeira vista pode parecer estranho que uma temperatura absoluta negativa seja mais quente do que uma positiva. No entanto, isto é apenas uma consequência da definição histórica de temperatura absoluta; se houvesse uma definição diferente, a aparente contradição não existiria.

Esta inversão da população de estados de energia não é possível com a água ou qualquer outro sistema natural, uma vez que o sistema teria que absorver uma quantidade infinita de energia  – O que é impossível! No entanto, se as partículas tivessem um limite superior para sua energia, tal como o topo dos montes em nosso terreno de energias potenciais, a situação seria completamente diferente. Os pesquisadores do grupo de pesquisa de Immanuel Bloch e Ulrich Schneider obtiveram um sistema assim, de um gás atômico com um limite superior de energia em seu laboratório, seguindo as propostas teóricas de Allard Mosk e Achim Rosch.

 IMAGEM: A temperatura representada como esferas em um terreno montanhoso: A distribuição de Boltzmann estabelece quantas partículas podem ter qual energia.

Clique aqui para mais informações (em inglês).

Em sua experiência, os cientistas primeiro resfriaram cerca de cem mil átomos em uma câmara de vácuo até uma temperatura positiva de poucos bilionésimos de grau Kelvin e os capturaram em armadilhas ópticas feitas com raios laser. O vácuo ultra alto em torno dos átomos garantiu que os átomos ficassem perfeitamente isolados termicamente de seu ambiente. Os feixes de laser criaram uma, assim chamada, grade óptica, na qual os átomos ficam arrumados regularmente nas casas da grade. Nessa grade, os átomos ainda podem se mexer de uma casa para outra, através do efeito de túnel, mas, mesmo assim, sua energia cinética tem um limite superior e, portanto, fica estabelecido o limite superior de energia necessário. A temperatura, entretanto, é relacionada não apenas com a energia cinética, mas à energia total das partículas, o que, neste caso, inclui as energias interativa e potencial. O sistema dos pesquisadores de Munique e Garching também estabelece um limite a ambas. Os físicos então levam os átomos até esse limite superior de energia total – criando assim uma temperatura negativa, no entorno de uns poucos bilionésimos de grau kelvin.

Em uma temperatura negativa, uma máquina pode realizar mais trabalho

Se nossas esferas tivessem uma temperatura positiva e ficassem em um vale de energia potencial mínima, tal estado seria obviamente estável – essa é a natureza que conhecemos. Se as esferas estivessem posicionadas no topo de uma montanha na energia potencial máxima, usualmente elas rolariam para baixo, convertendo sua energia potencial em cinética. “Entretanto, se as esferas estiverem em uma temperatura negativa, sua energia cinética já será tão grande que não pode mais ser aumentada”, explica Simon Braun, um estudante de doutorado do grupo de pesquisas. “Assim, as esferas não podem rolar para baixo e permanecem no topo do morro. O limite de energia as tornou estáveis, portanto!” O estado de temperatura negativa na experiência é, em verdade, tão estável quanto um estado de temperatura positiva. “Desta forma nós criamos o primeiro estado de temperatura absoluta negativa para partículas móveis”, acrescenta Braun.

A matéria em uma temperatura absoluta negativa tem todo um leque de consequências espantosas: com ajuda dela, se pode criar motores térmicos, tais como motores de combustão, com uma eficiência maior que 100%. Isso, porém, não quer dizer que a lei de conservação de energia seja violada. Em lugar disso, o motor seria capaz de absorver energia não só do meio mais quente – e assim realizar trabalho – como, em contraste com o caso usual, poderia absorver também energia do meio mais frio.

Em temperaturas apenas positivas, o meio mais frio inevitavelmente se aquece, absorvendo assim uma parte da energia do meio quente e, desta forma, limitando a eficiência. Se o meio quente tiver uma temperatura negativa, é possível absorver energia de ambos os meios simultaneamente. O trabalho realizado pelo motor, então, será maior do que a energia inserida apenas no meio quente – e a efeiciência sera maior do que 100%.

A realização dos físicos de Munique pode ser também interessante para a cosmologia, uma vez que o comportamento termodinâmico da temperatura negativa exibe semelhanças com a assim chamada energia escura. Os cosmologistas postulam que a energia escura é uma força misteriosa que acelera a expansão do universo, embora o cosmos devesse se contrair por conta da energia da atração gravitacional de todas as massas. Ocorre um fenômeno similar na nuvem atômica do laboratório de Munique: a experiência se apoia no fato de que os átomos no gás não se repelem mutuamente, tal como em um gás ususal; ao contrário, eles se atraem. Isso significa que os átomos exercem uma pressão negativa, em lugar de uma pressão positiva. Como consequência, a nuvem de átomos quer se contrair e deveria entrar em colapso – exatamente como seria de se esperar do universo sob o efeito da gravidade. Porém, por causa da sua temperatura negativa, isso não acontece. O gás é poupado do colapso, tal como o universo.

###

Publicação original:

Simon Braun, J. Philipp Ronzheimer, Michael Schreiber, Sean S. Hodgman, Tim Rom, Immanuel Bloch, Ulrich Schneider Negative Absolute Temperature for Motional Degrees of Freedom
Science, 4 January 2013

 

Sobre ScienceBlogs Brasil | Anuncie com ScienceBlogs Brasil | Política de Privacidade | Termos e Condições | Contato


ScienceBlogs por Seed Media Group. Group. ©2006-2011 Seed Media Group LLC. Todos direitos garantidos.


Páginas da Seed Media Group Seed Media Group | ScienceBlogs | SEEDMAGAZINE.COM