A procura das ondas gravitacionais

Inside Science News Service

 

Link para o original: For Some, Einstein’s Space-Time Ripples Have Yet To Break Their Silence

O Telescópio Green Bank em West Virginia
Crédito do Imagem: Gabriel Popkin (licença padrão da Creative Commons)

Avaliando o que a detecção pelo LIGO significa para outros meios de busca de ondas gravitacionais.

25 de março de 2016
Por: Gabriel Popkin, Contribuidor do ISNS

(Inside Science) — Quando os chefes do Laser Interferometer Gravitational-wave Observatory, ou LIGO, anunciaram em fevereiro a primeira detecção direta jamais feita de uma onda gravitacional, os astrofísicos Scott Ransom do National Radio Astronomy Observatory e Andrea Lommen da Franklin and Marshall University em Lancaster, Pennsylvania, tiveram sentimentos mistos.

Por um lado, isso significava que as equipes que eles e outros lideravam, fazendo a busca pelas ondas gravitacionais com radiotelescópios e apontadas para o tipo de estrela conhecido como pulsar, não iam conseguir ser os primeiros. “Nós adorávamos a ideia de sermos os azarões do páreo”, admitiu Ransom.

Por outro lado, eles ficaram entusiasmados pelos seus colegas no LIGO — e pela astronomia de ondas gravitacionais. “Eu fiquei realmente entusiasmado por um dia inteiro, penso eu, até que bateu o ciúme”, diz Lommen. “Nós todos vinhamos trabalhando nesse campo que não detectou coisa alguma por 20, 30 anos — e agora temos uma detecção. As pessoas não podem mais rir de nossas caras”.

Acima de tudo, Ransom, Lommen e seus colegas tinham a esperança que, como uma maré enchente, o entusiasmo acerca da descoberta desse um novo impulso à pesquisa por ondas gravitacionais – inclusive suas próprias.

O campo precisava dessa validação. Os rádiotelescópios e os futuros observatórios de ondas gravitacionais no espaço tinham sofrido os maiores cortes no orçamento nos últimos anos e, o que parecia em 2014 ser uma descoberta das ondas gravitacionais do Big Bang, se revelou ser apenas poeira cósmica. Em contraste, o sucesso do LIGO que parece quase certo que permanecerá, promete ser apenas o começo da era da astronomia de ondas gravitacionais, na qual vários tipos de instrumentos vão começar a responder questões críticas acerca dessas ondas — e sobre os objetos que as produzem.

Porém o LIGO não pode fazer tudo sozinho. Segundo a teoria da relatividade geral de Einstein e as observações feitas pelos astrônomos no último século, o universo deveria estar cheio de ondas gravitacionais de várias potências e frequências. Entretanto o LIGO só pode detectar ondas de alta frequência, tais como a detectada em 14 de setembro de 2015, gerada pelos momentos finais da fusão de dois buracos negros.

É aí onde entram três outras maneiras de detectar ondas gravitacionais: rastreamento de pulsares, interferometria laser no espaço e estudo das radiações vinda do universo quando jovem. Tal como os telescópios atuais que podem enxergar em radiofrequência, infravermelho, ultravioleta e raios X, além da luz visível, continuam a revelar novas facetas de nosso universo, somente com todos os quatro métodos de detecção os astrônomos poderão ter acesso a todas as informações que as ondas gravitacionais podem fornecer. Tal como Gabriela Gonzalez, física da Louisiana State University em Baton Rouge e porta-voz do LIGO colocou na conferência de imprensa de 11 de fevereiro passado que anunciou a descoberta inicial: “Eu quero ver todas essas janelas se abrirem tão logo possível”.

 

O núcleo do aglomerado globular Tucanae, uma vasta nuvem de velhas estrelas  encontradas na constelação do Tucano, que contém 25 pulsares de milissegundo conhecidos. Crédito: ESO, http://creativecommons.org/licenses/by/4.0/

 

Ouvindo os pulsares

Albert Einstein predisse a existência das ondas gravitacionais em 1916, um ano após publicar sua teoria da relatividade geral. Poré, já que mesmo uma forte onda gravitacional teria efeitos muito diminutos sobre a Terra, fazendo com que os objetos se deslocassem por muito menos do que o diâmetro de um próton, Einstein desistiu de jamais detectar uma delas experimentalmente.

No início da década de 1980, no entanto, a caçada começou. A National Science Foundation financiou os primeiros estudos que, eventualmente, levariam ao LIGO e os pesquisadores já começavam a pensar em outras maneiras de detectar as pequenas ondulações da gravidade. Uma delas era estudar os sinais vindos de estrelas que giram rapidamente, os pulsares. Um pulsar é formado quando um estrela com pelo menos 1,4 massas solares explode como supernova e sua massa restante colapsa em uma esfera de nêutrons densa e com giro rápido. Essas estrelas de nêutrons se tornam magnetizadas e emitem radiação eletromagnética, frequentemente na frequência das ondas de rádio, tonando-as gigantescos faróis cósmicos. Se um pulsar estiver próximo o bastante e seus pulsos voltados para a Terra, os modernos telescópios podem detectá-los.

No final da década de 1970 e início da de 1980, a mudança no tempo de chegada dos sinais de um pulsar em órbita de outra estrela de nêutrons forneceu um indício indireto para a existência de ondas gravitacionais, o que levou ao Prêmio Nobel de Física em 1993. Então, em 1982, o astrofísico Donald Backer da University of California, Berkeley, propos que os cientistas poderiam usar certos “pulsares de milissegundo” (que giram neste tempo) para uma detecção mais direta, medindo as pequenas diferenças de tempo de chegada à Terra dos pulsos, já que as ondas gravitacionais passantes deslocariam levemente o planeta na direção de alguns pulsares e na oposta de outros.

O “sistema de temporização de pulsares” imaginado por Backer seria como uma teia de aranha galáctica, na qual a Terra repousaria no centro e ficaria conectada a cada pulsar por um fio. Quantos mais fios houvesse, mais facilmente os cientistas poderiam dizer quando a Terra tivesse se movido ligeiramente.

Em particular, Backer pensou que os pulsares poderiam ser usados para detectar as ondas gravitacionais que os cientistas acreditam que estejam sendo contiunamente emitidos por enormes buracos negros do tamanho de galáxias — objetos esses milhões ou até bilhões de vezes mais massivos que os buracos negros detectados pelo LIGO – que orbitam em torno um do outro no universo distante. Uma vez que esses pares levam anos para completar uma órbita, as ondas gravitacionais emitidas teriam uma frequência extremamente baixa e mostruosamente longa – comprimentos de onda da ordem de anos luz.

O efeito que Backer se propos a medir era muito maior do que aquele detectado pelo LIGO, porém ainda muito pequeno em termos do cotidiano — cerca de uma parte em 10 elevado à décima sexta potência —e os cientistas precisariam de anos de medições de pulsares antes de poderem ter certeza de ter uma verdadeira detecção. Precisaria também de encontrar e rastrear muitos pulsares de milissegundos do que aqueles conhecidos pelos astrônomos na época que Backer propos o experimento. “Pulsares de milissegundo, o LIGO e alguns experimentos quânticos são de longe as experiências físicas mais precisas que se pode fazer”, disse Ransom.

O radiotelescópio Parkes em Nova Gales do Sul, Austrália, que começou a operar em1961.  http://creativecommons.org/licenses/by/3.0/

 

Construindo redes de detecção

Em 2004, o astrofísico Richard Manchester da Commonwealth Scientific and Industrial Research Organisation (CSIRO) na Australia iniciou um esforço para descobrir e rastrear os tempos dos pulsares no Hemisfério Sul, usando o radiotelescópio Parkes de 64m de diâmetro. Nesse ponto, Ransom, Lommen e Fredrick Jenet, físico da University of Texas em Brownsville, iniciaram discussões que levaram ao que eles chamaram de North American Nanohertz Observatory for Gravitational Waves ou NANOGrav. “Nós vimos que havia uma competição internacional”, disse said Ransom. “E foi aí que a coisa ficou mesmo séria”.

A equipe NANOGrav agora usa o telescópio de 100m de Green Bank Telescope na West Virginia e o telescópio de 300m em Arecibo, Puerto Rico — atualmente os dois radiotelescópios mais poderosos — para rastrear pulsares de 54 milissegundos  e procurar por outros mais. Os enormes pratos são necessários para refletir o bastante dos sinais extremamente fracos de radiofrequência dos pulsares até um receptor que captura os sinais — pulsos tão regulares como os do mais preciso relógio na Terra.

Enquanto isso, a equipe australiana rastreou 24 pulsares e, no último verão, publcou na Science uma análise de mais de uma década de dados de seus quatro pulsares mais regulares. Eles não encontraram qualquer indício de ondas gravitacionais, muito embora vários modelos teóricos predissessem que pares de buracos negros supermassivos, emissores de ondas gravitacionais, se formariam tão frequentemente que a equipe de Parkes deveria ter detectado algum. Com base em sua análise, os pesquisadores sugeriram que a comunidade de medição de pulsares poderia ter que esperar alguns anos até que o Sistema de Quilômetro Quadrado (Square Kilometer Array), um sistema de radiotelescópio gigantesco planejado entre a Austrália e a África do Sul, entrasse em operação para ter a chance de uma detecção.

Porém a equipe NANOGrav redarguiu  que ainda há muito que os cientistas ainda não sabem sobre a frequência de formação de pares de buracos negros supermassivos e que a equipe de Parkes os havia descartado apenas com os modelos mais otimísticos. Em um artigo publicado no mês passado em Astrophysical Journal Letters, os membros da NANOGrav apresentam seu argumento de adicionar mais pulsares ao sistema para aumentar a sensibilidade, predizendo uma detecção dentro de uma década se mantido o curso.

As equipes NANOGrav, Parkes e outra equipe européia também concordaram em compartilhar seus dados, formando o International Pulsar Timing Array, ou IPTA, o que deve ajudar os cientistas a melhorar seus conhecimentos da taxa de fusões de buracos negros supermassivos ainda mais.

“Esta é a primeira vez que sistemas de temporização de pulsares foram capazes de fazer astrofísica de verdade”, disse Ransom. “Para nós, é entusiasmante”.

O grupo está preparando uma segunda apresentação de dados para o fim deste ano e isto deve por fim à competição que existia entre eles, disse George Hobbs, astrofísico do CSIRO e atual diretor da equipe Parkes. “De repente o IPTA se tornou a coisa mais importante e é isso que todos queríamos ver”.

Laçamento do foguete Vega VV06 que transporta o  LISA Pathfinder. Crédito: ESA

 

Preenchendo o espectro

Mais ou menos na mesma época em que os sonhos do LIGO e dos sistemas de temporização de pulsares estavam ganhando forma, os pesquisadores começaram a propor um experimento semelhante ao LIGO, mas com o detector no espaço. As vantagens sobre um detector com base no solo são muitas — os “braços” poderiam ter milhões de km de comprimento, em lugar de uns poucos, assim como o ruído de eventos terrestres frequentes, tais como quedas de árvores e ondas que quebram nas praias (ambos têm impacto sobre o LIGO) seriam eliminados – tornando um tal detector sensível a um número bem maior de ondas gravitacionais.

A ideia se materializou em um projeto conjunto NASA-ESA chamado Laser Interferometer Space Antenna, ou LISA e deveria ter sido lançado nesta década. Porém a NASA abandonou o projeto em 2012, por conta dos custos. A ESA refez o projeto como evolved LISA, ou eLISA, cujos braços terão 1 milhão de km. Embora a data projetada para o lançamento de eLISA seja em 2034, em dezembro passado a ESA lançou a missão  LISA Pathfinder, que testará a tecnologia necessária para eLISA.

A China também está pensando em lançar seu próprio detector ou de fazer uma parceria com a ESA. De qualquer forma o tempo de detecção poderá diminuir, dizem os cienteistas.

Um quarto método de busca para ondas gravitacionais recebeu uma atenção especial em 17 de março de 2014, quando os físicos de Harvard e várias outras instituições anunciaram o uso do telescópio BICEP2 no Polo Sul para detectar a impressão das ondas gravitacionais no fundo cósmico de micro-ondas, aquele brilhareco de luz vindos da formação dos primeiros átomos de hidrogênio depois do Big Bang, o qual é o limite do universo observável.

Muitas das principais teorias do nascimento do universo sugerem que o universo inflou rapidamente logo após o Big Bang, durante um período chamado de “inflação”. Este violento surto de crescimento, que ocorreu quando toda a massa/energia estava em um volume pequeno, deve ter liberado enormes ondas gravitacionais. Uns 380.000 anos depois, essas ondas, agora já esticadas por milhões ou bilhões de anos luz, teria interagido com o fundo cósmico de micro-ondas de uma forma particular e que poderia ser detectada.

Uma previsão fascinante como esta inspirou várias equipes de pesquisas a projetas telescópios de micro-ondas para buscar tal assinatura. O grupo do BICEP2, em conjunto com a equipe do satélite Planck da ESA, eventualmente declararam seus achado inconclusivos , depois que outros apontaram que a poeira na Via Láctea poderia produzir o mesmo sinal que eles estvam interpretando como uma polarização do fundo cósmicod e micro-ondas.

Ainda assim, novos telescópios estão se juntando à busca pelas ondas gravitacionais primevas. Um dos mais poderosos é o Cosmology Large Angular Scale Surveyor, ou CLASS, que está sendo construído no deserto de Atacama no Chile. O CLASS vai efetuar medições em vários comprimentos de onda necessários para distinguir a radiação de fundo dos sinais emitidos pela poeira e outras fontes próximas, e vai cobrir uma larga faixa dos céus para capturar as informações mais completas. A experimento precisa de um sofisticado sistema de detecção, levado até próximo do zero absoluto, no limite da atual tecnologia.

“Uma vez que nós decidimos fazer medições em larga escala, a questão era o que é necessário para fazê-lo e, mesmo que seja difícil, o que precisa ser feito”, disse Charles Bennett, cosmologista da Universidade Johns Hopkins University, que lidera o projeto CLASS. Bennett espera que o CLASS comece a funcionar ainda neste ano.

 

O Telescópio Green Bank  ao por do Sol. Foto de Harry Morton. Cortesia da NRAO/AUI e Harry Morton (NRAO), http://images.nrao.edu/image_use.shtml (cc 3.0)

Financiando o futuro

Além de olhar para os céus, os caçadores de ondas gravitacionais têm que manter um olho em Washington e as recentes mensagens vindas de lá estão confusas. A temporização de pulsares recebeu um grande incentivo em 2015, quando a NSF alocou um fundo US$ 14,5 milhões ao longo de cinco anos.

Ao mesmo tempo, a NSF está querendo se desfazer dos telescópios da NANOGrav. Um comitê de revisão recomendou que seja desativado o telescópio de Green Bank e talvez o de Arecibo, dando prioridade a outras instalações.

Por enquanto, a NSF financiará parcialmente os dois telescópios, enquanto outras fontes, tais como o bilionário projeto russo Yuri Milner’s Breakthrough Listen, procuram por sinais de rádio de civilizações extra-terrestres e ajudam a preencher o vácuo. Porém o futuro desses telescópios é incerto – não porque eles não produzam boa ciência, mas porque simplesmente não há dinheiro suficiente para financiar todos os projetos bons, como explica James Ulvestad, diretor da Divisão de Astronomia da NSF.

A perda de qualquer um desses telescópios vai retardar uma detecção de ondas gravitacionais por anos, ao menos até que a China ponha para funcionar seu prato de 500m no fim da década.

“Neste ponto da história … quando estamos apenas abrindo a era das ondas gravitacionais na física”, reclama Lommen, “é uma vergonha falar em fechar qualquer um dos dois telescópios que fazem uma tremenda falta”.

Ransom acredita que o sucesso do LIGO — e outros — pode revigorar o campo e ajudar a manter os telescópios funcionando. “Eu espero que não seja apenas otimismo”, diz ele. “Nós estamos fazendo astrofísica de verdade e chegando a limites que realmente são significativos e podem mudar o pensamento das pessoas”.

“As ondas gravitacionais estão se tornando relevantes para a astronomia”.


Gabriel Popkin (@gabrielpopkin) é um escritor de ciências independente de Washington, DC. Já publicou em Science News, ScienceNOW, Johns Hopkins Magazine  e outras publicações.

Parece ter havido alguma luz, afinal

EurekAlert

Link para o original: LIGO’s twin black holes might have been born inside a single star

HARVARD-SMITHSONIAN CENTER FOR ASTROPHYSICS

Em 14 de setembro de 2015, o Laser Interferometer Gravitational-wave Observatory (LIGO) detectou ondas gravitacionais oriundas da colisão e fusão de dois buracos negros com massas de 29 e 36 vezes a massa de nosso Sol. Um evento como esse poderia não ser visível, mas o Telescópio Espacial Fermi detectou um jato de raios gama uma fração de segundo antes do LIGO ter recebido o sinal. Novas pesquisas sugerem que os dois buracos negros poderiam residir dentro de uma única estrela, super-massiva, cuja morte gerou o jato de raios gama.

“Seria o equivalente cósmico de uma mulher grávida com gêmeos em sua barriga”, diz o astrofísico da Harvard, Avi Loeb, do Harvard-Smithsonian Center for Astrophysics (CfA).

Normalmente, quando uma estrela massiva chega ao fim de sua vida, seu núcleo colapsa em um só buraco negro. Porém, se a estrela estivesse girando muito rapidamente, seu núcleo poderia ter se esticado em uma forma de halteres e se fragmentar em dois aglomerados, cada um deles formando seu próprio buraco negro.

Uma estrela tão massiva como a necessária para tal, normalmente se forma a partir da fusão de duas estrelas menores. E, como as estrelas teriam girado cada vez mais rápido, na medida em que espiralavam uma de encontro à outra, a estrela massiva resultante conservaria em grande parte esse momento anuglar – em outras palavras, giraria muito rápido.

Depois que o par de buracos negros se formou, o envoltório externo da estrela caiu para dentro deles. Para alimentar tanto o evento das ondas gravitacionais, quanto o jato de raios gama, os buracos negros gêmeos devem ter nascido bem próximos, com uma distância inicial igual ao diâmetro da Terra e se fundido em questão de minutos. O buraco negro recém formado passou então a se alimentar da matéria restante em seu entorno, consumindo o material equivalente a um Sol a cada segundo, o que gerou jatos de matéria em seus polos, o que, por sua vez, criou os jatos de raios gama.

O Fermi detectou o jato apenas 0,4 segundos depois do LIGO ter detectado as ondas gravitacionais e ambos vindos da mesma área genérica dos céus. Entretanto, o satélite europeu de raios gama INTEGRAL  não confirmou esse sinal.

“Mesmo que a detecção pelo Fermi seja um alarme falso, eventos futuros no LIGO devem ser monitorados pela correspondente emissão de luz, independente de se eles forem oriundos da fusão de buracos negros, A natureza está sempre nos surpreendendo”, diz Loeb.

Se forem detectados mais jatos de raios gama associados com eventos de ondas gravitacionais, eles serão uma fonte promissora para medir distâncias cósmicas e a expansão do universo. Plotando o brilho remanescente de um jato de raios gama e medindo seu devio para o vermelho, e então comparando com as medições de distância independentes do LIGO, os astrônomos serão capazes de ajustar os limites dos parâmetros cosmológicos. “Para a astrofísica, os buracos negros são muito mais simples do que outros indicadores de distância, tais como supernovas, uma vez que eles são totalmente definidos somente por sua massa e rotação”, explica Loeb.

“Este artigo estabelece uma agenda que, certamente, vai estimular estudos subsequentes, naquele período crucial que se segue a uma descoberta do LIGO, onde o desafio é medir todas as suas implicações. Se a história servir como exemplo, a abordagem de ‘muitas mensagens’ advogado por Loeb, usando tanto as ondas gravitacionais como a radiação eletromagnética, é uma promessa de um enfoque mais profundo da natureza física da notável fonte do LIGO”, comenta Volker Bromm da Universidade do Texas em Austin, que não participou das pesquisas.

A pesquisa foi aceita para publicação em The Astrophysical Journal Letters  e tem uma versão online aqui.

– ### –

Cadê a luz que devia ter aparecido?

EurekAlert

Link para o original: Results of first search for visible light associated with gravitational waves

HARVARD-SMITHSONIAN CENTER FOR ASTROPHYSICS

Imagem cortesia do CERN


A Teoria da Relatividade Geral de Einstein previa a emissão de ondas gravitacionais por corpos celestiais massivos em movimento pelo espaço-tempo. Durante todo o século passado, todas as tentativas de detecção dessas ondas fracassaram, porém recentemente a colaboração LIGO-Virgo anunciou a primeira detecção de ondas gravitacionais, emitidas por um par de buracos negros que colidiram. Colisões de sistemas binários são famosos por produzirem “fogos-de-artifício” celestiais, de forma que uma equipe de astrônomos, inclusive os de Harvard, foi procurar indícios dessa colisão em radiação eletromagnética. Muito embora nada tenha sido encontrado, este trabalho foi a primeira busca detalhada pela contraparte visível de um evento gerador de ondas gravitacionais. Ela também vai servir como modelo para futuras buscas do follow-up desses eventos.

“Nossa equipe estava aguardando ansiosamente pela primeira detecção de ondas gravitacionais, para que pudéssemos rapidamente apontar nossa Câmera de Energia Escura para o local e procurar pela luz visível associada”, diz Edo Berger do Harvard-Smithsonian Center for Astrophysics (CfA), o principal investigador da equipe de follow-up. “Esta câmera é um dos instrumentos mais poderosos que há no mundo para este propósito”.

A detecção conjunta de ondas gravitacionais e de luz não é algo fácil, necessitando de telescópios grandes e de amplo campo para rapidamente varrer a área do céu correspondente à fonte de uma onda gravitacional. A equipe usou o imageador de 3 graus quadrados da Dark Energy Camera (DECam) montada no Telescópio Blanco (de 4 metros) no Observatório Interamericano de Cerro Tololo no Chile. O programa de buscas é uma colaboração entre astrônomos de váras instituições nos EUA, a Dark Energy Survey (DES) e membros da Colaboração LIGO.

A equipe rapidamente começou a observar a presumida localização da primeira fonte de ondas gravitacionais descoberta pelo LIGO, um dia após a detecção da onda gravitacional, portanto em 16 de setembro de 2015.

“O planejamento e a execução destas observações se tornou imediatamente nossa maior prioridade. Foi frenético, mas também entusiasmante poder fazer o follow up de uma descoberta tão significativa”, declarou Marcelle Soares-Santos do Fermilab, membra da DES e principal autora do artigo que descreve a busca e os resultados.

A equipe enfrentou um obstáculo significativo, já que a área de busca era enorme: 700 graus quadrados de céu, ou cerca de 2.800 vezes o tamanho de uma Lua cheia. A equipe observou grandes faixas dessa região várias vezes por um período de três semanas, mas não detectou qualquer jato incomum de luz visível. Esta informação servirá como parâmetro para por um limite na luminosidade que pode servir como referencial para futuras tentativas.

“Esta primeira tentativa para detectar luz visível associada a ondas gravitacionais foi muito desafiadora”, declarou Berger, “mas ela pavimenta o caminho para um novo campo da astrofísica”.

A equipe planeja continuar a buscar por luz visível nos futuros eventos de detecção de ondas gravitacionais.

###

A “onda” das ondas gravitacionais

Acima: Amplitude estimada do efeito da onda gravitacional vinda de GW150914. Mostra todo o comprimento de onda das ondas de choque, sem filtros. A imagem inserida mostra a relatividade numérica dos modelos dos horizontes de eventos dos buracos negros, na medida em que estes coalesceram. Abaixo: a separação entre os buracos negros coalescentes medida em unidades de raio de Schwarzschild (RS=2GM/c2) e a velocidade relativa calculada pelo parâmetro pós-newtoniano v/c=(GMπf/c3)1/3, onda f é a frequência da onda gravitacional calculada com relatividade numérica e M é a massa total.
Data 11 de fevereiro de 2016
Fonte: Observation of Gravitational Waves from a Binary Black Hole Merger
B. P. Abbott et al. (LIGO Scientific Collaboration and Virgo Collaboration)
Phys. Rev. Lett. 116, 061102 doi:10.1103/PhysRevLett.116.061102
Autor Abbott, B. P. et al.

Retirado da WikiMedia Commons: https://commons.wikimedia.org/wiki/File:Estimated_gravitational-wave_strain_amplitude_from_GW150914.png

Bem… A estas horas você, leitor, já deve estar meio saturado de tanta notícia sobre a detecção (afinal!) das ondas gravitacionais – previstas na Relatividade Geral de Einstein, mas, até agora, nunca detectadas e por um motivo óbvio: são fraquíssimas!

Você deve ter visto milhões de inforgráficos, animações, ilustrações, inclusive aquelas da analogia de um peso (normalmente uma bola de boliche sobre uma cama elástica) e as bolinhas de gude “orbitando” pelas bordas do buraco. Você leu traduções apressadas das conferências dadas pelo LIGO e Virgo – inclusive aqui… eu achei melhor perder o “furo” e esperar um press-release de uma fonte confiável; no caso o da National Science Foundation, via EurekAlert – porque, desde o fiasco dos “neutrinos mais rápidos que a luz” (que, no fim, era apenas um cabo defeituoso…), eu fiquei muito cauteloso; na verdade, a descoberta já estava correndo as redes sociais desde novembro do ano passado.

Outra coisa que você já deve ter visto, são notícias meio entusiasmadas demais… Gente falando de “uma nova janela para a astronomia”, “viagens espaciais usando dobras espaço-temporais” e sabe-se lá quantas teorias de conspiração que dizem que isso tudo é apenas uma farsa para encobrir tal ou qual plano sinistro de algum governo, da “big-pharma”, do Banco Mundial em conluio com o FMI, and you-name-it

Hora de baixar a bola e colocar as coisas na devida proporção!

Os Observatórios LIGO começaram a ser construídos em 1992 e entraram em operação de 2002 até 2010, quando passaram por uma reforma que durou cinco anos e custou 620 milhões de dólares para aumentar exponencialmente sua sensibilidade, voltando a operar em 18 de setembro de 2015. Em apenas dois meses, bingo!

Bom… Ou colisões entre buracos negros com massas entre 20 e 50 vezes a do Sol são muito mais comuns do que se pensa (esta foi a primeira vez que o fenômeno foi observado e, mesmo assim, indiretamente… “em algum lugar do hemisfério (celeste) Sul”), ou foi uma sorte dos diabos!… Como diz o press-release da NSF: “Durante a fração de segundo final, os buracos negros colidem a cerca de metade da velocidade da luz e acabam formando um único buraco negro mais massivo, convertendo parte da massa combinada dos buracos negros em energia, conforme a famosa fórmula de Einstein E=mc2. Essa energia é emitida como um forte jato de ondas gravitacionais. E foram essas ondas gravitacionais que o LIGO observou.” (o grifo é meu).

Sem querer ser chato (mentira!… é exatamente o que eu quero!) o Hemisfério Sul da Terra já não é mais tão pobre em observatórios como era no século XX. Os australianos são os “bambas” da rádioastronomia e o ESO no Atacama tem feito descobertas que vêm revolucionando o que se pensava que se sabia de astronomia. E esse canibalismo de buracos negros ainda não foi detectado?…

Se esse cataclismo cósmico foi capaz de gerar ondas gravitacionais perceptíveis aqui na Terra, certamente houve uma massiva emissão de raios eletromagnéticos ao longo de todo o espectro, desde ondas longas, até raios gama. Claro, com a distância (calculada em 6,5 bilhões de anos-luz) até os raios gama devem chegar em frequências bem mais baixas, mas eu continuo cabreiro com a ausência de confirmação. Atualizando em 17/02/2016: Cadê a luz que devia ter aparecido?

A gravidade é uma coisinha chata e difícil… Eu, na minha condição de leigo metido a besta, tenho certeza que o que chamamos de “gravidade” é um “efeito emergente” do Campo de Higgs, mas os físicos de verdade sempre me chamam a atenção para o problema de escala. Não temos conhecimentos suficientes para fazer tal afirmação (embora me pareça óbvio que o Campo de Higgs siginfique: “o espaço-tempo resiste ao movimento”, tanto que até um fóton – sem massa – tem uma velocidade máxima, “c” e o hipotético gravitron também). Mas, tomando o valor da interação eletromagnética como referência (valor = 1), a nuclear forte tem valor 60 (entre quarks), a nuclear fraca tem valor 10-4 e a gravitacional é estimada em 10-41. Ou seja: um gravitron tem a força de 0,000000000000000000000000000000000000000001 fóton…

Outra previsão da Relatividade Geral, ainda não confirmada experimentalmente, é o “arrasto do referencial”, ou, em termos leigos, o fato de que nada no universo está parado, portanto qualquer referencial inercial também se move com relação a algo mais. Dito de outra forma, o espaço-tempo em torno da Terra não é só deformado pela massa da Terra, mas também por seu movimento de rotação. Lançaram já duas sondas espaciais para checar isso (Gravity Probe A e B), mas a gravidade é algo tão fraquinho que todos os indícios de arrasto de referencial foram inconclusivos, por conta de interferências externas, inclusive e principalmente a flatulência de nosso Sol que vive ejetando massa coronal.

Um novo projeto de detecção de ondas gravitacionais está em andamento, o eLISA da ESA. Um conjunto de três satélites, dispostos em triângulo equilátero com 1 milhão de km de lado, em órbita heliocêntrica, fazendo as vezes dos lasers em “L” dos LIGO (que também devem ganhar o reforço de um terceiro observatório LIGO na Índia). Por enquanto, a ESA lançou um precursor, o LISA Pathfinder, para estudar o problema de comunicação entre os satélites eLISA e a antena em Terra.

O simples fato de que fomos capazes de detectar uma pequena perturbação no espaço-tempo, confirmando algo já sobejamente confirmado: a Relatividade Geral (se você usa GPS, fique sabendo que com a mecânica newtoniana você não chegaria até a esquina, mesmo que morasse nela), medindo uma flutuação menor do que o diâmetro de um próton, é, por si só, maravilhoso.

Mas começar a tirar ilações sobre a viabilidade da Propulsão Alcubierre, só com um “bip”, é demais para meu gosto…

– ### –

100 anos após a predição de Einstein, afinal detectaram ondas gravitacionais

EurekAlert

Link para o original: Gravitational waves detected 100 years after Einstein’s prediction

LIGO abre uma nova janela para o universo com a observação de ondas gravitacionais vindas da colisão de dois buracos negros

NATIONAL SCIENCE FOUNDATION

Pela primeira vez os cientistas conseguiram observar as ondulações na tessitura do espaço-tempo, chamadas de ondas gravitacionais, vindas de um evento cataclísmico no universo distante. Isto confirma uma predição importante da Teoria Geral da Relatividade, feita por Albert Einstein em 1915, e abre uma nova janela sem precedentes para o cosmos.

As ondas gravitacionais portam informações acerca de suas origens dramáticas e sobre a natureza da gravidade que não podem ser obtidas de outra maneira. Os físicos concluíram que as ondas gravitacionais detectadas foram produzidas na fração de segundo final da fusão de dois buracos negros que resultaram em um só buraco negro giratório mais massivo. Uma tal colisão de dois buracos negros já tinha sido prevista, mas jamais tinha sido observada.

As ondas gravitacionais foram detectads em 14 de setembro de 2015 às 09:15 (horá UTC) por ambos os detectores gêmeos do Laser Interferometer Gravitational-wave Observatory (LIGO), localizados em Livingston, Louisiana, e Hanford, Washington. Os observatórios LIGO são financiados pela National Science Foundation (NSF), e foram projetados, construídos e operados pelos California Institute of Technology (Caltech) e Massachusetts Institute of Technology (MIT). A descoberta, aceita para publicação por Physical Review Letters, foi feita pela LIGO Scientific Collaboration (que inclui a GEO Collaboration e o Australian Consortium for Interferometric Gravitational Astronomy) e a Virgo Collaboration com dados colhidos pelos detectores LIGO.

Com base nos sinais observados, os cientistas do LIGO estimam que os buracos negros que criaram este evento ttinham massas entre 29 a 36 massas solares e que o evento aconteceu há 1,3 bilhões de anos. Cerca de três massas solares foram convertidas em ondas gravitacionais em uma fração de segundo – com um pico de emissão de cerca de 50 vezes todo o universo visível. Pelo tempo de chegada dos sinais – o detector em Livingston regsitrou o evento 7 milissegundos antes do detector em Hanford – os cientistas podem afirmar que a fonte está localizada no Hemisfério Sul.

De acordo com a Relatiividade Geral, um par de buracos negros que orbitem um em torno do outro, perdem energia através da emissão de ondas gravitacionais, fazendo com que eles gradualmente se aproximem, ao longo de bilhões de anos e muito mais rápido nos minutos finais. Durante a fração de segundo final, os buracos negros colidem a cerca de metade da velocidade da luz e acabam formando um único buraco negro mais massivo, convertendo parte da massa combinada dos buracos negros em energia, conforme a famosa fórmula de Einstein E=mc2. Essa energia é emitida como um forte jato de ondas gravitacionais. E foram essas ondas gravitacionais que o LIGO observou.

A existência de ondas gravitacionais foi inicialmente demonstrada nas décadas de 1970 e 1980 por Joseph Taylor, Jr., e colegas. Em 1974, Taylor e Russell Hulse descobriram um sistema binário composto por um pulsar orbitando uma estrela de nêutrons. Taylor e Joel M. Weisberg descobriram em 1982 que a órbita do pulsar estava lentamente ficando mais apertada por causa da energia emitida na forma de ondas gravitacionais. Pela descoberta do pulsar e por demonstrar que isto tornaria possivel medir estas ondas gravitacionais, Hulse e Taylor ganharam o Prêmio Nobel de Física de 1993.

A nova descoberta do LIGO é a primeira observação das próprias ondas gravitacionais, feita através da medição das pequeninas perturbações que as ondas causam no espaço-tempo ao passarem pela Terra.

“Nossa  observação de ondas gravitacionais atinge uma ambiciosa meta estabelecida há cinco anos de observar diretamente esse fenômeno elusivo e compreender melhor o universo, e, adequadamente, complementar o legado de Einstein no centésimo aniversário de sua Teoria da Relatividade Geral”, declarou David H. Reitze, do Caltech, diretor executivo do Laboratório LIGO.

A descoberta foi tornada possível pelo aumento das capacidades do Advanced LIGO, um melhoramento importante na sensibilidade dos instrumentos, em comparação com a primeira geração dos detectores LIGO, o que permitiu um aumento significativo do volume de universo sondado – e a descoberta das ondas gravitacionais durante seu primeiro turno de observação. A NSF é a principal financiadora do LIGO, auxiliada por organizações como, na Alemanha, a Max Planck Society, no Reino Unido, Science and Technology Facilities Council, STFC e na Australia, Australian Research Council.

Várias das tecologias chave que tornaram o Advanced LIGO muito mais sensível foram desenvolvidas e testadas pela Colaboração Angl-Germânica GEO. Recursos de computação significativos tiveram a contribuição do AEI Hannover Atlas Cluster, do LIGO Laboratory, Syracuse University e da University of Wisconsin-Milwaukee. Várias universidades projetaram, construíram e testaram peças chave para o Advanced LIGO: A Australian National University, a University of Adelaide, a University of Florida, Stanford University, Columbia University of the City of New York ae Louisiana State University.

“Em 1992, quando o financiamento inicial para o LIGO foi aprovado, foi o maior investimento até então fetio pela NSF”, lembra France Córdova, diretor da NSF. “Foi um grande risco. Mas a NSF é a agência que toma esse tipo de risco. Nós apoiamos a ciência e a engenharia fundamentais em um ponto do caminho cujo destino é totalmente incerto. Nós financiamos os abridores de trilhas. É por isso que os EUA continuam sendo um líder global no avanço do conhecimento”.

A pesquisa LIGO é realizada pela LIGO Scientific Collaboration (LSC), um grupo de mais de 1000 cientistas de universidades de todos os EUA e maisoutros 14 países. Mais de 90 universidades e institutos de pesquisas na LSC desenvolvem tecnologias de detectores e analisam dados; aproximadamente 250 estudantes são colaboradores ativos da LSC. A rede de detectores da LSC inclui os interferômetros LIGO e o detector GEO600. A equipe GEO inclui cientistas do Max Planck Institute for Gravitational Physics (Albert Einstein Institute, AEI), Leibniz Universitat Hannover, juntamente com parceiros da University of Glasgow, Cardiff University, University of Birmingham, outras universidades no Reino Unido e a Universidade das Ilhas Baleares na Espanha.

“Esta detecção é o iníicio de uma nova era: o campo de astronomia de ondas gravitacionais é agora uma realidade”, declara Gabriela Gonzalez, porta-voz da LSC e professora de física e astronomia na Louisiana State University.

O LIGO foi proposto incialmente como um meio para detectar ondas gravitacionais na década de 1980 por Rainer Weiss, professor emérito de física do MIT; Kip Thorne, Professor Emérito “Richard P. Feynman” de Física Teórica do Caltech, e Ronald Drever, professor emérito de física, também do Caltech.

“A descrição desta observaçãoé lindamente exposta na Teoria da Relatividade Geral de Einstein, formulada há 100 anos e compreende o primeiro experimento da teoria em gravidade forte. Teria sido maravilhoso se pudéssemos ver a cara que Einstein faria, se houvesse um meio de contar para ele”, diz  Weiss.

“Com esta descoberta, nós, humanos, estamos embarcando em uma maravilhosa nova busca: a busca pelo lado enrugado do universo – objetos e fenômenos feitos de espaço-tempo enrugado. Buracos negros em colisão e ondas gravitacionais são os primeiros belos exemplos disto”, diz Thorne.

A pesquisa Virgo é realizada pela Colaboração Virgo, que consiste em mais de 250 físicos e engenheiros que pertencem a 19 diferentes grupos de pesquisa europeus: seis do Centre National de la Recherche Scientifique (CNRS) na França; oito do Istituto Nazionale di Fisica Nucleare (INFN) na Itália; dois na Holanda no Nikhef; o Wigner RCP na Hungria; o grupo POLGRAW na Polônia; e o European Gravitational Observatory (EGO), o laboratório onde fica o detector Virgo próximo de Pisa, Itália.

Fulvio Ricci, porta-voz do Virgo,  observa que: “Isto é um marco significativo para a física, mas, mais importante, é apenas o começo de muitas e entusiasmantes descobertas astrofísicas que vão vir de LIGO e Virgo.”

Bruce Allen, diretor gerente do Max Planck Institute for Gravitational Physics acrescenta: “Einstein pensava que as ondas gravitacionais eram fracas demais para serem detectadas e não acreditava em buracos negros. Mas eu penso que ele não se importaria de terem provado que ele estava errado!”

“Os detectores do Advanced LIGO são um tour de force da ciência e da tecnologia, tornados possíveis por uma equipe internacional de técnicos, engenheiros e cientistas realmente notáveis”, diz David Shoemaker do MIT, líder do projeto Advanced LIGO. “Nós nos orgulhamos de ter completado este projeto da NSF dentro do prazo e do orçamento”.

Em cada um dos observatórios, o interferômetro em forma de L com 4 km usa dois feixes de laser que vão e voltam pelos braços (tubos de 1,20m mantidos em vácuo quase perfeito). Os feixes servem para moniyorar a distância entre espelhos precisamente posicionados nas extremidades dos braços. De acordo com Einstein, a distância entre os espelhos sofreria uma mudança infinitesimal quando uma onda gravitacional passasse pelo detector. Uma mudança no comprimento dos braços menor do que um décimo-milionésimo do diâmetro de um próton pode ser detectada.

“Para tornar esse fantástico marco possível, foi necessária uma colaboração global de cientistas – tecnologia de laser e suspensão desenvolvida para nosso detector GEO600 foi usada para ajudar a tornar o Advanced LIGO o detector de ondas gravitacionais mais sofisticado jamais criado”, diz Sheila Rowan, professora de física e astronomia na University of Glasgow.

Para detectar a direção do evento causador das ondas gravitacionais, são necessários observatórios bem distantes entre si, assim como para verificar que os sinais vêm mesmo do espaço e não de outro fenômeno local.

Para conseguirt isto, o laboratório LIGO trabalha em parceria com cientistas na ìndia no Inter-University Centre for Astronomy and Astrophysics, o Raja Ramanna Centre for Advanced Technology e o Institute for Plasma para estabelecer um terceiro detector Advanced LIGO no subcontinente indiano. ainda esperando aprovação do governo indiano, ele pode se tornar operacional no início da próxima década. O detector adiconal vai uamentar muti a capacidade da rede gloal de detectores para localizar fontes de ondas gravitacionais.

“Esperamos que esta primeira observação aceler a construção de uma rede global de detectores para determinar com precisão a localização das fontes em uma era de astronomia multi-mensageiros”, diz David McClelland, professor de física e diretor do Centre for Gravitational Physics da Australian National University.

###

Imagens, vídeo e áudio (em inglês): https://mediaassets.caltech.edu/gwave

Histórico: https://youtu.be/MaAv2IVzqhM

Notícia: https://www.youtube.com/watch?v=wrqbfT8qcBc

Estrelas gigantes não colidem…


Faculty of Physics University of Warsaw

Monstros estelares não colidem – portanto, nada de catástrofes espetaculares

 IMAGEM: Esta é a Nebulosa da Tarântula (30 Doradus) na Grande Nuvem de Magalhães, em imagem do Telescópio Espacial Hubble. As super-estrelas, com massas de 200 a 300 vezes a do Sol foram descobertas aqui.

Clique aqui para a imagem ampliada e créditos.

Seria de se esperar que as colisões entre os remanescentes de estrelas monstruosas, com massas na faixa de 200 a 300 vezes a de nosso Sol, estivessem entre os eventos mais espetaculares de nosso universo. Talvez sejam, mas infelizmente é muito provável que jamais descubramos. Os astrofísicos do Observatório Astronômico da Faculdade de física da Universidade de Varsóvia descobriram que a primeira dessas colisões só vai acontecer daqui a alguns bilhões de anos.

Por muito tempo, os astrônomos acreditaram que as maiores estrelas do universo não passavam de 150 massas solares. No entanto, há três anos descobriram aglomerados estelares nas Nuvens de Magalhães que abrigavam estrelas “impossíveis” – monstros tremendos com massas entre 200 e 300 vezes a do nosso Sol.  A descoberta levantou um grande interesse entre os astrofísicos, particularmente aqueles envolvidos na busca centenária por ondas gravitacionais. Se esses monstros estelares formassem sistemas binários próximos, as colisões entre seus remanescentes poderiam ocorrer. As ondas gravitacionais resultantes de tal evento seriam poderosas o suficiente para que até nossos atuais detectores os pudessem sentir –  e a distâncias bem maiores do que os típicos buracos negros estelares. “Entretanto não podemos contar com a detecção de uma tal colisão espetacular”, lamenta o Dr. Krzysztof Belczyński do Observatório Astronômico da Faculdade de Física da Universidade de Varsóvia.

A equipe do Dr. Belczyński discutiu os últimos resultados de sua pesquisa com os participantes da 10ª Conferência Edoardo Amaldi sobre Ondas Gravitacionais, que está acontecendo em Varsóvia em conjunto com a 20ª Conferência Internacional sobre Relatividade Geral e Gravitação (GR20/Amaldi10).

Estrelas com grandes massas podem terminar suas vidas de duas maneiras: seu material pode ser explodido espaço a fora, ou elas podem colapsar sob sua própria gravidade em um buraco negro. Há uns poucos meses, os astrofísicos liderados pelo Dr Norhasliza Yusof  da Universidade de Kuala Lumpur demonstraram, usando modelos de computador, que algumas estrelas super-massivas podem formar buracos negros. Isto significa que o universo pode, realmente, conter sistemas binários de estrelas super-massivas que, mais tarde, podem evoluir para sistemas de dois buracos negros com massas muito maiores do que aquelas comuns aos buracos negros.

Os objetos que orbitam em sistemas binários próximos, compostos de estrelas de nêutrons ou buracos negros comuns, perdem energia com o passar do tempo, o que leva a órbitas cada vez mais próximas e, ao final, a uma colisão entre eles. Uma tal colisão pode gerar um efeito astronômico observável, na forma de um jorro de raios gama, e a explosão deve ser acompanhada pela emissão de ondas gravitacionais. Entretanto, até agora não conseguimos detectar essas ondas. Os detectores atuais só conseguem “ver” a colisão de buracos negros típicos no universo local. A colisão entre buracos negros gerados por estrelas super-massivas seria algo totalmente diferente. As ondas gravitacionais de tais colisões seriam fortes o bastante para serem detectadas em um futuro próximo.

Só que não…

Os componentes dos grandes sistemas estelares binários comuns, com massas de entre 50 a 100 massas solares, se formam a distâncias de, pelo menos, centenas, até milhares de raios solares. Tais objetos não podem nascer muito próximos um do outro porque a densidade resultante da matéria colapsaria em um único corpo estelar e o sistema binário simplesmente não seria criado. Sendo assim, para que um sistema binário existente colida, seus componentes têm que,de alguma forma, perder energia orbital. Isto acontece devido à rápida evolução de um dos objetos que, a partir de um certo ponto, começa a se expandir rapidamente. O segundo componente do sistema entra, então, na atmosfera de seu companheiro e – como resultado da interação – rapidamente perde energia. Por consequência, as órbitas se compactam no que é conhecido como um evento de envelope comum.

“Em um sistema estelar binário super-massivo, a situação é diferente”, explica o Dr. Belczyński. “Sabemos que os componentes de um tal sistema têm que se formar a uma distância relativamente grande um do outro. Também sabemos que estrelas super-massivas não se expandem, de forma que não pode acontecer uma fase de envelope comum. Isso significa que não existe um mecanismo físico que faça com que as órbitas se estreitem!”

Nesta situação, o único processo que permite uma perda gradual de energia pelos remanescentes de estrelas super-massivas em um sistema binário é a emissão de ondas gravitacionais.Porém as ondas gravitacionais emitidas por um desses sistemas de estrelas ou buracos negros bem distantes são muito fracas e a perda de energia é lenta.

“Vai demorar muitas dezenas de bilhões de anos, talvez centenas de bilhões de anos, para que os buracos negros colidam. E isto é muito mais tempo do que toda a história do universo, desde o Big Bang, de forma que não há a menor chance de detectarmos as ondas gravitacionais de uma colisão dessas no cosmos. A menos que…” e o Dr. Daniel Holz da Universidade de Chicago deixa em suspenso.

Exatamente: a menos que os modelos atuais de evolução estelar e de formação de sistemas binários em nuvens de poeira interestelar estejam errados. Só assim a observação de uma tal catástrofe espetacular no espaço se tornaria um desastre espetacular para as teorias astrofísicas contemporâneas.

 

###

E o universo ficou mais velho… e diferente

Telescópio do Polo Sul (WikiMedia Commons)

Telescópio do Polo Sul. Imagem da WikiMedia Commons.
Link para a imagem original.


Quando eu publiquei o post O universo antigo produzia mais estrelas do que se pensava, eu tive que escolher entre vários press-releases sobre o mesmo assunto. Eu traduzi o da Universidade de Chicago, mas havia também os da National Science Foundation, “Telescópios Financiados pela NSF no Polo Sul e Chile descobrem bursts de formação de estrelas no universo primitivo”, da Fundação Kavli, “Testemunhando starbursts em galáxias jovens”, da Universidade do Arizona, “[O Telescópio] ALMA expõe  fábricas de estrelas escondidas no universo jovem”, do National Radio Astronomy Observatory, “[O Telescópio] ALMA descobre “monstruosas” galáxias starburst no universo jovem”, da Carnegie Institution, “Descobertas galáxias antigas e extremamente ativas”, e outros dois com o mesmo título: “[O Telescópio] ALMA reescreve a história do baby boom estelar do Universo”, um da Universidade McGill e outro do European South Observatory.

É claro que todo este fuzuê sobre a descoberta tinha um motivo bem claro: os cálculos dos astrofísicos sobre a linha-do-tempo da formação de estrelas, galáxias e do próprio universo continham algum erro.

Imediatamente me ocorreu entrar em contato com o scibling Ethan Siegel do Starts With a Bang, mas diversas outras coisas (combinadas com meu raro talento em procrastinar) foram “deixando-para-depois” e, quando finalmente eu acessei o blog dele, me deparei com o post “O que todos deveriam saber sobre o universo, na véspera [da divulgação dos dados] do [Telescópio Espacial] Planck”. Bem… se Ethan esperava alguma novidade importante dos dados do Planck, eu também poderia…

Imagem do Fundo Cósmico de Micro-ondas obtida pelo Satélite Planck.
Link para a imagem original.


Agora, esta figura já é conhecida por todos e as agências de notícias já comentaram que o Universo é, pelo menos, 80 milhões de anos mais velho do que se calculava. Mas, como eu esperava, Ethan chama a atenção para diversas outras novidades em seu post “Do que é feito todo o Universo, graças ao Planck”. E eu vou tomar a liberdade de kibar desavergonhadamente o post dele. Espero que me perdoem se eu não reproduzir algumas das ilustrações do post do Ethan porque elas são demasiado técnicas. Por mais que eu ame a física quântica e a astrofísica, quando começam a argumentar “se o hamiltoniano é hermitiano”, eu me sinto como o cachorrinho que caiu do caminhão de mudanças…

Comparação da Resolução das imagens Cobe, WMAP e Planck.

Comparação da Resolução das imagens Cobe, WMAP e Planck. Crédito: NASA Jet Propulsion Laboratory, CalTech.

Link para a imagem original.

A primeira coisa que Ethan enfatiza é a qualidade da imagem fornecida pelo Planck. Como diz ele, na década de 1990 o satélite  Cosmic Background Explorer (COBE ou Explorador do Fundo Cósmico) nos deu uma primeira imagem difusa do Fundo Cósmico de Micro-ondas (Cosmic Microwave Background, ou simplesmente CMB). Se você está pensando naquele eco do Big Bang descoberto quase que por acaso por Penzias e Wilson em 1965, está correto! A primeira imagem disto foi obtida na década de 1990 pelo satélite Cobe, com uma resolução de imagem de cerca de 7 graus, e a sonda Wilkinson Microwave Anisotropy Probe (WMAP) da NASA obteve, em 2006, após muita filtragem dos ruídos das emissões “atuais”, uma imagem bem mais nítida do CMB, com uma resolução de cerca de meio grau. Agora, também após um exaustivo processo de filtragem do ruído, o Planck chegou ao limite de resolução possível; Ethan enfatiza que o problema não é o da sensibilidade dos instrumentos do Planck, mas da própria natureza do universo!

A segunda coisa que ele realça é que o universo não só é composto de mais matéria do que se pensava, como também está se expandindo mais devagar do que se calculava. O Parâmetro de Hubble medido pelo Planck é tão menor do que aquele que se usava que, se fosse ele a única diferença encontrada, significaria que o universo seria um bilhão de anos mais velho do que se pensava! (Só que não…) As quantidades de matéria normal e escura são bem maiores do que se acreditava, sobrando uma fatia menor para a energia escura. Em lugar de 73% de energia escura, o Planck nos diz que é algo na faixa de 68 a 69%; a matéria escura deve ficar entre 26 a 26,5% e a matéria bariônica (ou “normal”, da qual somos feitos nós e as estrelas) não é mais só 4,6% do universo: o número subiu para 4,9%. Ah!… Sim… E, em tanto quanto o Planck tem a nos dizer, não há uma “curvatura” no universo: ele é “plano”.

Em outras palavras, existe um pouco mais de matéria normal, uma quantidade significativamente maior de matéria escura e uma quantidade significativamente menor de energia escura do que pensávamos! De forma que, enquanto a taxa de expansão menor nos diz que o universo é mais velho do que acreditávamos, o aumento de matéria (e diminuição da energia escura) nos diz que o universo é mais jovem do que seria de outra forma!

Um universo que fosse composto por 100% de matéria normal + matéria escura, teria apenas uns 10 bilhões de anos, porém o nosso parece ser dividido em cerca de 31,5% de matéria-total e 68,5% de energia escura. De forma que, quando ajustamos nossos atuais dados, chegamos a um universo com 13,81 bilhões de anos, ou seja: 80 milhões de anos mais velho do que nossa melhor estimativa anterior.

Outra coisa que se procurou entre os dados do Planck foi a “assinatura” de ondas gravitacionais primevas, o que corroboraria certos modelos da inflação do universo e descartaria outros. Os dados de polarização ainda estão sendo analisados, mas, por enquanto, nada definitivo emergiu.

Finalmente, os dados confirmam algo muito esquisito, já notado anteriormente: existe um alinhamento das anomalias locais do CMB com o eixo de nossa galáxia, algo que os astrofísicos chamam jocosamente de “eixo do mal”.


Crédito da imagem: ESA e a Colaboração Planck (essa eu não achei o original e kibei direto do blog do Ethan)

Ondas gravitacionais produzidas por estrelas anãs brancas

Harvard-Smithsonian Center for Astrophysics

Anãs brancas encurvam o espaço e produzem ondas gravitacionais

 IMAGEM: Esta é uma concepção artística do sistema J0651, com as ondulações realçadas para mostrar como o par de anãs brancas está emitindo ondas gravitacionais.

Clique aqui para mais informações. 

Ondas gravitacionais – de maneira bem parecida com o recém descoberto bóson de Higgs – são notoriamente difíceis de observar. Os cientistas conseguiram detectar pela primeira vez essas ondulações na textura do espaço-tempo de maneira indireta, por meio dos sinais de radio de um sistema binário composto por um pulsar e uma estrela de nêutrons. Essa descoberta – que precisou de uma sincronização extremamente precisa dos sinais de radio – rendeu um Prêmio Nobel à equipe que a realizou. Agora uma equipe de astrônomos detectou o mesmo efeito na faixa de luz visível, na luz de um par de anãs-brancas que se eclipsam alternadamente.

“Este resultado marca uma das detecções mais limpas e fortes do efeito de ondas gravitacionais”, declarou Warren Brown, membro da equipe do Observatório Astrofísico Smithsonian (Smithsonian Astrophysical Observatory = SAO).

A equipe descobriu o par de anãs brancas no ano passado (anãs brancas são os remanescentes dos núcleos de estrelas parecidas com nosso Sol). O sistema, chamado SDSS J065133.338+284423.37 (ou, abreviadamente, J0651), contém duas anãs brancas tão próximas entre si – apenas um terço da distância entre a Terra e a Lua – que completam uma órbita em menos de 13 minutos.

“A cada seis minutos as estrelas do J0651 se eclipsam entre si, tal como visto da Terra, o que as torna um cronômetro sem paralelo e preciso, a uns 3.000 anos-luz de distância”, diz o autor principal do estudo,  J.J. Hermes, um estudante de pós-graduação que trabalha com o Professor Don Winget na Universidade do Texas em Austin.

A Teoria da Relatividade Geral de Einstein prediz que objetos em movimento criam ondulações sutis na tessitura do espaço-tempo, chamadas de ondas gravitacionais. Essas ondas gravitacionais devem ser capazes de transportar energia, fazendo com que as estrelas muito lentamente se aproximem mais ainda e orbitem cada vez mais rápido. A equipe foi capaz de detectar esse efeito no J0651.

“Em comparação com abril de 2011, quando descobrimos este objeto, os eclipses estão agora ocorrendo seis segundos antes do esperado”, declarou o membro da equipe Mukremin Kilic da Universidade de Oklahoma.

“Este é um efeito da relatividade geral que se pode medir com um relógio de pulso”, acrescentou Warren Brown do SAO.

O sistema J0651 vai prover a oportunidade de comparar futuras detecções diretas, com base no espaço, de ondas gravitacionais, com aquelas inferidas a partir do decaimento orbital, o que vai proporcionar importantes benchmarks para nossa compreensão do funcionamento da gravidade.

A equipe espera que o período encurte ainda mais e mais a cada ano, com os eclipses acontecendo mais de 20 segundos antes do (de outra forma) esperado no entorno de maio de 2013. As estrelas vão eventualmente se fundir, em cerca de dois milhões de anos. Observações futuras continuarão a medir o decaimento orbital desse sistema e vão tentar entender como as forças de marés afetam a fusão dessas estrelas.

 

###

Sobre ScienceBlogs Brasil | Anuncie com ScienceBlogs Brasil | Política de Privacidade | Termos e Condições | Contato


ScienceBlogs por Seed Media Group. Group. ©2006-2011 Seed Media Group LLC. Todos direitos garantidos.


Páginas da Seed Media Group Seed Media Group | ScienceBlogs | SEEDMAGAZINE.COM