Formação de planetas em sistemas estelares binários

EurekAlert

Link para o original: Planet formation around binary star

O ALMA revela o potencial de formação de planetas de um disco protoplanetário

NATIONAL RADIO ASTRONOMY OBSERVATORY

IMAGE

Concepção artísitica do sistema estelar binário HD 142527 baseado nos dados do Atacama Large Millimeter/submillimeter Array (ALMA). A imagem mostra um distinto arco de poeira (vermelho) inserido no disco protoplanetário. No arco vermelho, não há gases, o que sugere que o monóxido de carbono “congelou”, formando uma camada de geada sobre os grãos de poeira nessa região. Os astrônomos especulam que esta geada fornece um impulso inicial para a formação de planetas. Os dois pontos no centro representam as duas estrelas do sistema.
Crédito da imagem: B. Saxton (NRAO/AUI/NSF)

Através do ALMA, os astrônomos tiveram uma nova visão detalhada dos estágios iniciais da formação de planetas em torno de uma estrela binária. Inserida na periferia do disco protoplanetário da estrela dupla, os astrônomos encontraram uma surpreendente região em forma de crescente composta por poeira e conspicuamente sem gases. Este resultado, apresentado na reunião da AAAS em Washington, D.C., permite novas abordagens sobre o potencial de formação de planetas em um sistema estelar binário.

Os astrônomos têm grandes dificuldades para compreender como se formam planetas em sistemas estelares binários. Os primeiros modelos sugeriam que o cabo-de-guerra entre dois corpos estelares colocaria planetas jovens em órbitas excêntricas, possivelmente ejetando-os do sistema ou os enviando em rota de colisão com as estrelas. As observações, entretanto, mostram que planetas realmente se formam e conseguem manter órbitas surpreendentemente estáveis em torno de estrelas duplas.

Para compreender melhor como tais sistemas se formam e evoluem, os astrônomos se valeram do Atacama Large Millimeter/submillimeter Array (ALMA) para fazer uma nova e detalhada observação do disco protoplanetário em torno do sistema HD 142527, um sistema binário a cerca de 450 anos-luz da Terra em um aglomerado estelar jovem, conhecido como Associação Escorpião-Centauro.

O sistema HD 142527 consiste de uma estrela principal com um pouco mais que o dobro da massa do Sol e uma pequena companheira com apenas cerca de um terço da massa do Sol. Elas estão separadas mais ou menos pela distância entre o Sol e Saturno. Estudos anteriores desse sistema com o  ALMA revelaram detalhes surpreendentes acerca das estruturas de seus discos interno e externo..

“Há muito tempo se sabe que este sistema binário tem uma corona de formação de planetas, de gás e poeira”, diz Andrea Isella, astrônomo da Rice University em Houston, Texas. “As novas imagens do ALMA revelam detalhes até agora não vistos acerca dos processos físicos que regulam a formação de planetas em torno deste e provavelmente vários outros sistemas binários”.

Planetas se formam a partir de extensos discos de poeira e gás que circundam estrelas jovens. Pequenos grãos de poeira e bolsões de gás eventualmente são arrebanhados pela gravidade, formando aglomerações cada vez maiores que, eventualmente, se tornarão asteróides e planetas. Entretanto, os detalhes desse processo ainda não são bem compreendidos. Os astrônomos, estudando uma grande série de discos protoplanetários com o ALMA, esperam compreender melhor as situações que criam as condições para a formação de planetas pelo universo afora.

As novas imagens em alta resolução obtidas pelo ALMA do HD 142527 mostram um largo anel elíptico em torno da estrela dupla. O disco começa incrivelmente longe da estrela central – cerca de 50 vezes a distãncia da Terra ao Sol. a maior parte do disco é composta por gases, inclusive duas formas de monóxido de carbono (13CO e C18O), mas existe uma notável ausência de gases dentro de um enorme arco de poeira que se estende por cerca de um terço do disco em torno do sistema estelar.

Esta nuvem de poeira em forma de crescente pode ser resultante de forças gravitacionais peculiares a estrelas binárias e pode ser também a chave para a formação de planetas, especula Isella. A ausência de gases livres é provavelmente resultante de seu congelamento, formando uma fina camada de gelo nos grãos de poeira.

“A temperatura é tão baixa que os gases congelam e aderem aos grãos”, explica Isella. “Acresita-se que este processo aumente a capacidade dos grãos de poeira grudarem uns nos outros, o que faz disso um forte catalizador para a formação de planetesimais e, no fim, de planetas”.

“Estamos estudando discos protoplanetários há pelo menos 20 anos”, prossegue Isella. “Existem algo entre algumas centenas e alguns milhares deles que podemos examinar novamente com o ALMA para descobrir novos e surpreendentes detalhes. Esta é a beleza do ALMA. Cada vez que se obtém novos dados, é como abrir um presente. Ninguém sabe o que vai encontrar”.

O HD 142527 será o objeto de um artigo a ser publicado que tem como autor principal o postdoctoral fellow da Rice, Yann Boehler, que trabalha com o grupo de Isella.

###

Estrelas canibais

EurekAlert

Link para o original: ‘Cannibalism’ between stars

Nova pesquisa mostra o passado turbulento de nosso Sol

UNIVERSIDADE DE VIENNA

IMAGE

Esta é uma simulação de um disco circunstelar instável, feito por meio de cálculos hidrodinâmicos. A forma protoplanetária no disco é devida à fragmentação gravitacional. As três figuras menores mostram o agregado sendo gradualmente absorvido pela estrela.

Copyright: Eduard Vorobyov, Universität Wien

As estrelas nascem dentro de um disco giratório de gás e poeira interestelares que se contrai até a densidade estelar graças a sua própria gravidade. Porém, antes de fazer parte da estrela, a maior parte da nuvem recai em um disco circunstelar que se forma em torno do que será o núcleo da estrela, devido à conservação do momento angular. A maneira pela qual o material é transportado pelo disco até a estrela, fazendo com que esta aumente sua massa, se tornou recentemente um dos principais tópicos de pesquisa na astrofísica.

Verificou-se que as estrelas não acumulam massa de maneira constante, como se pensava anteriormente, mas sim em uma série de eventos violentos que se manifestam como um notável aumento no brilho da estrela. A jovem estrela FU Orionis na constelação de Órion é o exemplo perfeito, tendo mostrado um aumento em seu brilho de até 250 vezes, no período de apenas um ano, permanecendo nesse estágio de alta luminosidade pelos últimos cem anos.

Um dos mecanismos possíveis para explicar esses eventos de aumento de brilho, foi proposto há dez anos por Eduard Vorobyov, que agora trabalha no Departamento de Astrofísica da Univesidade de Vienna, em colaboração com Shantanu Basu da Universidade de Western Ontario, Canada.

De acordo com a teoria aventada  por eles, o aumento do brilho da estrela pode ser causado pela fragmentação decorrente de instabilidades gravitacionais nos massivos discos gasosos que circundam estrelas jovens, seguida pela migração de densos aglomerados gasosos para dentro da estrela. Tal como o ato de jogar toras de lenha em uma fogueira, esses espisódios liberam um excesso de energia que faz com que a jovem estrela aumente o brilho centenas e até milhares de vezes. A cada episódio, a estrela consome o equivalente a uma massa terrestre a cada dez dias. Após isso, pode levar outros milhares de anos até que ocorra um novo evento semelhante.

Eduard Vorobyov  descreve o processo de formação desses aglomerados de gás nos discos circunstelares, seguido de sua migração para dentro das estrelas, como “canibalismo em escala astronômica”. Esses aglomerados poderiam ter-se estabilizado em planetas gigantes, tais como Júpiter, entretanto foram devorados pela estrela mãe. Tal coisa evoca uma analogia interessante com a mitilogia grega, na qual Cronus, o líder da primeira geração de Titãs, devorava seus filhos recém nascidos (embora não tenha conseguido devorar Zeus que finalmente acabou por matar seu pai e assumir seu trono).

Com o advento de novos instrumentos de observação, tais como o Telescópio SUBARU, de 8,2 m, instalado no Mauna Kea, Hawaii, para observar as faixas de luz visível e infravermelho, tornou-se possível pela primeira vez testar as previsões dos modelos teóricos. Usando as observações de alta resolução da luz polarizada, uma equipe internacional de astrônomos, liderada por Hauyu Liu do European Space Observatory (Garching, Alemanha) verificou a presença de caracterísitcas chave associadas com o modelo de fragmentação do disco – arcos e braços de grande escala em torno de quatro estrelas jovens que passavam por súbitos aumentos na luminosidade, inclusive a estrela protótipo FU Orionis. Os resultados desse estudo foram aceitos para publicação em Science Advances – uma publicação revisada por pares e de acesso livre pertencente ao grupo Science.

“Isto é um passo importante para a compreensão de como as estrelas e os planetas se formam e evoluem”, afirma Vorobyov, “Se pudermos comprovar que a maior parte das estrelas passa por esses episódios de aumento do brilho causados por instabilidade gravitacional, poderia significar que nosso próprio Sol pode ter passado por vários episódios semelhantes, o que implica que os planetas gigantes do Sistema Solar são sortudos sobreviventes do passado tempestuoso do Sol”.

###

Publicação em Science Advances

Hauyu Baobab Liu, Michihiro Takami, Tomoyuki Kudo, Jun Hashimoto, Ruobing Dong, Eduard I. Vorobyov, Tae-Soo Pyo, Misato Fukagawa, Motohide Tamura, Thomas Henning, Michael M. Dunham, Jennifer Karr, Nobuhiko Kusakabe, Toru Tsuribe: “Circumstellar Disks of the Most Vigorously Accreting Young Stars”, publicado online em 5 de fevereiro de 2016.

Um nono planeta no sistema solar? Pode ser…

Pesquisadores da Caltech encontram indícios de um nono planeta (de verdade)

CALIFORNIA INSTITUTE OF TECHNOLOGY

IMAGE
IMAGEM: Concepção artística de uma vista do nono planeta e o Sol à distância. Acredita-se que o planeta seja gasoso e semelhante a Urano e Netuno.CRÉDITO: CALTECH/R. HURT (IPAC)

Pesquisadores da Caltech encontraram indícios da existência de um planeta gigante que percorreria uma órbita bizarra e alongada no Sistema Solar Exterior. O objeto, batizado de Planeta Nove, teria uma massa de cerca de 10 vezes a da Terra e orbitaria cerca de 20 vezes mais distante do Sol do que Netuno (o qual orbita o Sol a uma distância de 4,58 bilhões de km). Realmente, esse planeta novo levaria entre 10.000 e 20.000 anos para completar uma única órbita em torno do Sol.

Os pesquisadores, Konstantin Batygin e Mike Brown, descobriram a existência desse planeta por meio de modelos matemáticos e simulações em computador, mas ainda não observaram diretamente sua existência.

“Esse seria um nono planeta de verdade”, diz Brown, Professor “Richard and Barbara Rosenberg” de Astronomia Planetária. “Só foram encontrados dois planetas de verdade desde os velhos tempos e este seria o terceiro. É um pedaço substancial de nosso Sistema Solar que ainda está por aí, esperando ser encontrado, o que é entusiasmante”.

Brown observa que o suposto nono planeta – com uma massa 5.000 vezes maior que a de Plutão – é suficientemente grande para não haver debates sobre se é mesmo um planeta de verdade. Diferentemente dos objetos agora conhecidos como planetas anões, o Planeta Nove domina gravitacionalmente suas vizinhanças no Sistema Solar. Na verdade, ele domina uma região maior do que qualquer outro planeta conhecido – algo que faz que Brown diga que ele é “o mais ‘planetário’ de todos os planetas de todo o Sistema Solar”.

Batygin e Brown descrevem seu trabalho na corrente edição da publicação Astronomical Journal  e mostram como o Planeta Nove ajuda a explicar várias características misteriosas do campo de objetos congelados e pedregulhos que ficam além da órbita de Netuno, conhecido como o Cinturão de Kuiper.

“Embora nós estivéssemos inicialmente bastante céticos que esse planeta pudesse existir, na medida em que continuamos a investigar sua órbita e o que ele significaria para o Sistema Solar Exterior, fomos nos convencendo cada vez mais de sua existência”, diz Batygin, professor assistente de ciência planetária. “Pela primeira vez em 150 anos, existem indícios sólidos de que o censo planetário do Sistema Solar está incompleto”.

O camiho para a descoberta teórica não foi uma linha reta. Em 2014, um antigo pós-doutorando de Brown, Chad Trujillo, e seu colega Scott Shepherd publicaram em um artigo que 13 dos mais distantes objetos [conhecidos] do Cinturão de Kuiper eram similares com respeito a uma característica orbital obscura. Para explicar essa similaridade, eles sugeriram a possível presença de um pequeno planeta. Brown achou que a solução de um planeta era pouco provável, mas seu interesse ficou aguçado.

Ele levou o problema até Batygin e os dois começaram uma colaboração que se estendeu por um ano e meio para investigar os objetos distantes. Sendo um observador e o outro um teórico, respectivamente, os pesquisadores abordaram o trabalho com perspectivas diferentes – Brown como alguém que olha para o céu e tenta ancorar tudo no contexto daquilo que pode ser visto, enquanto Batygin como alguém que procura o contexto dinâmico, considerando como as coisas podem funcionar do ponto de vista da física. Essas diferenças permitiram que os pesquisadores desafiassem mutuamente suas ideias e considerassem novas possibilidades. “Eu trazia alguns aspectos das observações; ele voltava com argumentos teóricos e nós nos confrontávamos. Eu não creio que a descoberta pudesse ter sido feita sem esse vai e vem”, diz Brown. “Foi possivelmente o ano mais divertido para trabalhar com um problema no Sistema Solar que eu já tive”.

Rapidamene Batygin e Brown se deram conta de que os seis obejtos mais distantes da coleção original de Trujillo e Shepherd, seguiam todos órbitas elípticas que apontavam para a mesma direção no espaço físico. Isto é particularmente surpreendente porque os pontos mais distantes de suas órbitas se movem em torno do Sistema Solar e eles viajam em velocidades diferentes.

“É quase como se tivéssemos seis ponteiros em um relógio, cada um se movendo em uma velocidade diferente, e, quando você olha, todos estão exatamente no mesmo lugar”, explica Brown. A probabilidade de que isto aconteça é algo como 1 em 100. Mas além disso, as órbitas dos seis objetos também são inclinadas do mesmo jeito – todas com uma inclinação de 30 graus para com o plano da eclíptica (o plano das órbitas dos oito planetas conhecidos). A probabilidade disto acontecer cai para 0,007%. “Basicamente, isto não pode ser por acaso”, diz Brown. “De forma que pensamos que outra coisa devia estar moldando essas órbitas”.

A primeira possibilidade investigada foi a de que talvez houvesse um número suficiente de objetos no Cinturão de Kuiper – alguns dos quais não tinham sido ainda descobertos – para criar a gravidade necessária para manter esta subpopulação aglomerada. Os pesquisadores rapidamente descartaram isto quando calcularam que este cenário precisaria que o Cinturão de Kuiper tivesse cerca de 100 vezes a massa estimada atualmente.

Isso os deixou com a ideia de um planeta. Sua primeira resposta instintiva foi a de rodar simulações envolvendo um planeta em uma órbita distante que abrangesse as órbitas dos seis objetos do Cinturão de Kuiper, que agiria como um laço gigante para mantê-los em seu alinhamento. Batygin diz que isso quase funciona, mas não coincide precisamente com as excentricidades observadas. Como diz ele: “Perto do alvo, mas não ganha o prêmio”.

Então, realmente por mero acidente, Batygin e Brown perceberam que se eles rodassem simulações com um planeta massivo com uma órbita contra-alinhada – uma órbita na qual o ponto mais próximo do Sol, também chamado de periélio, ficasse distante 180 graus dos outros objetos e planetas conhecidos – os objetos distantes no Cinturão de Kuiper na simulação assumiriam o alinhamento observado atualmente.

“A resposta natural é: ‘Essa geometria orbital não pode estar certa. Isso não pode ser estável a longo prazo porque, ao fim e ao cabo, isso faria com que o planeta e os objetos se encontrassem e, eventualmente, colidissem”, explica Batygin. No entanto, por meio de um mecanismo conhecido como ressonância de movimento médio, a órbita do planeta anti-alinhado na verdade impede que os objetos do Cinturão de Kuiper colidam com ele e os mantém alinhados. Na medida em que os objetos em órbita se aproximam, eles trocam energia. Então, por exemplo, para cada quatro órbitas que o Planeta Nove descreve, um dos objetos distantes do Cinturão de Kuiper pode perfazer nove órbitas. Eles jamais colidem. Em lugar disso, tal como um pai que mantém o arco de uma criança em um balanço, dando empurrões periódicos, o Planeta Nove afeta as órbitas dos objetos distantes do Cinturão de Kuiper de forma tal que sua configuração com o planeta é mantida.

“Ainda assim, eu estava bastante cético” relata Batygin. “Eu nunca tinha visto coisa parecida na mecânica celeste”.

Porém, pouco a pouco, na medida em que os pesquisadores investigavam as caracteríticas adicionais e consequências do modelo, eles se persuadiram. “Uma boa teoria deve não só explicar as coisas que você se porpõe a explicar. Ela deve de preferência explicar outras coisas que você não tinha se proposto explicar e fazer previsões que sejam verificáveis”, argumenta Batygin.

E, com efeito, a existência do Planeta Nove ajuda a explicar mais do que só o alinhamento dos objetos distantes do Cinturão de Kuiper. Ela também explica as misteriosas órbitas que ambos traçam. O primeiro desses objetos, chamado Sedna, foi descoberto por Brown em 2003. Diferentemente da variedade padrão dos objetos do Cinturão de Kuiper que são “chutados para fora” por Netuno e voltam a ele, Sedna nunca se aproxima muito de Netuno. Um segundo objeto parecido com Sedna, conhecido como 2012 VP113, foi anunciado por Trujillo e Shepherd em 2014. Batygin e Brown descobriram que a presença do Planeta Nove em sua órbita proposta, produz naturalmente objetos tipo Sedna, retirando um objeto padrão do Cinturão de Kuiper e lentamente o puxando para uma órbita menos conectada a Netuno.

Mas a maior surpresa dos pesquisadores foi que suas simulações também prediziam que haveria objetos no Cinturão de Kuiper em órbitas perpendiculares ao plano da eclíptica. Batygin continuou encontrando indícios disso e os levou a Brown. “De repente eu percebi que existem objetos assim”, relembra Brown. Nos últimos três anos, observadores identificaram quatro objetos com órbitas mais ou menos perpendiculares à de Netuno e enfileirados. “Nós plotamos as posições desses objetos e suas órbitas e elas se encaixaram exatamente nas simulações”, diz Brown. “Quando descobrimos isso, meu queixo caiu no chão”.

“Quando a simulação alinhou os objetos distantes no Cinturão de Kuiper e criou objetos tais como Sedna, nós pensamos que isso era maravilhoso – mata-se dois coelhos com uma cajadada”, diz Batygin. “Mas quando a existência do planeta também explicou essas órbitas perpendiculares, não foram só dois coelhos: foi mais um coelho que você nem sabia que estava na moita”.

De onde veio o Planeta Nove e como ele foi parar no Sistema Solar Exterior? Os cientistas há muito acreditam que o Sistema Solar em sua infância começou com quatro núcleos planetários que sugaram todo o gás em seu entorno, formando os quatro planetas gasosos – Júpiter, Saturno, Urano e Netuno. Ao longo do tempo, colisões e ejeções os moldaram e levaram a suas presentes posições. “Mas não existe uma razão para que não tenha havido cinco núcleos, em lugar de quatro”, argumenta Brown. O Planeta Nove pode representar esse quinto núcleo e, se ele chegou perto demais de Júpiter ou Saturno, pode ter sido ejetado para sua órbita distante e excêntrica.

Batygin e Brown continuam a refinar suas simulações e aprender mais acerca da órbita do planeta e sua influência sobre o Sistema Solar distante. Por enquanto, Brown e outros colegas começaram a procurar os céus pelo Planeta Nove. Somente sua órbita aproximada é conhecida, não sua localização precisa na rota elíptica. Se o planeta estiver próximo de seu periélio, diz Brown, os astrônomos podem ser capazes de localizá-lo em imagens de varreduras anteriores. Se ele estiver na parte mais distante de sua órbita (afélio), os maiores telescópios do mundo – tais como os telescópios gêmeos de 10m do Observatório W. M. Keck e o Tellescópio Subaru, todos no Mauna Kea, no Hawaii – serão necessários para encontrá-lo. Se, entretanto, o Planeta Nove estiver agora em qualquer ponto intermediário, vários telescópios terão a chance de encontrá-lo.

“Eu adoraria encontrá-lo”, diz Brown. “Mas ficaria plenamente satisfeito se outra pessoa o encontrar. É por isso que estamos publicando este artigo. Esperamos que outras pessoas se inspirem e comecem a procurar”.

Em termos das compreensão do contexto do Sistema Solar no universo, Batygin diz que esse planeta que nos parece tão esdrúxulo, torna nosso Sistema Solar mais parecido com outros sistemas planetários que estão sendo encontrados em outras estrelas. Em primeiro lugar, a maioria dos exoplanetas que orbitam estrelas parecidas com o Sol, não têm um padrão orbital simples – ou seja, alguns orbitam extremamente perto de suas estrelas mães, enquanto que outros seguem em órbitas excepcionalmente distantes. Segundo, a maioria dos exoplanetas varia de 1 a 10 massas terrestres.

“Uma das descobertas mais surpreendentes sobre outros sistemas planetários é que o tipo mais comum de planeta por aí tem uma massa entre a da Terra e a de Netuno”, diz Batygin. “Até agora, nós pensávamos que no Sistema Solar faltava o tipo mais comum de planeta. Pode ser que sejamos mais normais, por fim”.

Brown, que é bem conhecido por seu significativo papel no rebaixamento de Plutão de planeta a planeta anão, acrescenta: “Todas essas pessoas que ficaram com raiva de Plutão não ser mais chamado de planeta, podem se entusiasmar com a possibilidade de haver realmente outro planeta lá fora e fazer o Sistema Solar ficar com nove planetas novamente”.

###

O artifo é intiotulado “Evidence for a Distant Giant Planet in the Solar System.”

EDIÇÃO POSTERIOR:

Órbitas do Planeta Nove e dos objetos do Cinturão de Kuper:

_87819538_p9_kbo_orbits_labeled_1_

Fonte: WikiMedia

Planetas que orbitam estrelas binárias


University of Bristol

Um planeta, duas estrelas: uma nova pesquisa mostra como se formam planetas circumbinários

 

Por dos Sóis em Tatooine (do Filme “Guerra nas Estrelas”)

WikiMedia Commons


O planeta natal de Luke Skywalker, Tatooine, teria se formado longe de sua posição mostrada no universo do filme “Guerra nas Estrelas”. É o que diz um novo estudo realizado pela Universidade de Bristol com suas contrapartidas deste universo real, observadas pelo Telescópio Espacial Kepler.

Tal como o Tatooine da ficção, o planeta Kepler-34(AB)b é um planeta circumbinário, ou seja, sua órbita é em torno de duas estrelas. Existem poucos ambientes mais extremos do que um sistema estelar binário para a formação de planetas. As poderosas perturbações gravitacionais, vindas das duas estrelas, sobre os blocos de construção de planetas pode levar a colisões destruidoras que esfarelam o material. Então, como se pode explicar a presença de planetas assim?

Em uma pesquisa publicada nesta semana em Astrophysical Journal Letters, a Dra Zoe Leinhardt e seus colegas da Escola de Física de Bristol realizaram simulações em computador dos estágios iniciais da formação de planetas em torno de estrelas binárias, empregando um modelo sofisticado que calcula os efeitos da gravidade e das colisões sobre e entre um milhão desses “blocos de construção” de planetas.

Eles descobriram que a maioria desses planetas tem que ter se formado muito mais longe do centro de gravidade do sistema estelar binário e depois migrado para sua posição atual.

A Dra Leinhardt declarou: “Nossas simulações mostram que o disco circumbinário é um ambiente hostil até mesmo para objetos grandes e de forte gravidade. Levando em conta os dados sobre colisões, assim como a taxa de crescimento físico de planetas, descobrimos que Kepler 34(AB)b teria tido enormes dificuldades para se formar onde hoje o encontramos”.

Com base nessas conclusões sobre Kepler-34, parece provável que todos os planetas circumbinários atualmente conhecidos também tenham passado por significativas migrações desde os locais onde se formaram – com a possível exceção de Kepler-47 (AB)c que fica mais distante das estrelas binárias do que qualquer outro planeta circumbinário.

Stefan Lines, principal autor do estudo, declarou: “Os planetas circumbinários capturaram a imaginação de muitos escritores e diretores de filmes de ficção científica – nossa pesquisa mostra o quão notáveis são esses planetas. Compreender mais sobre onde eles se formam, vai ajudar em futuras missões de busca por planetas semelhantes à Terra em sistemas estelares binários”.

###

Artigo

‘Forming circumbinary planets: N-body simulations of Kepler-34’ por S. Lines, Z. M. Leinhardt, S. Paardekooper, C. Baruteau e P. Thebault em Astrophysical Journal Letters

 

Formação de Planetas: uma possível dica

‘Armadilha de Poeira’ em torno de uma estrela distante pode ser a solução para o mistério da formação de planetas

Com base no baú de tesouros das recentes descobertas, os astrônomos agora sabem que os planetas são algo muito comum em nossa galáxia e podem ser comuns em todo o universo. Embora os planetas pareçam se formar prontamente, o real processo de sua formação permanece um mistério e os astrônomos continuam buscando as peças que faltam para este quebra-cabeças cósmico.

Dust Trap
Imagem do ALMA da armadilha de poeira em torno de IRS 48.  O objeto em forma de crescente é resultado da acumulação de grãos de poeira maiores nas regiões externas do disco. Isto cria um porto seguro para que os grãos de poeira se aglomerem em objetos cada vez maiores.
Crédito: ALMA (ESO/NAOJ/NRAO) / Nienke van der Marel

Uma equipe internacional de astrônomos, usando o novo telescópio Atacama Large Millimeter/ submillimeter Array (ALMA) descobriu uma intrigante pista que pode ajudar a explicar como os planetas rochosos são capazes de evoluir em um turbilhonante disco de poeira e gases.

Imageando as regiões externas de um jovem sistema solar conhecido como Oph IRS 48, que fica a 390 anos-luz da Terra aproximadamente na constelação Ofiúco (Ophiuchus – o Serpentário), os astrônomos descobriram uma formação em forma de crescente, conhecida como “armadilha de poeira”. Os pesquisadores especulam que essa característica recém-descoberta é verdadeiramente um casulo protetor onde podem acontecer os primeiros passos para a formação de planetas, asteroides e cometas.

Quando os astrônomos tentaram modelar a evolução dos grãos de poeira em corpos proto-planetários, tais como cascalhos e pedregulhos, eles encontraram um problema. Assim que os grãos de poeira se aglomeravam acima de um certo tamanho, eles tendiam a se auto-destruir, ou pela colisão com outros aglomerados, ou por serem atraídos pela estrela-mãe. Para conseguirem vencer esse irritante limite de tamanho, os astrônomos teorizaram que redemoinhos rodopiantes que se formassem no disco, poderiam criar as armadilhas de poeira, regiões que permitiriam que as partículas de poeira se aglomerassem, preparando eventualmente o palco para a formação de objetos cada vez maiores.

“Existe um importante obstáculo na longa cadeia de eventos que vai de pequenos grãos de poeira até objetos do tamanho de planetas”, conta Til Birnstiel, um pesquisador do Centro de Astrofísica Harrvard-Smithsonian em Cambridge, Massachusetts e co-autor do artigo publicado na Science. “Nos modelos de computador da formação de planetas, os grãos de poeira têm que crescer de objetos menores que um mícron até objetos com dez vezes as massa da Terra em poucos milhões de anos. Porém, assim que as partículas ficam suficientemente grandes, elas ganham velocidade e ou colidem entre si, o que as manda de volta à primeira casa, ou lentamente derivam para dentro, o que acaba com qualquer crescimento ulterior”.

Para salvar os grãos de poeira desse destino, os astrônomos propuseram que um vórtex, essencialmente uma corcova no disco, produziria uma área de alta pressão e protegeria os aglomerados de poeira em crescimento.

Entretanto, a criação de uma armadilha de poeira requer a mão amiga de um objeto muito grande, tal como um planeta gigante gasoso, ou uma estrela companheira. Na medida em que esse objeto secundário atravessa o disco, ele cria uma trilha limpa em torno da estrela e produz os vórtices e rodamoinhos essenciais em sua esteira.

Estudos anteriores de Oph IRS 48 tinham revelado um anel muito uniforme de monóxido de carbono e pequenos grãos de poeira em torno da estrela, sem qualquer vestígio de uma teórica armadilha de poeira. Entretanto, eles também detectaram uma grande falha entre as porções interna e externa do disco, o que seria um provável rastro de um planeta muito massivo, na ordem de 10 massas de Júpiter, ou uma estrela companheira. Um tal objeto poderia produzir as condições necessárias para uma armadilha de poeira.

Dust Trap
Impressão artística da estrutura proposta para o disco de Oph IRS 48. As manchas amarronzadas representam os grãos de poeira de diversos tamanhos. Os maiores grãos detectados pelo ALMA ficam concentrados na armadilha de poeira na parte de baixo da imagem. Em azul, a distribuição do gás de monóxido de carbono. A falha no disco é representada com o corpo que se propõe esteja varrendo a área e criando as condições necessárias para a formação da armadilha de poeira.
Crédito: Nienke van der Marel

Usando o ALMA, os pesquisadores conseguiram observar simultaneamente o gás e os grãos de poeira muito maiores, revelando algo que outros telescópios não podiam: uma protuberância na parte externa do disco.

“No início o formato da poeira nas imagens foi uma completa surpresa para nós”, diz Nienke van der Marel, um estudante de doutorado no Observatório Leiden na Holanda e principal autor do artigo. “No lugar de um anel que esperávamos ver, encontramos um formato, bem claro, de uma castanha de cajú. Nós tivemos que nos convencer de que a característica era real, mas a força do sinal e a precisão das observações do ALMA não deixaram qualquer dúvida acerca da estrutura”.

Embora as observações do ALMA só tenham revelado a estrutura externa do disco, que fica a mais de 50 vezes a distância da Terra ao sol, o princípio ainda seria o mesmo mais perto da estrela onde se formariam os planetas rochosos. “Esta estrutura que vemos com o ALMA poderia ser reduzida em escala para representar o que pode estar acontecendo no sistema solar interior, onde os planetas mais parecidos com a Terra iriam se formar”, diz Birnstiel. “No caso destas observações, entretanto, podemos estar vendo algo análogo à formação do Cinturão de Kuiper ou da Nuvem de Oort Cloud, regiões de nosso Sistema Solar onde se acredita que os cometas se originam”.

Estas observações foram realizadas com apenas uma parte das 66 antenas que o ALMA deve vir a ter. Quando o sistema completo estiver em funcionamento no fim deste ano, o ALMA terá a visão mais acurada de qualquer observatório astronômico e será uma importante ferramenta para a compreensão do processo de formação de planetas.

ALMA é uma instalação astronômica internacional, uma parceria entre a Europa, a America do Norte e a Ásia Oriental, em cooperação com a República do Chile. A construção e a operação do ALMA são lideradas pelo Observatório Europeu do Sul (ESO), pelo National Radio Astronomy Observatory (NRAO) dos EUA e pelo Observatório Astronômico do Japão.

###

Sobre ScienceBlogs Brasil | Anuncie com ScienceBlogs Brasil | Política de Privacidade | Termos e Condições | Contato


ScienceBlogs por Seed Media Group. Group. ©2006-2011 Seed Media Group LLC. Todos direitos garantidos.


Páginas da Seed Media Group Seed Media Group | ScienceBlogs | SEEDMAGAZINE.COM