Essa é quente: temperaturas (absolutas) negativas

Max-Planck-Gesellschaft

Uma temperatura abaixo do zero absoluto

Átomos a temperaturas absolutas negativas são os sistemas mais quentes do mundo

 IMAGEM: Uma temperatura negativa quente: Em uma temperatura absoluta negativa, a distribuição de energia das partículas se inverte, em comparação com uma temperatura positiva.Clique aqui para mais informações (em inglês).

O que é corriqueiro para a maior parte das pessoas durante o inverno, até agora era impossível na física: uma temperatura negativa. Na escala Celsius, uma temperatura negativa só é surpreendente durante o verão. Na escala absoluta de temperaturas – também chamada de escala Kelvin – usada pelos físicos, não é possível ir abaixo do zero – pelo menos não no sentido de ficar mais frio do que zero Kelvin. Segundo o significado de temperatura para a física, a temperatura de um gás é determinada pelo movimento caótico de suas partículas – quanto mais frio um gás, mais lentas serão suas partículas. A zero kelvin (menos 273 graus Celsius) as partículas param de se mover e toda a desordem desaparece. Desta forma, nada pode ser mais frio do que o zero absoluto na escala Kelvin. Os físicos da Universidade Ludwig-Maximilians em Munique e do Instituto Max Planck de Óptica Quântica criaram agora em laboratório um gás atômico que, não obstante, apresenta valores Kelvin negativos. Estas temperaturas absolutas negativas causam várias consequências aparentemente absurdas: embora os átomos se atraiam mutuamente e criem uma pressão negativa, o gás não entra em colapso – um comportamento igualmente postulado para a energia escura na cosmologia. Máquinas supostamente impossíveis, tais como um motor de combustão com uma eficiência termodinâmica maior que 100%, também podem ser imaginadas com a ajuda de temperaturas absolutas negativas.

Para levar água à fervura, é preciso adicionar energia. À medida em que a água se aquece, as moléculas de água têm sua energia cinética aumentada ao longo do tempo e se movem cada vez mais rápido em média. Ainda assim, cada molécula individual tem uma energia cinética diferente – desde muito lentas até muito rápidas. Os estados de baixa energia são mais prováveis do que os estados de alta energia, isto é, somente algumas partículas se movem muito rápido. Na física, esta distribuição [de estados] é chamada de distribuição de Boltzmann. Os físicos que trabalham com Ulrich Schneider e Immanuel Bloch agora obtiveram um gás no qual esta distribuição é precisamente invertida: muitas partículas têm altas energias e umas poucas têm baixas energias. Esta inversão da distribuição de energia se traduz como se as partículas tivessem assumido uma temperatura negativa.

“A distribuição de Boltzmann invertida é o marco da temperatura absoluta negativa e foi isso o que conseguimos”, diz Ulrich Schneider. “Entretando o gás não é mais frio do que zero kelvin, porém mais quente”, explica o físico: “É mais quente ainda do que quaisquer temperaturas positivas – a escala de temperaturas simplesmente não termina no infinito; ao invés disso, ela salta para valores negativos”.

Uma temperatura negativa só pode ser obtida com um limite superior para a energia

O significado de uma temperatura absoluta negativa pode ser melhor ilustrado com esferas rolantes em um terreno montanhoso, onde os vales representam uma baixa energia potencial e os topos uma alta energia. Quanto mais rápido as esferas se moverem, mais alta será sua energia cinética: se começarmos com uma temperatura positiva e aumentarmos a energia total das esferas, aquecendo-as, as esferas vão se espalhar, cada vez mais, pelas regiões de alta energia. Se fosse possível aquecer as esferas a uma temperatura infinita, haveria uma probabilidade igual de as encontrarmos em qualquer ponto do terreno, sem qualquer diferença da energia potencial. Se fosse possível adicionar ainda mais energia e aquecer as esferas ainda mais, elas tenderiam a ser reunir em estados de alta energia e ficariam ainda mais quentes do que em uma temperatura infinita. A distribuição de Boltzmann seria invertida e a temperatura, portanto, seria negativa. À primeira vista pode parecer estranho que uma temperatura absoluta negativa seja mais quente do que uma positiva. No entanto, isto é apenas uma consequência da definição histórica de temperatura absoluta; se houvesse uma definição diferente, a aparente contradição não existiria.

Esta inversão da população de estados de energia não é possível com a água ou qualquer outro sistema natural, uma vez que o sistema teria que absorver uma quantidade infinita de energia  – O que é impossível! No entanto, se as partículas tivessem um limite superior para sua energia, tal como o topo dos montes em nosso terreno de energias potenciais, a situação seria completamente diferente. Os pesquisadores do grupo de pesquisa de Immanuel Bloch e Ulrich Schneider obtiveram um sistema assim, de um gás atômico com um limite superior de energia em seu laboratório, seguindo as propostas teóricas de Allard Mosk e Achim Rosch.

 IMAGEM: A temperatura representada como esferas em um terreno montanhoso: A distribuição de Boltzmann estabelece quantas partículas podem ter qual energia.

Clique aqui para mais informações (em inglês).

Em sua experiência, os cientistas primeiro resfriaram cerca de cem mil átomos em uma câmara de vácuo até uma temperatura positiva de poucos bilionésimos de grau Kelvin e os capturaram em armadilhas ópticas feitas com raios laser. O vácuo ultra alto em torno dos átomos garantiu que os átomos ficassem perfeitamente isolados termicamente de seu ambiente. Os feixes de laser criaram uma, assim chamada, grade óptica, na qual os átomos ficam arrumados regularmente nas casas da grade. Nessa grade, os átomos ainda podem se mexer de uma casa para outra, através do efeito de túnel, mas, mesmo assim, sua energia cinética tem um limite superior e, portanto, fica estabelecido o limite superior de energia necessário. A temperatura, entretanto, é relacionada não apenas com a energia cinética, mas à energia total das partículas, o que, neste caso, inclui as energias interativa e potencial. O sistema dos pesquisadores de Munique e Garching também estabelece um limite a ambas. Os físicos então levam os átomos até esse limite superior de energia total – criando assim uma temperatura negativa, no entorno de uns poucos bilionésimos de grau kelvin.

Em uma temperatura negativa, uma máquina pode realizar mais trabalho

Se nossas esferas tivessem uma temperatura positiva e ficassem em um vale de energia potencial mínima, tal estado seria obviamente estável – essa é a natureza que conhecemos. Se as esferas estivessem posicionadas no topo de uma montanha na energia potencial máxima, usualmente elas rolariam para baixo, convertendo sua energia potencial em cinética. “Entretanto, se as esferas estiverem em uma temperatura negativa, sua energia cinética já será tão grande que não pode mais ser aumentada”, explica Simon Braun, um estudante de doutorado do grupo de pesquisas. “Assim, as esferas não podem rolar para baixo e permanecem no topo do morro. O limite de energia as tornou estáveis, portanto!” O estado de temperatura negativa na experiência é, em verdade, tão estável quanto um estado de temperatura positiva. “Desta forma nós criamos o primeiro estado de temperatura absoluta negativa para partículas móveis”, acrescenta Braun.

A matéria em uma temperatura absoluta negativa tem todo um leque de consequências espantosas: com ajuda dela, se pode criar motores térmicos, tais como motores de combustão, com uma eficiência maior que 100%. Isso, porém, não quer dizer que a lei de conservação de energia seja violada. Em lugar disso, o motor seria capaz de absorver energia não só do meio mais quente – e assim realizar trabalho – como, em contraste com o caso usual, poderia absorver também energia do meio mais frio.

Em temperaturas apenas positivas, o meio mais frio inevitavelmente se aquece, absorvendo assim uma parte da energia do meio quente e, desta forma, limitando a eficiência. Se o meio quente tiver uma temperatura negativa, é possível absorver energia de ambos os meios simultaneamente. O trabalho realizado pelo motor, então, será maior do que a energia inserida apenas no meio quente – e a efeiciência sera maior do que 100%.

A realização dos físicos de Munique pode ser também interessante para a cosmologia, uma vez que o comportamento termodinâmico da temperatura negativa exibe semelhanças com a assim chamada energia escura. Os cosmologistas postulam que a energia escura é uma força misteriosa que acelera a expansão do universo, embora o cosmos devesse se contrair por conta da energia da atração gravitacional de todas as massas. Ocorre um fenômeno similar na nuvem atômica do laboratório de Munique: a experiência se apoia no fato de que os átomos no gás não se repelem mutuamente, tal como em um gás ususal; ao contrário, eles se atraem. Isso significa que os átomos exercem uma pressão negativa, em lugar de uma pressão positiva. Como consequência, a nuvem de átomos quer se contrair e deveria entrar em colapso – exatamente como seria de se esperar do universo sob o efeito da gravidade. Porém, por causa da sua temperatura negativa, isso não acontece. O gás é poupado do colapso, tal como o universo.

###

Publicação original:

Simon Braun, J. Philipp Ronzheimer, Michael Schreiber, Sean S. Hodgman, Tim Rom, Immanuel Bloch, Ulrich Schneider Negative Absolute Temperature for Motional Degrees of Freedom
Science, 4 January 2013

 

Sobre ScienceBlogs Brasil | Anuncie com ScienceBlogs Brasil | Política de Privacidade | Termos e Condições | Contato


ScienceBlogs por Seed Media Group. Group. ©2006-2011 Seed Media Group LLC. Todos direitos garantidos.


Páginas da Seed Media Group Seed Media Group | ScienceBlogs | SEEDMAGAZINE.COM