Decifrando as galáxias compactas do universo antigo

EurekAlert

Link para o original: Deciphering compact galaxies in the young universe

NATIONAL INSTITUTES OF NATURAL SCIENCES

IMAGE

Os pontos vermelhos representam os dados observados; a maior parte deles tem formas alongadas e as galáxias maiores tendem a ter uma elipticidade maior. As regiões em cinza representam as distribuições prováveis segundo cálculos de simulações em computador. Quando duas galáxias estão muito próximas, podem parecer uma única galáxia alongada, como mostram as figuras menores nas laterais.

Imagem cortesia de Ehime University

Um grupo de pesquisadores, empregando o instrumento Suprime-Cam do Telescópio Subaru, descobriu cerca de 80 jovens galáxias que existiram no universo primordial, em torno de 1,2 bilhões de anos após o Big Bang. A equipe, que tem membros da Ehime University, Nagoya University, Tohoku University, Space Telescope Science Institute (STScI) nos EUA e do California Institute of Technology, fizeram então análises detalhadas dos dados imageados dessas galáxias obtidas pela Advanced Camera for Surveys (ACS) do Telescópio Espacial Hubble. Ao menos 54 dessas galáxias têm imagens que permitem resolução espacial nas imagens da ACS. Entre estas, 8 galáxias exibem estruturas com dois componentes e as restantes 46 parecem ter estruturas alongadas. Através de pesquisas subsequentes, empregando uma simulação em computador, o grupo descobriu que as estruturas alongadas podem ter essa aparência se forem duas ou mais galáxias bem próximas entre si.

Estes resultados são um forte indício de que, após 1,2 bilhões de anos após o Big Bang, os aglomerados de galáxias do universo jovem cresceram, para se tornarem grandes galáxias através de fusões, o que, por sua vez, provoca uma ativa formação de estrelas. Esta pesquisa foi realizada coo parte do programa do legado do Telescópio Espacial Hubble, “Cosmic Evolution Survey (COSMOS)”. A poderosa capacidade de pesquisa do Telescópio Subaru forneceu a base de dados essencial para os objetos do estudo sobre o universo primevo.

A Importância do Estudo das Galáxias Primevas

No universo atual, a 13,8 bilhões de anos após o Big Bang, existem muitas galáxias como a nossa Via Láctea, que contém cerca de 200 bilhões de estrelas em um disco com cem mil anos luz de diâmetro. Entretanto, definiitivamente não havia galáxias como ela pouco depois do Big Bang.

Essas aglomerações pré-galáticas parecem ter se formado no universo cerca de 200 milhões de anos após o Big Bang. Elas eram nuvens de gás frio, muito menores do que as atuais galáxias gigantes (cem vezes menores), com massas menores (um milhão de vezes menores). As primeiras galáxias se formaram quando as primeiras estrelas nasceram nessas aglomerações de gás. Essas pequenas aglomerações galáticas começaram, então, a se fundir com aglomerações próximas e, eventualmente, formaram as grandes galáxias.

Muito esforço tem sido dispendido nessas buscas profundas para detectar galáxias ativas com formação de estrelas no universo jovem. Como resultado, já se sabe que as galáxias mais antigas ficam a mais de 13 bilhões de anos luz. Nós as vemos em uma época em que o universo tinha somente 800 milhões de anos (ou cerca de 6% de sua idade atual). Entretanto, uma vez que a mioria das galáxias do universo jovem eram bem pequenas, não se conseguiu estudar suas estruturas em detalhes.

A Exploração do Universo Primevo com o Telescópio Espacial Hubble e o Telescópio Subaru

Enquanto o grande campo de observação do Telescópio Subaru desempenhou um papel importante em localizar essas jovens galáxias, a alta resolução espacial do Telescópio Espacial Hubble foi necessária para investigar os detalhes de seus formatos e suas estruturas internas. A equipe de pesquisas olhou para um ponto a 12,6 bilhões de anos no passado com uma abordagem por duas vias. O primeiro passo foi usar o Telescópio Subaru para uma busca profunda das galáxias primitivas e prosseguir com a investigação de seus formatos com a Advanced Camera for Surveys (ACS) a borod do Hubble. A ACS revelou que 8 das 54 galáxias tiham estruturas duplas, parecendo com a fusão de duas galáxias¹.

Então, apareceu a dúvida sobre se as outras 46 galáxias observadas eram mesmo galáxias individuais. Aqui, a equipe de pesquisa questionou quantas dessas galáxias exibiam formatos alongados nas imagens do Hubble. Isto porque tais aspectos alongados, junto com uma correlação positiva entre elipticidade² e tamanho, são um forte indício de que duas galáxias são tão próximas entre si que, com a atual resolução máxima da ACS, não se pode distinguir uma coisa de outra.

Para verificar se a ideia de galáxias próximas em um espaço apertado era viável, os pesquisadores usaram as assim chamadas simulações em computador de Monte Carlo. Primeiro, o grupo colocou duas fontes artificiais em posições aleatórias, com váris separações angulares, sobrepondo-as às imagens reais da ACS. Depois, o grupo tentou extrair as imagens com o mesmo método para as verdadeiras observações da ACS e mediu suas elipticidades e tamanhos.

A distribuição simulada bateu muito bem com os resultados observados. Ou seja, a maioria das galáxias vistas como uma fonte individual nas imagens da ACS poderiam ser mesmo duas galáxias em fusão. Entretanto, a distância entre duas galáxias em fusão é tão pequena que nem a alta resolução do Hubble consegue distinguí-las!

Se a ideia for válida para galáxias que parecem ser individuais, é possível presumir que as galáxias com as maiores taxas de atividade tenham menor tamanho. Isso é uma decorrência de que tamanhos menores implicam em uma menor separação entre duas galáxias em fusão. Se for mesmo o caso, tais galáxias estariam passando por uma intensa fase de formação de estrelas causada pela própria fusão.

Por outro lado, algumas galáxias com os menores tamanhos são pares razoavelmente separados, porém o ângulo de visada as faz parecer que são apenas uma, ou são mesmo galáxias formadoras de estrelas isoladas. Estas têm basicamente o mesmo tamanho de galáxias grandes.

A equipe confirmou que a relação observada entre atividade de formação de estrelas e tamanho é consistente com a ideia aventada pela equipe.

Até agora, os formatos e as estruturas das pequenas galáxias foram investigados com a ACS no Hubble. Se a fonte tivesse sido identificada como única pela ACS, ela foi tratada como uma única galáxia e seus parâmetros morfológicos foram avaliados. Esta pesquisa sugere que uma tal galáxia pequena pode consistir de duas (ou, talvez, mais) galáxias tão próximas que não podem ser distinguidas mesmo pela grande resolução angular da ACS.

Olhando para o Futuro pelo Estudo do Passado

As teorias correntes de formação de galáxias prediz que pequenas galáxias no universo jovem evoluíram em grandes galáxias através de fusões sucessivas. A pergunta permanece: qual será o próximo passo nos estudos e observações dobre a formação de galáxias no universo jovem? Esta é uma fronteira que precisa dos futuros “super-telescópios”, tais como o Telescópio de Trinta Metros e o Telescópio Espacial James Webb. Eles permitirão as próximas descobertas no estudo da formação das primeiras galáxias e sua evolução.

###

Notas:

1. Um tamanho médio (ou seja, o diâmetro médio do círculo que engloba metade da luz total da galáxia) de galáxias individuais é de cerca de 5,5 mil anos luz. Uma distância média entre duas pequenas galáxias será de 13.000 anos luz.

2. A elipticidade é definida como 1 – b/a, onde a e b representam os raios maior e menor de uma eslipse. No caso de um círculo, a elipticidade será igual a zero, já que a = b. Um formato mais alongado corresponde a uma maior elispticidade.

Poderosos jatos expelem material de uma galáxia em formação


National Radio Astronomy Observatory

Poderosos jatos expelem material de uma galáxia

Este processo limita os crescimento do buraco negro no centro e a taxa de formação de estrelas

Astrônomos, usando uma rede mundial de rádio telescópios, descobriram um forte indício de que um poderoso jato de material, acelerado até próximo da velocidade da luz pelo buraco negro central de uma galáxia, está expelindo massivas quantidades de gás para fora da galáxia. Segundo eles, este processo está limitando o crescimento do buraco negro e a taxa de formação de estrelas na galáxia, sendo assim uma peça chave para a compreensão do desenvolvimento das galáxias.

4C12.50
Imagem de Radio Telescópio da galáxia 4C12.50, a uns 1,5 bilhões de anos-luz da Terra. A parte em destaque mostra em detalhe a posição da extremidade do jato super rápido de partículas, onde uma massiva nuvem de gás (em amarelo-alaranjado) está sendo empurrada pelo jato.
Crédito: Morganti et al., NRAO/AUI/NSF

Os astrônomos vêm teorizando que muitas galáxias deveriam ser mais massivas e ter mais estrelas do que as na verdade existentes. Os cientistas propuseram que dois principais mecanismos poderiam frear ou interromper os processos de aumento da massa e de formação de estrelas – violentos ventos estelares, oriundos de bursts de formação de estrelas e as perdas decorrentes das jatos alimentados pelo buraco negro supermassivo central da galáxia em formação.

“Com as imagens em grande detalhe obtidas por uma combinação intercontinental de radio telescópios, pudemos observar massivas bolhas de gás frio sendo empurradas para fora do centro galático pelos jatos alimentados pelo buraco negro”, diz Raffaella Morganti, do Instituto Holandês para Radio Astronomia e da Universidade de Groningen.

Os cientistas estudaram uma galáxia chamada 4C12.50, a uns 1,5 bilhões de anos-luz da Terra. Eles escolheram essa galáxia porque ela está em um estágio onde o “motor” do buraco negro que produz os jatos, acaba de ser ‘ligado”. Na medida em que o buraco negro, uma concentração de massa tão densa que nem a luz consegue escapar, puxa material para dentro de si, o material forma um disco giratório em torno do buraco negro. Processos que ocorrem nesse disco, sugam a tremenda energia gravitacional do buraco negro e a usam para expulsar material pelos polos do disco.

Nas extremidades de ambos os jatos, os pesquisadores encontraram bolhas de gás de hidrogênio se movendo para fora da galáxia a 1.000 km por segundo. Uma das nuvens tem mais de 16.000 vezes a massa de nosso Sol, enquanto a outra contém 140.000 vezes a massa solar. A nuvem maior, segundo os cientistas, tem mede aproximadamente 160 por 190 anos-luz.

“Este é o indício mais definitivo até hoje de uma interação entre o jato acelerado de uma galáxia assim e uma densa nuvem de gás interestelar”, diz Morganti. “Acreditamos estar observando em ação o processo pelo qual um motor ativo central pode retirar o gás – a matéria prima para a formação de estrelas – de uma galáxia jovem”, acrescenta ela.

Os cientistas também afirmam que suas observações indicam que os jatos expelidos pelo núcleo da galáxia podem tensionar e deformar as nuvens de gás interestelar de forma que o efeito de “empurrão” se expande além da pequena amplitude dos próprios jatos. Além disto, eles relatam que, no estágio de desenvolvimento da 4C12.50, os jatos podem “ligar” e “desligar”, de forma a repetir periodicamente o processo de expulsão de gases da galáxia.

Em julho, outra equipe de cientistas, usando o Atacama Large Millimeter/submillimeter Array (ALMA), anunciou ter encontrado o gás sendo soprado para fora de uma galáxia mais próxima – a NGC 253 – por um intenso burst de formação de estrelas.

“Acredita-se que ambos os processos possam estar atuando, frequentemente de modo simultâneo, nas galáxias jovens, a fim de regular o crescimento de seu buraco negro central, assim como a taxa na qual elas podem criar novas estrelas”, declarou Morganti.

Morganti e sua equipe usaram radio telescópios na Europa e nos Estados Unidos, combinando seus sinais para formar um gigantesco telescópio intercontinental. Nos Estados Unidos esses incluíram o Very Long Baseline Array (VLBA) da Fundação Nacional de Ciências (NSF), um sistema continental de radio telescópios desde o Hawaii, passando pelos EUA continentais e chegando a St. Croix nas Ilhas Virgens, e mais uma antena do Karl G. Jansky Very Large Array (VLA) no Novo México. Os radio telescópios europeus empregados foram os de  Effelsberg, Alemanha; Westerbork, na Holanda; e em Onsala, Suécia. O extremo poder de resolução – ou seja, a capacidade de observar pequenos detalhes – de um sistema tão abrangente, foi essencial para localizar precisamente a posição das nuvens de gás afetadas pelos jatos da galáxia.

Morganti trabalhou em conjunto com Judit Fogasy da Universidade Eotvos Lorand em Budapest, Hungria; Zsolt Paragi do Instituto Conjunto de Interferometria de Linha de Base Muito Longa da Europa; Tom Oosterloo do Instituto Holandês para Radio Astronomia e da Universidade de Groningen; e Monica Orienti do Instituto Nacional de Astrofísica da Itália – Instituto de Radio Astronomia. Suas descobertas serão publicadas na edição de 6 de setembro da Science.

O National Radio Astronomy Observatory é uma instalação da National Science Foundation, operado em cooperativa pela Associated Universities, Inc.

 

Sobre ScienceBlogs Brasil | Anuncie com ScienceBlogs Brasil | Política de Privacidade | Termos e Condições | Contato


ScienceBlogs por Seed Media Group. Group. ©2006-2011 Seed Media Group LLC. Todos direitos garantidos.


Páginas da Seed Media Group Seed Media Group | ScienceBlogs | SEEDMAGAZINE.COM