O planeta das impossibilidades possíveis


Harvard-Smithsonian Center for Astrophysics

Planeta misterioso intriga os astrônomos

 IMAGEM: Concepção artística de Kepler-78b, o planeta que não devia existir.

Clique aqui para mais informações.

Kepler-78b é um planeta que nem deveria existir. Este mundo de lava escaldante gira em torno de sua estrela a cada oito horas e meia a uma distância de menos de dois milhões de quilômetros – uma das órbitas mais apertadas que se conhece. Segundo as teorias correntes sobre a formação de planetas ,ele nem poderia se ter formado, tão perto de sua estrela, nem poderia ter se movido para lá.

“Esse planeta é um completo mistério”, diz o astrônomo David Latham do Centro Harvard-Smithsonian de Astrofísica (CfA, na sigla em inglês). “Não sabemos como ele se formou ou como ele chegou aonde está hoje. O que sabemos é que não vai durar para sempre”.

“Kepler-78b vai acabar sendo engolido pela estrela muito em breve, em termos astronômicos”, concorda o astrônomo do CfA Dimitar Sasselov.

Kepler-78b não é somente um mundo misterioso; ele é o primeiro planeta do tamanho da Terra, com uma densidade igual à da Terra, conhecido. Kepler-78b é cerca de 20% maior que a Terra, com um diâmetro de 15.000 km e pesa quase o dobro. Disso resulta que ele tem uma densidade semelhante à da Terra, o que, por sua vez, sugere que ele tem uma composição semelhante à da Terra: rochas e ferro.

 IMAGEM: Ilustração comparativa da Terra com o planeta Kepler-78b.

Clique aqui para mais informações.

A órbita apertada de Kepler-78b apresenta mais um desafio aos teóricos. Quando esse sistema planetário estava em formação, a jovem estrela era maior do que é agora. Ou seja, a atual órbita de Kepler-78b ficaria dentro da estrela mais gorda.

“Ele não pode ter se formado nesta posição porque não dá para se formar um planeta dentro de uma estrela. Ele não pode ter se formado mais distante e migrado para dentro, porque, se fosse assim, ele teria acabado mergulhando direto para dentro da estrela. Este planeta é um enigma”, explica Sasselov.

Segundo Latham, Kepler-78b é membro de uma nova classe de planetas recentemente identificados pela espaçonave Kepler da NASA. Esses planetas recentemente encontrados orbitam suas estrela em períodos menores que 12 horas. Eles também são pequenos, com um tamanho próximo do da Terra. Kepler-78b é o primeiro desta classe a ter sua massa medida.

“Kepler-78b é o próprio exemplo dessa nova classe de planetas”, observa Latham.

 IMAGEM: Diagrama ilustrativo da órbita apertada de Kepler-78b em torno de sua estrela.

Clique aqui para mais informações.

A equipe estudou o Kepler-78b usando um espectrografo de alta precisão recentemente posto em funcionamento, o HARPS-North, no Observatório de Roque de los Muchachos em La Palma. Eles coordenaram seu trabalho com outra equipe independente que usou o espectrógrafo HIRES no Observatório Keck. As medições efetuadas por ambas as equipes foram concordantes, o que aumenta a confiabilidade dos resultados.

Kepler-78b é um mundo condenado. As marés gravitacionais vão puxá-lo para mais perto ainda da estrela. Eventualmente, ele vai chegar tão perto que a gravidade da estrela vai rompê-lo em pedaços. Os teóricos predizem que Kepler-78b vai desaparecer nos próximos 3 bilhões de anos.

Curiosamente, nosso sistema solar pode ter tido um planeta como Kepler-78b. Mas, se teve, esse planeta foi destruído há muito tempo e não deixou vestígios para os astrônomos de hoje.

Kepler-78b orbita um estrela semelhante ao Sol, tipo G, localizada a 400 anos-luz da Terra na direção da constelação do Cisne (Cygnus).

 

###

 

Nota do tradutor: o título deste post é um trocadilho com o título do livro de Louis Pauwels e Jacques Bergier, “O planeta das possibilidades impossíveis”, mas nada tem a ver com o assim chamado “realismo fantástico” .

Novidades acerca das Supernovas

Queen’s University Belfast

Cientistas da Queen’s University lançam novas luzes sobre a morte de estrelas

Estudo sobre supernovas será publicado na Nature em 17 de outubro.

Os astrônomos da Queen’s University lançaram novas luzes sobre as mais raras e mais brilhantes explosões de estrelas jamais descobertas no universo.

Credit: ESO/L.Calçada

Crédito: ESO/L.Calçada

A pesquisa, será publicada na edição de 17 de outubro da Nature – uma das publicações científicas mais prestigiosas do mundo. Ela propõe que as supernovas – estrelas explodidas – mais luminosas são energizadas por estrelas de nêutrons pequenas e incrivelmente densas, com campos magnéticos gigantescos que giram a centenas de vezes por segundo.

Os cientistas do Centro de Pesquisas Astrofísicas da Queen’s observaram duas supernovas super-luminosas – duas das estrelas explodidas mais luminosas do universo – por mais de um ano. Ao contrário das teorias correntes, que sugerem que as supernovas mais brilhantes são causadas pela explosão de estrelas super-massivas, as descobertas sugerem que sua origem pode ser melhor explicada por um tipo de explosão dentro do núcleo da estrela que cria uma estrela magnética menor, porém extremamente densa e que gira muito rápido.

Matt Nicholl, um estudante pesquisador do Centro de Pesquisas de Astrofísica na Escola de Matemática e Física da Queen’s, é o autor principal do artigo. Segundo ele: “As supernovas são vários bilhões de vezes mais brilhantes do que o Sol e, na verdade, são tão brilhantes que os astrônomos amadores as buscam regularmente nas galáxias próximas. Há décadas que se sabe que o calor e a luz dessas supernovas vêm de poderosas ondas de choque e material radioativo”.

“Porém foram recentemente encontradas algumas supernovas muito inusitadas que são brilhantes demais para serem explicadas desse jeito. Elas são centenas de vezes mais brilhantes do que aquelas encontradas ao longo dos últimos 50 anos e a origem de suas propriedades extremadas é algo muito misterioso”.

“Alguns físicos teóricos predisseram que estes tipos de explosão se originavam das maiores estrelas do universo se destruindo de maneira quase igual a uma bomba termonuclear. No entanto, os dados que obtivemos não corroboram essa teoria”.

“Na explosão de uma supernova, as camadas externas da estrela são violentamente ejetadas, enquanto seu núcleo colapsa para formam uma estrela de nêutrons extremamente densa – que pesa o mesmo que o Sol, mas com um diâmetro de poucas dezenas de quilômetros. Acreditamos que, em um pequeno número de casos, a estrela de nêutrons tenha um campo magnético muito forte e que gire incrivelmente rápido – cerca de 300 vezes por segundo. Na medida em que a rotação abranda, ela pode transferir energia da rotação [NT: leia-se: momento angular] para toda a supernova, através do magnetismo, tornando-a muito mais brilhante do que o normal. Os dados que obtivemos concordam com essa previsão quase que exatamente”.

Os astrônomos da Queen’s lideraram uma equipe internacional de cientistas neste estudo, empregando alguns dos telescópios mais poderosos do mundo. Grande parte dos dados coletados o foi com o Pan-STARRS – o Telescópio de Pesquisa Panorâmica e Sistema Rápido de Resposta. Com base no Monte Haleakala no Hawaii, o Pan-STARRS tem a maior câmera digital do mundo e pode cobrir uma área com 40 vezes o tamanho da Lua cheia em uma única foto.

Este estudo é um dos projetos financiados por um fundo de € 2,3 milhões do Conselho de Pesquisas Europeu, administrado pelo Professor Stephen Smartt, Diretor do Centro de Astrofísica da Queen’s, a partir de 2012, para condução de pesquisas internacionais sobre as primeiras supernovas do universo.

O Professor Smartt declarou: “Estas são supernovas realmente especiais. Já que elas são tão brilhantes, podemos usá-las como luzes de navegação no universo muito distante. Como a luz viaja pelo espaço a uma velocidade fixa, à medida em que olhamos mais distante, vemos imagens de um passado constantemente mais distante no tempo. Ao compreendermos os processos que levam a essas estonteantes explosões, podemos sondar o universo tal como ele era logo após seu nascimento. Nossa meta é achar essas supernovas do universo primitivo e observá-las a produzir os primeiros elementos químicos criados no universo”.

Link para o artigo completo na Nature: www.nature.com/nature/journal/v502/n7471/full/nature12569.html

Uma estrela com dupla personalidade


National Radio Astronomy Observatory

Estrela imita ‘O médico e o Monstro” e fica alternando entre pulsar de rádio para pulsar de Raios-X e de volta

 IMAGEM: A estrela de nêutrons e sua acompanhante, durante o período de acreção, quando a estrela de nêutrons emite raios-X.

Clique aqui para mais informações.

Os astrônomos descobriram um estranho caso de uma estrela de nêutrons com a peculiar habilidade de se transformar de um rádio pulsar para um pulsar de raios-X e ficar alternando de uma para a outra. O comportamento caprichoso dessa estrela parece ser alimentado por uma estrela acompanhante próxima e pode fornecer novos conhecimentos sobre o nascimento de pulsares em milissegundos.

“O que vemos é uma estrela que é o equivalente cósmico de ‘O médico e o Monstro’, com a capacidade de mudar de uma forma para sua contraparte mais intensa, em uma velocidade espantosa”, declarou Scott Ransom, um astrônomo do National Radio Astronomy Observatory (NRAO) em Charlottesville, Virgínia. “Embora já soubéssemos que binárias [emissoras] de raios-X – algumas das quais são observadas como pulsares de raios-X – possam evoluir ao longo de milhões de anos e se tornarem pulsares de rádio que giram extremamente rápido, fomos surpreendidos ao encontrar uma que parecia oscilar de uma para outra rapidamente”.

Estrelas de nêutrons são os remanescentes super densos de estrelas massivas que explodiram como supernovas. Esta estrela de nêutrons em particular, catalogada como IGR J18245-2452, fica a aproximadamente 18.000 anos-luz da Terra, na constelação de Sagitário, em um aglomerado de estrelas conhecido como M28. Ela tinha sido inicialmente identificada como um radio pulsar de milissegundo em 2005 com o Telescópio Robert C. Byrd de Green Bank Telescope (GBT) e, posteriormente, foi redescoberta como um pulsar de raios-X por outra equipe de astrônomos em 2013. Eventualmente, as duas equipes perceberam que estavam observando o mesmo objeto, muito embora ele estivesse se comportando de maneira bem diferente, dependendo de quando era observado. Observações adicionais e dados de arquivo de outros telescópios acabaram por confirmar o ciclo “liga-desliga” de raios-X e pulsos de rádio.

“Várias observações desta estrela em particular, ao longo dos anos e com diferentes telescópios, revelaram coisas tremendamente diferentes – certas vezes era um pulsar e outras, uma binária de raios-X”, declarou Alessandro Papitto do Consejo Superior de Investigaciones Cientificas – Institut d’Estudis Espacials de Catalunya, em Barcelona, Espanha, o autor principal de um artigo publicado na Nature. “Isso era particularmente intrigante, uma vez que binárias de raios-X não emitem pulsos de rádio e a fonte de emissão de raios-X tem que se ter esgotado muito antes que os sinais de rádio possam emergir”.

A resposta para este enigma foi descoberta na complexa interação entre a estrela de nêutrons e sua acompanhante próxima.

 IMAGEM: A estrela de nêutrons e sua acompanhante na fase em que a acreção parou e a estrela de nêutrons está emitindo pulsos de rádio.

Clique aqui para mais informações.

As binárias de raios-X, como seu nome implica, ocorrem em um sistema de duas estrelas no qual uma estrela de nêutrons é acompanhada por outra estrela normal de pequena massa. A estrela de nêutrons – menor mas consideravelmente mais massiva – pode arrancar material de sua companheira, formando um disco achatado de gás em torno da estrela de nêutrons. Gradualmente, na medida em que esse material mergulha para a superfície da estrela de nêutrons, ele fica superaquecido e gera uma intensa emissão de raios-X.

Os astrônomos acreditavam que esse processo de acreção continuava, sem interrupções  por milhões de anos a fio. Eventualmente, o material se esgotava e a acreção parava, juntamente com a emissão de raios-X.

Sem o influxo de material novo, os poderosos campos magnéticos da estrela de nêutrons se tornavam capazes de emitir feixes de ondas de rádio que varrem o espaço enquanto a estrela gira, dando ao pulsar sua característica aparência de um farol.

A maioria dos rádio pulsares gira umas poucas dezenas de vezes por segundo e – se deixados por sua própria conta – vão se desacelerando ao longo de muitos milhares de anos. No entanto, no caso em que a estrela de nêutrons comece sua existência como uma binária de raios-X, a matéria que se acumula sobre sua superfície faz com que a estrela de nêutrons acelere a rotação, até que esteja girando a centenas de vezes a cada segundo. Quando o processo de acreção para, o resultado é um pulsar de milissegundos.

Durante suas observações, os pesquisadores detectaram súbitas emissões de pulsos de raios-X que duravam aproximadamente um mês e paravam abruptamente. Dentro de alguns dias, os pulsos de rádio recomeçavam. Essas oscilações abruptas indicavam que o material do disco de acreção estava caindo na estrela de nêutrons em catadupas, em lugar do fluxo longo e constante teorizado pelos astrônomos.

Um estudo anterior de outro sistema com o GBT detectou o primeiro indício de um disco de acreção em torno de uma estrela de nêutrons, o que ajudou a estabelecer a ligação entre binárias de raios-X de pequena massa e pulsares.

Os novos dados apoiam esta ligação, mas também mostram pela primeira vez que o processo de evolução, que se pensava levar alguns milhões de anos, é na verdade mais complexo e pode ocorrer de forma abrupta e episódica, em fenômenos que podem durar apenas dias ou semanas. “Isto não só demonstra a ligação evolutiva entre a acreção e os pulsares acelerados de milissegundos”, observa Ransom, “mas também que alguns sistemas podem alternar entre os dois estados em escalas de tempo muito curtas”.

A fonte de raios-X foi descoberta pelo International Gamma-Ray Astrophysics Laboratory (INTEGRAL) e as subsequentes observações em raios-X foram realizadas pelos satélites XMM-Newton, Swift e Chandra. As observações de rádio foram feitas pelo GBT, o rádio-telescópio Parkes, o Australia Telescope Compact Array e o Westerbork Synthesis Radio Telescope.

 

###

O National Radio Astronomy Observatory é uma instalação da National Science Foundation, operada em cooperativa pela Associated Universities, Inc.

Qual será o formato do Universo?

Photobucket

Dados deixam em aberto a possibilidade de um Universo curvo

 

Representação da Sonda Wilkinson de Anisotropia de Micro-ondas, superposta a uma visualização do fundo cósmico de micro-ondas.
Crédito da imagem: NASA

Indícios dos ecos do Big Bang podem sugerir um universo em forma de sela.

11 de setembro de 2013

Original em inglês por: Charles Q. Choi, Contribuidor do ISNS Contributor

(ISNS) — O formato do universo pode ser tremendamente diferente do que se pensava, diz um grupo de pesquisadores.
Pesquisadores que investigam uma importante anomalia no eco do Big Bang, sugerem que a tessitura do universo pode ser, na verdade, curva como uma sela, o que subverte a ideia prevalecente atual de que a luz e tudo o mais que viaja através do espaço-tempo, o faz em uma linha reta em um universo plano. Em um universo em forma de sela, qualquer objeto que pareça estar se deslocando paralelamente a outro, na verdade acabará por se distanciar dele depois de vastas distâncias.
Não obstante, os cientistas acautelam para que podem existir outras explicações para essa anomalia. Nosso universo pode ter colidido com outro universo, logo após o Big Bang, ou a anomalia pode ser apenas um acaso estatístico.
Os pesquisadores começaram a notar a anomalia em questão há quase uma década, quando analisaram o fundo cósmico de micro-ondas, o “calor” deixado para trás pelo Big Bang. Os cientistas podem estudar as flutuações nos pontos quentes e frios do fundo cósmico de micro-ondas para aprenderem mais acerca da estrutura e da evolução do universo.
Os dados da Sonda Wilkinson de Anisotropia de Micro-ondas da NASA (Wilkinson Microwave Anisotropy Probe = WMAP), lançada em 2001, sugerem inesperadamente que o universo pode ser desequilibrado — pontos quentes e frios de um lado do cosmo parecem ser mais quentes e mais frios do que no outro. Os indícios dessa anomalia têm se acumulado com o tempo  e os dados obtidos pelo satélite Planck, lançado pela Agência Espacial Européia (ESA) em 2009, apoiam a existência da mesma anomaliay.
“As anomalias observadas no fundo cósmico de micro-ondas são intrigantes — elas podem ser um mero acaso estatístico, mas também podem ser um indício de processos físicos ainda desconhecidos que atuaram no nascimento do universo”, diz o pesquisador Andrew Liddle, cosmologista da Universidade de Edimburgo na Escócia.
Esse desequilíbrio contradiz a visão prevalente na cosmologia de que, momentos após o Big Bang, o universo aumentou de tamanho titanicamente. Esse surto de crescimento, chamado de “inflação”, teria aplainado o cosmo e feito com que ele parecesse sempre igual em qualquer direção.
Os novos cosmologistas sugerem que essas anomalias ocorrem porque o universo não é plano. Ao contrário, estes pesquisadores propõem que o universo é ligeiramente “aberto”, curvado de forma tal que duas linhas paralelas, as quais nunca convergem ou divergem em uma superfície plana, vão eventualmente se separar, como em uma superfície em forma de sela.
“Os raios de luz em um universo curvo parecem percorrer trajetórias curvas”, diz Liddle. “Eles estão seguindo as linhas mais curtas em um espaço curvo, da mesma forma que os aviões voam ao longo de grandes círculos ao redor da Terra”.
A ideia começa com o universo observável formando uma bolha, dentro de um “meta-universo” ainda maior. O evento do nascimento pode ter ativado flutuações na parede da bolha, as quais deixariam marcas: as perturbações em escala muito grande. Uma consequência disto seria essa assimetria no fundo cósmico de micro-ondas, observado pela WMAP e pelo Planck; outra seria um universo que parece plano, mas, na verdade, é curvo, além do horizonte observável.
“A quantidade de inflação que ocorre dentro da bolha determina o quão plano o universo é”, explica Liddle. “Queremos que seja o suficiente para que seja quase plano, mas não totalmente”.
Este conceito “é extremamente intrigante, particularmente por sugerir que pode existir toda uma nova física, logo depois da esquina”, diz o físico teórico Marc Kamionkowski da Universidade Johns Hopkins em Baltimore, que não participou da pesquisa. “Embora ainda seja apenas uma grande especulação, esse cenário de um universo aberto parece dar uma explicação mais natural para o fato da escala de distâncias da assimetria ser tão próxima da escala do horizonte atual do que qualquer outro cenário que eu conheço”.
Matthew Kleban, um físico teórico da Universidade de Nova York, que também não participou do estudo, disse que melhorar a compreensão da curvatura do universo é muito importante. “Dito isto, não é realmente um indício direto, mas é fascinante”, comentou Kleban.
Este conceito enfrenta a competição de várias outras explicações aventadas pelos cientistas para explicar a anomalia. Por exemplo, a possibilidade de que nosso universo tenha colidido com outro, conforme sugerem Kleban e seus colegas.
No entanto, todas essas explicações para a aparente anomalia no fundo cósmico de micro-ondas, que exigiria que as leis da física fossem re-escritas, podem ser, ao fim e ao cabo, irrelevantes.
“A maioria dos cosmologistas provavelmente acredita que as anomalias observadas são apenas um acaso estatístico e não uma propriedade real do universo, o que é um ponto de vista perfeitamente razoável”, concede Liddle.
Em 2014, a equipe do Planck poderá revelar se a anomalia é realmente um acaso estatísitico, quando liberar mais dados sobre o fundo cósmico de micro-ondas. A ideia de um universo em formato de sela pode ganhar apoio se a distribuição das temperaturas nos céus não se der ao longo de uma curva de sino.
Liddle e sua colega Marina Cortês detalham suas descobertas na edição de 13 de setembro de Physical Review Letters.

Charles Q. Choi é um escritor independente da cidade de Nova York que já escreveu para The New York Times, Scientific American, Wired, Science, Nature e vários outros noticiosos.

 

Poderosos jatos expelem material de uma galáxia em formação


National Radio Astronomy Observatory

Poderosos jatos expelem material de uma galáxia

Este processo limita os crescimento do buraco negro no centro e a taxa de formação de estrelas

Astrônomos, usando uma rede mundial de rádio telescópios, descobriram um forte indício de que um poderoso jato de material, acelerado até próximo da velocidade da luz pelo buraco negro central de uma galáxia, está expelindo massivas quantidades de gás para fora da galáxia. Segundo eles, este processo está limitando o crescimento do buraco negro e a taxa de formação de estrelas na galáxia, sendo assim uma peça chave para a compreensão do desenvolvimento das galáxias.

4C12.50
Imagem de Radio Telescópio da galáxia 4C12.50, a uns 1,5 bilhões de anos-luz da Terra. A parte em destaque mostra em detalhe a posição da extremidade do jato super rápido de partículas, onde uma massiva nuvem de gás (em amarelo-alaranjado) está sendo empurrada pelo jato.
Crédito: Morganti et al., NRAO/AUI/NSF

Os astrônomos vêm teorizando que muitas galáxias deveriam ser mais massivas e ter mais estrelas do que as na verdade existentes. Os cientistas propuseram que dois principais mecanismos poderiam frear ou interromper os processos de aumento da massa e de formação de estrelas – violentos ventos estelares, oriundos de bursts de formação de estrelas e as perdas decorrentes das jatos alimentados pelo buraco negro supermassivo central da galáxia em formação.

“Com as imagens em grande detalhe obtidas por uma combinação intercontinental de radio telescópios, pudemos observar massivas bolhas de gás frio sendo empurradas para fora do centro galático pelos jatos alimentados pelo buraco negro”, diz Raffaella Morganti, do Instituto Holandês para Radio Astronomia e da Universidade de Groningen.

Os cientistas estudaram uma galáxia chamada 4C12.50, a uns 1,5 bilhões de anos-luz da Terra. Eles escolheram essa galáxia porque ela está em um estágio onde o “motor” do buraco negro que produz os jatos, acaba de ser ‘ligado”. Na medida em que o buraco negro, uma concentração de massa tão densa que nem a luz consegue escapar, puxa material para dentro de si, o material forma um disco giratório em torno do buraco negro. Processos que ocorrem nesse disco, sugam a tremenda energia gravitacional do buraco negro e a usam para expulsar material pelos polos do disco.

Nas extremidades de ambos os jatos, os pesquisadores encontraram bolhas de gás de hidrogênio se movendo para fora da galáxia a 1.000 km por segundo. Uma das nuvens tem mais de 16.000 vezes a massa de nosso Sol, enquanto a outra contém 140.000 vezes a massa solar. A nuvem maior, segundo os cientistas, tem mede aproximadamente 160 por 190 anos-luz.

“Este é o indício mais definitivo até hoje de uma interação entre o jato acelerado de uma galáxia assim e uma densa nuvem de gás interestelar”, diz Morganti. “Acreditamos estar observando em ação o processo pelo qual um motor ativo central pode retirar o gás – a matéria prima para a formação de estrelas – de uma galáxia jovem”, acrescenta ela.

Os cientistas também afirmam que suas observações indicam que os jatos expelidos pelo núcleo da galáxia podem tensionar e deformar as nuvens de gás interestelar de forma que o efeito de “empurrão” se expande além da pequena amplitude dos próprios jatos. Além disto, eles relatam que, no estágio de desenvolvimento da 4C12.50, os jatos podem “ligar” e “desligar”, de forma a repetir periodicamente o processo de expulsão de gases da galáxia.

Em julho, outra equipe de cientistas, usando o Atacama Large Millimeter/submillimeter Array (ALMA), anunciou ter encontrado o gás sendo soprado para fora de uma galáxia mais próxima – a NGC 253 – por um intenso burst de formação de estrelas.

“Acredita-se que ambos os processos possam estar atuando, frequentemente de modo simultâneo, nas galáxias jovens, a fim de regular o crescimento de seu buraco negro central, assim como a taxa na qual elas podem criar novas estrelas”, declarou Morganti.

Morganti e sua equipe usaram radio telescópios na Europa e nos Estados Unidos, combinando seus sinais para formar um gigantesco telescópio intercontinental. Nos Estados Unidos esses incluíram o Very Long Baseline Array (VLBA) da Fundação Nacional de Ciências (NSF), um sistema continental de radio telescópios desde o Hawaii, passando pelos EUA continentais e chegando a St. Croix nas Ilhas Virgens, e mais uma antena do Karl G. Jansky Very Large Array (VLA) no Novo México. Os radio telescópios europeus empregados foram os de  Effelsberg, Alemanha; Westerbork, na Holanda; e em Onsala, Suécia. O extremo poder de resolução – ou seja, a capacidade de observar pequenos detalhes – de um sistema tão abrangente, foi essencial para localizar precisamente a posição das nuvens de gás afetadas pelos jatos da galáxia.

Morganti trabalhou em conjunto com Judit Fogasy da Universidade Eotvos Lorand em Budapest, Hungria; Zsolt Paragi do Instituto Conjunto de Interferometria de Linha de Base Muito Longa da Europa; Tom Oosterloo do Instituto Holandês para Radio Astronomia e da Universidade de Groningen; e Monica Orienti do Instituto Nacional de Astrofísica da Itália – Instituto de Radio Astronomia. Suas descobertas serão publicadas na edição de 6 de setembro da Science.

O National Radio Astronomy Observatory é uma instalação da National Science Foundation, operado em cooperativa pela Associated Universities, Inc.

 

“Efeito borboleta” na Via Láctea


ESA/Hubble Information Centre

Um alinhamento bizarro de nebulosas planetárias

 IMAGEM: Exemplo de nebulosa bipolar: Hubble 12 na constelação de Cassiopeia.

Clique aqui para mais informações.

Os astrônomos usaram o Telescópio Espacial Hubble da NASA e o Telescópio “New Technology” (NTT) do ESO para explorar mais de 100 nebulosas planetárias no bulbo central da nossa galáxia. E eles descobriram que os membros dessa família cósmica, aqueles com o formato de borboleta, tendem a ser misteriosamente alinhados — um resultado surpreendente, dadas suas diferentes histórias e variadas propriedades.

Nos estágios finais da vida de uma estrela como nosso Sol, elas dispersam suas camadas externas pelo espaço circundante, formando os objetos conhecidos como nebulosas planetárias, os quais assumem vários formatos belos e surpreendentes. Um dos tipos dessas nebulosas planetárias, conhecido como nebulosa planetária bipolar, cria formatos fantasmagóricos de ampulhetas ou borboletas em torno de suas estrelas mães.

Todas essas nebulosas se formaram em locais diferentes e têm diferentes características. Nem cada nebulosa, nem a estrela que a formou, interagem com qualquer outra nebulosa planetária. No entanto, um novo estudo realizado pelos astrônomos da Universidade deManchester, Reino Unido, mostra similaridades surpreendentes entre algumas dessas nebulosas: muitas delas seguem o mesmo alinhamento nos céus [1].

“Esta é uma descoberta realmente surpreendente e, caso confirmada, uma muito importante”, explica Bryan Rees da Universidade de Manchester, um dos dois autores do artigo. “Muitas destas borboletas fantasmagóricas parecem ter seus eixos maiores alinhados com o plano da galáxia. Usando imagens tanto do Hubble como do NTT, pudemos obter uma visão realmente boa desses objetos, de forma que pudemos estudá-los bem detalhadamente”.

Os astrônomos examinaram 130 nebulosas planetárias no bulbo central da Via Láctea. Eles identificaram três tipos diferentes e esmiuçaram suas características e aparência [2].

“Muito embora duas dessas populações estivessem alinhadas de modo totalmente aleatório nos céus, tal como esperado, descobrimos que a terceira – as nebulosas bipolares – exibiam uma surpreendente preferência por um alinhamento em particular”, diz o segundo autor do artigo, Albert Zijlstra, também da Universidade de Manchester. “Embora qualquer tipo de alinhamento seja uma surpresa, encontrá-lo na superlotada região central de galáxia é mais inesperado ainda”.

Acredita-se que as nebulosas planetárias sejam esculpidas pela rotação do sistema estelar do qual são formadas. Isto depende das propriedades de cada sistema – por exemplo, se se trata de um sistema binário [3], ou se tem alguns planetas em órbita, duas coisas que podem influenciar grandemente o formato da bolha de material expelido. Os formatos das nebulosas bipolares são alguns dos mais extremos e acredita-se que isto seja decorrente da formação de jatos perpendiculares ao plano orbital do sistema estelar que sopram o material expelido para fora.

“O alinhamento que observamos nessas nebulosas bipolares indica algo estranho acerca dos sistemas estelares dentro do bulbo central”, explica Rees. “Para que eles se alinhem da maneira que observamos, os sistemas estelares que formaram essas nebulosas teriam que estar girando perpendicularmente com relação às nuvens interestelares a partir das quais se formaram, e isto é muito estranho”.

Não obstante as propriedades das estrelas mães serem um fator preponderante para o formato assumido por essas nebulosas, esta nova descoberta indica um novo fator ainda mais misterioso. Juntamente com as complexas características dos sistemas estelares, entram em conta as de nossa Via Láctea; todo o bulbo central gira em torno do centro da galáxia. Este bulbo pode ter uma influência maior do que se pensava sobre toda a galáxia – por meio de seus campos magnéticos. Os astrônomos sugerem que este comportamento ordeiro das nebulosas planetárias pode ter sido causado pela presença de fortes campos magnéticos quando da formação do bulbo.

Como o mesmo tipo de nebulosas mais próximos da Terra não se alinham da mesma forma ordenada, esses campos teriam que ter sido várias vezes mais fortes do que são hoje em dia na nossa vizinhança [4].

“Podemos aprender muito ao estudar esses objetos”, conclui Zijlstra. “Se eles realmente se comportam dessa forma inesperada, isto tem implicações não só para o passado de cada estrela, mas para o passado de toda nossa galáxia”.

 

###

Notas

[1] O “eixo longo” de uma nebulosa planetária bipolar corta as “asas” da “borboleta”, enquanto o “eixo curto” corta seu “corpo”.

[2] Os formatos das nebulosas planetárias foram classificados em três tipos, segundo as convenções: elíptico, com ou sem uma estrutura interna alinhada, e bipolar.

[3] Um sistema binário consiste de duas estrelas que giram em torno de um centro de gravidade comum.

[4] Pouco se sabe acerca da origem e das características dos campos magnéticos que estiveram presentes em nossa galáxia quando ela era jovem, de forma que é pouco claro como eles possam ter evoluído ao longo do tempo.

Outras Notas

O Telescópio Espacial Hubble é um projeto de cooperação internacional entre ESA e NASA.

A pesquisa é apresentada em uma artigo intitulado “Alignment of the Angular Momentum Vectors of Planetary Nebulae in the Galactic Bulge”, a ser publicado em Monthly Notices of the Royal Astronomical Society.

A equipe de astrônomos foi composta por B. Rees (Universidade de Manchester, RU) e A. A. Zijlstra (Universidade de Manchester, RU). Bryan Rees só veio a pesquisar astronomia recentemente – ele decidiu por um curso de PhD após sua aposentadoria precoce e este trabalho fez parte de sua tese.

Mais informações

Crédito da imagem: NASA (http://www.nasa.gov/) , ESA (http://www.spacetelescope.org/) , A. Zijlstra

Agradecimento: Josh Barrington

Links

A irmã (gêmea) mais velha do Sol


ESO

Identificada uma “irmã gêmea” (mais velha) do Sol

O telescópio VLT do Observatório Europeu do Sul (ESO) obtem novas dicas para a solução do mistério do lítio

 IMAGEM: Esta imagem mostra o desenvolvimento da vida de uma estrela semelhante ao Sol, de seu nascimento até a fase de gigante vermelha.

Clique aqui para mais informações.

Os astrônomos vêm observando o Sol com telescópios somente há 400 anos — uma porção quase insignificante da idade do Sol, 4,6 bilhões de anos. Isso tornaria tremendamente difícil estudar a história e a futura evolução de nossa estrela, porém podemos fazê-lo, procurando pelas raras estrelas que sejam quase que exatamente iguais à nossa, mas em estágios diferentes de suas vidas. Agora, os astrônomos identificaram uma estrela que é essencialmente uma irmã gêmea de nosso Sol, só que 4 bilhões de anos mais velha — algo quase como um exemplo prático do paradoxo dos gêmeos [1].

Jorge Melendez (Universidade de São Paulo, Brasil), o líder da equipe e co-autor do novo artigo, explica: “Durante décadas os astrônomos vêm procurando por gêmeos do Sol, a fim de compreender melhor a estrela que nos dá vida. Entretanto, muito poucas foram encontradas, desde a primeira em 1997. Agora conseguimos obter espectros com qualidade excepcional através do VLT e podemos escrutinar as gêmeas do Sol com extrema precisão, para responder à pergunta se o nosso Sol é, de alguma forma, especial”.

A equipe estudou duas gêmeas do Sol [2] — uma que se pensava ser mais nova que o Sol (18 Scorpii) e uma que se esperava que fosse mais velha (HIP 102152). Eles empregaram o espectrógrafo UVES do VLT (acrônimo de Very Large Telescope = Telescópio Muito Grande) no Observatório Paranal do ESO, para dividir a luz em suas cores componentes, de forma a poder estudar as composições químicas e outras propriedades dessas estrelas em maior detalhe.

Eles descobriram que a HIP 102152 na constelação de Capricórnio é a irmã gêmea mais velha do Sol até hoje encontrada. Sua idade é estimada em 8,2 bilhões de anos, enquanto nosso Sol deve ter uns 4,6 bilhões. Por outro lado, foi confirmado que 18 é mais jovem que o Sol — cerca de 2,9 bilhões de anos de idade.

Estudar a irmã gêmea mais velha do Sol, HIP 102152, permite aos cientistas predizer o que pode vir a acontecer com nosso próprio Sol quando chegar a esta idade, e eles já realizaram uma decoberta significativa. “Uma das questões que pretendíamos bordar era se a composição do Sol é ou não típica”, esclarece Melendez. “E o que é mais importante: por que ele tem um conteúdo de lítio tão estranhmente pequeno?”

O lítio, o terceiro elemento da tabela periódica, foi criado no Big Bang junto com o hidrogênio e o hélio. Os astrônomos ponderam há anos sobre o motivo de algumas estrelas parecerem ter menos lítio do que as outras. Com as novas observações da HIP 102152, os astrônomos deram um grande passo para a solução desse mistério, estabelecendo uma forte correlação entre a idade de uma estrela do tipo do Sol e seu conteúdo de lítio.

Nosso Sol contém agora apenas 1% do conteúdo de lítio que estava presente no material do qual ele se formou. Os exames das gêmeas do Sol mais novas indicaram que essas irmãs mais jovens contém uma quantidade significativamente maior de lítio, mas, até agora, os cientistas não tinham meios de provar uma correlação entre a idade e o conteúdo de lítio [3].

TalaWanda Monroe (Universidade de São Paulo), o principal autor do novo artigo, conclui: “Descobrimos que a HIP 102152 tem níveis muito baixos de lítio. Isto demonstra claramente pela primeira vez que as irmãs gêmeas mais velhas do Sol realmente têm um conteúdo de lítio inferior ao das mais jovens. Agora podemos ter certeza de que as estrelas de alguma forma destroem seu lítio na medida em que envelhecem e que o conteúdo de lítio do Sol parece ser normal para sua idade”. [4]

Um toque final nesta história é que a HIP 102152 tem um padrão peculiar de composição química que é sutilmente diferente das outras gêmeas do Sol, porém semelhante ao do Sol. Ambas as estrelas exibem uma deficiência de elementos que são abundantes em meteoritos e na Terra. Isso é um forte indício de que a HIP 102152 pode ser “mãe” de planetas rochosos do tipo da Terra [5].

###

Notas

[1] Muitas pessoas conhecem o paradoxo dos gêmeos: um dos gêmeos idênticos faz uma viagem espacial e retorna à Terra, mais moço do que seu irmão que ficou em casa. Muito embora não haja qualquer viagem no tempo envolvida com as semelhanças entre essas estrelas, podemos observar estrelas muito semelhantes (tal como irmãs gêmeas), com idades bem distintas — “retratos” da vida do Sol em idades diferentes.

[2] Estrelas “gêmeas do Sol”, “análogas ao Sol” e “tipo solar” são categorias de estrelas, de acordo com sua similaridade com o nosso Sol. As “gêmeas do Sol” são as mais similares a nosso Sol, em massas, temperaturas e composição química. As gêmeas do Sol são raras, porém as outras classes, onde a similaridade é menos exata, são muito mais comuns.

[3] Estudos anteriores indicavam que o conteúdo de lítio de uma estrela também podia ser afetado pela presença de planetas gigantes em órbita delas (eso0942eso0118, aritgo na Nature), embora esses resultados ainda sejam assunto de debates (ann1046).

[4] Ainda não está claro como o lítio é destruído dentro das estrelas, muito embora tenham sido propostos vários processos onde o lítio é levado da superfície da estrela para suas camadas interiores, onde então é destruído.

[5] Se uma estrela contém menos dos elementos que são comumente achados em corpos rochosos, isso indica que, provavelmente existam planetas rochosos do tipo da Terra, já que esses planetas absorvem tais elementos quando se forma o grande disco de matéria em torno da estrela. A sugestão de que a HIP 102152 pode ter tais planetas é ainda mais reforçada pelo monitoramento da velocidade radial da estrela com o espectrógrafo HARPS  do ESO, que indica que, dentro da zona habitável dessa estrela, não existem planetas gigantes. Isso permitiria a existência de planetas semelhantes à Terra em órbita da HIP 102152; em sistemas ondem existem planetas gigantes próximos de sua estrela-mãe, as chances de encontrar planetas do tipo terrestre são muito menores, porque esses pequenos corpos rochosos são perturbados e feitos em pedaços.

Outras informações

Esta pesquisa foi apresentada em um artigo a ser publicado como “High precision abundances of the old solar twin HIP 102152: insights on Li depletion from the oldest Sun”, por TalaWanda Monroe et al. em Astrophysical Journal Letters.

A equipe era com posta por TalaWanda R. Monroe, Jorge Meléndez (Universidade de São Paulo, Brasil [USP]), Iván Ramírez (Universidade do Texas em Austin, EUA), David Yong (Universidade Nacional Australiana, Austrália [ANU]), Maria Bergemann (Instituto Max Planck para Astrofísica, Alemanha), Martin Asplund (ANU), Jacob Bean, Megan Bedell (Universidade de Chicago, EUA), Marcelo Tucci Maia (USP), Karin Lind (Universidade de Cambridge, RU), Alan Alves-Brito, Luca Casagrande (ANU), Matthieu Castro, José-Dias do Nascimento (Universidade Federal do Rio Grande do Norte, Brasil), Michael Bazot (Centro de Astrofísica da Universidade de Porto, Portugal) e Fabrício C. Freitas (USP).

O ESO é a mais importante organização astronômica inter-governamental da Europa e o observatório astronômico mais produtivo do mundo. Ele é apoiado por 15 países: Alemanha, Áustria, Bélgica, Brasil, República Tcheca, Dinamarca, Espanha, França, Finlândia, Holanda, Itália, Portugal, Reino Unido, Suécia e Suíça.

Links

Artigo da pesquisa – http://www.eso.org/public/archives/releases/sciencepapers/eso1337/eso1337a.pdf

FAQ acerca do ESO e Brasil – http://www.eso.org/public/about-eso/faq/faq-eso-brazil.html

Fotos do VLT – http://www.eso.org/public/images/archive/category/paranal/

Seis imagens do mesmo quasar, ao mesmo tempo


University of Copenhagen – Niels Bohr Institute

O mesmo Quasar observado em 6 reflexos de luz distintos

 IMAGEM: Esta é a imagem – ou antes, as seis imagens do mesmo quasar – refratado pelo fenômeno de lentes gravitacionais.

Clique aqui para mais informações.

Quasares são buracos negros ativos – originários principalmente dos primórdios do universo. Empregando um método especial onde se pode a luz refratada pela gravidade ao longo de seu caminho através do universo, um grupo de estudantes de física do Instituto Niels Bohr observou um quasar cuja luz foi refratada e refletida em seis imagens diferentes. Esta é a primeira vez que se observa tantas imagens refratadas de um mesmo quasar. O resultado das observações está sendo publicado no  Astrophysical Journal.

 IMAGEM: Nordic Optical Telescope, NOT, em La Palma na Espanha.

Clique aqui para mais informações.

 

###

 

 

 

 

Artigo no Astrophysical Journal: http://stacks.iop.org/0004-637X/773/146

# # #

 

Novo tipo de estrela “nova”: “kilonova”

3 de agosto de 2013
Por: J.D. Harrington – NASA Headquarters, Washington

GRB 130603B. 13 de junho de 2013. Crédito: HubbleSite, NASA.

O Telescópio Espacial Hubble da NASA apresentou recentemente os mais fortes indícios até agora de que erupções de raios gama de curta duração são produzidas pela fusão de dois objetos estelares pequenos e super-densos.

Os indícios residem na detecção de um novo tipo de explosão estelar, batizado de “kilonova”, que resulta da energia liberada quando um par de objetos compactos se espatifam mutuamente. O Hubble observou, no último mês, a cada vez menos brilhante bola de fogo que se seguiu a uma curta erupção de raios gama (gamma ray burst = GRB) em uma galáxia a quase 4 bilhões de anos-luz da Terra. Era previsto que o fenômeno de uma kilonova acompanhasse uma GRB de curta duração, mas isto ainda não tinha sido visto.

“Esta observação finalmente resolve o mistério da origem das erupções de raios gama de curta duração”, afirmou Nial Tanvir da Universidade de Leicester no Reino Unido. Tanvir liderou uma equipe de pesquisadores que usaram o Hubble para estudar a recente GRB de curta duração. “Vários astrônomos, inclusive nosso grupo, já tinham apresentado muitos indícios de que as erupções de raios gama de longa duração (aqueles que duram mais que dois segundos) são produzidos pelo colapso de estrelas extremamente massivas. Mas só tínhamos fracos indícios circunstanciais de que as erupções curtas fossem produzidas pela fusão de objetos compactos. Este resultado parece dar a prova definitiva que apoia este cenário”.

Os resultados da equipe estão publicados na edição especial online de hoje da Nature.

Uma kilonova é cerca de 1.000 vezes mais brilhante do que uma nova, que é causada pela erupção de uma anã branca. A auto-detonação de uma estrela massiva, uma supernova, pode ser até 100 mais brilhante do que uma kilonova. As erupções de raios gama são misteriosos flashes de intensa radiação de alta energia que aparecem de direções aleatórias no espaço. Erupções de curta duração duram no máximo alguns segundos, no entanto, algumas vezes, produzem tênues rastros luminosos em luz visível e infravermelha que persiste por várias horas e mesmo dias. Esses rastros luminosos ajudaram aos astrônomos a estabelecer que as GRBs vêm de galáxias distantes.

Concepção artística da fusão de duas estrelas de nêutrons. Crédito: HubbleSite NASA.

Os astrofísicos predisseram que as GRBs de curta duração seriam criados quando um par de estrelas de nêutrons super-densas em um sistema binário espiralassem até colidir. Enquanto este evento está acontecendo, o sistema emite radiação gravitacional que cria pequenas ondas na tessitura do espaço-tempo. A energia dissipada pelas ondas faz com que as duas estrelas se aproximem ainda mais. Nos milissegundos finais, antes da explosão, as duas estrelas se fundem em uma espiral mortal que expele material altamente radioativo. Esse material se aquece e se expande, emitindo um jato de luz.

Em um recente artigo científico Jennifer Barnes e Daniel Kasen da Universidade da California em Berkeley e do Laboratório Nacional Lawrence Berkeley apresentaram novos cálculos predizendo como as kilonovas deveriam parecer. Eles predisseram que o mesmo plasma quente que produz a radiação, também bloquearia a luz visível, fazendo com que o jorro de energia da kilonova exsudasse na forma de infravermelho próximo por vários dias.

Uma inesperada oportunidade para testar este modelo apareceu em 3 de junho, quando o Telescópio Espacial Swift da NASA captou a erupção de raios gama extremamente brilhante, catalogada como GRB 130603B.  Embora o clarão inicial de raios gama tenha durado apenas um décimo de segundo, ele era aproximadamente 100 bilhões de vezes mais brilhante que o subsequente flash da kilonova.

Desde 12-13 de junho, o Hubble varreu o local da erupção inicial, localizando um tênue objeto avermelhado. Uma análise independente dos dados de outra equipe de pesquisas confirmou a detecção. As observações subsequentes do Hubble em 3 de julho revelaram que a fonte tinha se apagado, comprovando assim que o brilho em infravermelho era de uma explosão causada pela fusão de dois objetos.

Para imagens e mais informações sobre a kilonova, visite:

http://hubblesite.org/news/2013/29

Para mais informações sobre o Telescópio Espacial Hubble, visite:

http://www.nasa.gov/hubble

Galáxias apagadas


ESA/Hubble Information Centre

Quando as galáxias desligam

A prospecção COSMOS do Hubble resolve o mistério das galáxias “exauridas”

 IMAGEM: Esta imagem mostra 20 das galáxias exauridas — galáxias que não estão mais formando estrelas — observadas pela COSMOS do Hubble.

Clique aqui para mais informações.

Algumas galáxias chegam a um ponto de suas vidas onde a formação de estrelas acaba e elas se tornam “exauridas”. Galáxias exauridas no passado distante parecem ser bem menores do que as galáxias exauridas no universo atual. Isto sempre intrigou os astrônomos – como podem essas galáxias crescer se elas não estão mais formando estrelas? Agora uma equipe de astrônomos usou um grande conjunto de dados de observações do Hubble para dar uma resposta surpreendentemente simples para este enigma cósmico que resistiu tanto tempo.

Até hoje se pensava que essas pequenas galáxias mortas cresciam e se tornavam as galáxias exauridas maiores que vemos em nossas proximidades.

Como essas galáxias não estão mais formando novas estrelas, se pensava que elas cresciam mediante colisões e fusões com outras pequenas galáxias exauridas, de umas cinco a dez vezes menos massivas do que elas. Entretanto, para que essas fusões acontecessem, deveria haver várias dessas galáxias menores por aí para servir de alimento para a população exaurida – só que não vemos isso.

Até recentemente, não era possível explorar um número suficiente de galáxias exauridas, porém agora uma equipe de astrônomos usou os dados de observações da Hubble COSMOS survey para identificar e contar essas galáxias “apagadas” ao longo dos últimos oito bilhões da história cósmica.

“O aparente inchaço de galáxias exauridas tem sido um dos maiores mistérios acerca da evolução das galáxias por muitos anos”, diz Marcella Carollo do ETH Zurique, Suíça, uma dos principais autores de um novo artigo que explora essas galáxias. “Nenhuma coleção de imagens era grande o suficiente para nos permitir estudar o enorme número dessas galáxias de uma mesma maneira – até a COSMOS do Hubble”, acrescenta do co-autor Nick Scoville da Caltech, EUA.

A equipe usou o grande conjunto de imagens da COSMOS [1], em conjunto com observações adicionais do Telescópio Canadá-França-Hawaii e do Telescópio Subaru, ambos no Hawaii, EUA, para bisbilhotar quando o universo tinha menos de metade de sua idade atual. Estas observações mapearam uma área nos céus nove vezes o tamanho de uma Lua cheia.

As galáxias exauridas vistas nesses tempos são pequenas e compactas – e, surpreendentemente, parecem continuar assim. Em lugar de se exaurirem e crescerem através de fusões ao longo do tempo, essas pequenas galáxias, em sua maioria, normalmente mantém o tamanho que alcançaram quando sua formação de estrelas foi desligada [2]. Então, por que vemos essas galáxias aparentemente crescendo ao longo do tempo?

“Descobrimos que um grande número de galáxias maiores apenas desligou mais tarde, juntando-se a suas irmãs exauridas e dando a falsa impressão de uma galáxia individual crescendo ao longo do tempo”, diz o co-autor Simon Lilly, também do ETH Zurique. “É algo como afirmar que o aumento do tamanho médio dos apartamentos em uma cidade não é devido à adição de novos cômodos aos edifícios velhos, mas sim à construção de novos apartamentos maiores”, acrescenta o co-autor Alvio Renzini do Observatório de Padua do INAF da Itália.

Isso nos diz um bocado sobre como as galáxias evoluíram nos últimos oito bilhões de anos da história do universo. Já se sabia que as galáxias com formação ativa de estrelas eram menores no universo primordial, o que explica porque as galáxias eram menores quando se exauriram naqueles tempos.

“A COSMOS nos deu simplesmente o melhor conjunto de observações para este tipo de trabalho – ela nos permite estudar um grande número de galáxias exatamente da mesma maneira, o que não era possível antes”, acrescenta o co-autor Peter Capak, também do Caltech. “Nosso estudo oferece uma explicação surpreendentemente simples e óbvia para esse enigma. E sempre que vemos simplicidade na natureza em meio a uma aparente complexidade, isso é muito gratificante”, conclui Carollo.

 

###

Notas

[1] Ao realizar a prospecção COSMOS, o Hubble fotografou 575 quadros do universo que se sobrepõem ligeiramente, com a Advanced Camera for Surveys (ACS) nele embarcada. Isto levou quase 1000 horas de observação e foi o maior projeto conduzido com o Hubble. Esta prospecção se provou de um valor incomensurável; ela ajudou a mapear a matéria escura em 3D, a compreender melhor o efeito de lentes gravitacionais, e a caracterizar a expansão do universo.

[2] Ainda existe a possibilidade de crescimento através de fusões para esta população, mas não de sua maior parte, como se pensava antes.

[3] O Telescópio Espacial Hubble é uma cooperação internacional entre ESA e NASA.

[4] A pesquisa foi apresentada  em um artigo intitulado “Newly-quenched galaxies as the cause for the apparent evolution in average size of the population”, a ser publicado em The Astrophysical Journal.

[5] A equipe internacional de astrônomos deste estudo consiste de C. M. Carollo (ETH Zurique), T. J. Bschorr (ETH Zurique), A. Renzini (Observatório de Padova, Itália), S. J. Lilly (ETH Zurique), P. Capak (Centro de Ciência Spitzer, CalTech, EUA), A. Cibinel (ETH Zurique), O. Ilbert (Laboratoire d’Astrophysique de Marseille, França), M. Onodera (ETH Zurique), N. Scoville (CalTech, EUA), E. Cameron (ETH Zurique), B. Mobasher (Universidade da California, EUA), D. Sanders (Universidade do Hawaii, EUA), Y. Taniguchi (Universidade Ehime, Japão).

Outras informações

Crédito da imagem: NASA, ESA, M. Carollo (ETH Zurich)

Links

Artigo da pesquisa: http://www.spacetelescope.org/static/archives/releases/science_papers/heic1313a.pdf

Prospecção COSMOS: http://cosmos.astro.caltech.edu/

Imagens do Hubble:  http://www.spacetelescope.org/images/archive/category/spacecraft/

Sobre ScienceBlogs Brasil | Anuncie com ScienceBlogs Brasil | Política de Privacidade | Termos e Condições | Contato


ScienceBlogs por Seed Media Group. Group. ©2006-2011 Seed Media Group LLC. Todos direitos garantidos.


Páginas da Seed Media Group Seed Media Group | ScienceBlogs | SEEDMAGAZINE.COM