A Moby-Dick pode esperar…eis o Indohyus!

Whale AncestorA maioria das pessoas desconhece que os cetáceos, grupo a que pertencem as baleias e golfinhos, já foram animais terrestres.
Na sua história evolutiva verificaram-se alterações morfológicas que lhes permitiram um “regresso ao mar”.
Uma das características deste grupo é serem, assim, totalmente aquáticos. Para além deste factor são os maiores animais que já existiram – a baleia-azul, com um máximo na 33 m de comprimento e 190 000 kg de peso, mas podendo ter “apenas” 1,4 m e 45 kg, como a Toninha da Califórnia ou vaquita (Phocoena sinus).
Estes dois extremos do grupo Cetacea colocam várias questões evolutivas importantes, e algumas semelhante às colocadas nos dinossáurios saurópodes: que modificações sofreram estes animais para atingirem tamanhos descomunais? E como se deram esses processos?
Entre as alterações morfológicas verificadas na evolução dos cetáceos contam-se a redução do esqueleto apendicular, a alteração da forma dos dentes e modificações na estrutura do ouvido interno.

INDOHYUS2UM NOVO ELEMENTO NA HISTÓRIA DOS CETACEA
Depois de já anteriormente ter levantado a ponta do véu sobre a história evolutiva dos Cetacea, foi publicado hoje, na revista Nature.
Uma das conclusões deste estudo é o da proximidade de parentesco e semelhanças morfológicas entre o Indohyus (família Raoellidae, pertencente á ordem Artiodactyla) e os cetáceos. Esta descoberta permite inferir que o habitat aquático terá entrado na vida destes animais antes mesmo de surgirem os verdadeiros Cetacea. Este estudo aponta também que a mudança de dieta terá surgido na “transição” dos Artiodactyla para os Cetacea.


INDOHYUS

Outra das questões ainda não totalmente esclarecidas diz respeito à “causa” evolutiva que explique a transição do meio terrestre para o meio aquático destes animais. Alguns autores referem a dieta como sendo o fio condutor dessa “viagem”.
As evidências morfológicas surgem através dos dentes fossilizados deste grupo, que apesar de serem perfeitamente diferenciáveis das espécies actuais não permitem inferir com completo rigor a dieta do animal.

Thewissen 2002

ESMALTE E DIETA
Com o objectivo de averigua o carácter aquático do Indohyus, este novo estudo incorpora a análise da proporção entre os isótopos δ18O e δ13C do esmalte dentário. Estes isótopos são bastante estáveis após a morte do animal e posterior conjunto de fenómenos conducentes à sua fossilização e podem ser, e são, utilizados como um indicador do tipo de dieta do animal em estudo. Por exemplo, o isótopo δ18 do oxigénio revela quer a alimentação quer o tipo de água ingeridas, tendo-se verificado que os valores de δ18 presentes no esmalte do Indohyus eram inferiores aos dos mamíferos quer terrestres quer semi-aquáticos, do Eocénico.
Este facto permite inferir que este animal viveria num ambiente aquático, embora não se podendo afirmar se exclusivamente.
Apesar de passar muito tempo dentro de água, alimentar-se-ia também de vegetação em terra, um pouco à semelhança do que acontece com o hipopótamo.
A análise morfológica dos ossos encontrados e da composição química do esmalte dentário permite aos paleontólogos afirmar que o Indohyus não era um nadador exímio, tendo provavelmente vivido em ambiente aquáticos de pequena profundidade, com os membros assentes ou semi-assentes no fundo. Este animal alimentava-se também em terra, embora este estudo aponte a possibilidade de uma dieta aquática.

INDOHYUS1

TIPOS LOCOMOÇÂO AQUÁTICA DOS “VELHOS”
CETACEA

Se os modernos cetáceos apresentam formas muito semelhantes de locomoção aquática, o mesmo não se pode afirmar dos seus directos antepassados directos. No Eocénico (entre os 55 e os 34 milhões de anos atrás) os cetáceos apresentavam diversas morfologias corporais e consequentes modos distintos de natação que iam do balanço da barbatana caudal (nos Dorudontidae, semelhantes a golfinhos) até ao simples “remar” com os quatro membros (nos Pakicetidae).

GOULD

Stephen Jay Gould descreveu grande parte das “peripécias” paleo-cetáceas no seu ensaio mensal na revista do American Museum of Natural History “Natural History”, em 1994. O artigo “Hooking Leviathan by Its Past”, foi compilado no livro “Dinosaur in a Haystack”, editado em Portugal pela Gradiva, mas não me recordo do título…

 

REFERÊNCIAS

Gingerich PD, Arif M, Bhatti MA, Anwar M, Sanders WJ. 1997. Basilosaurus drazindai and Basiloterus hussaini, new Archaeoceti (Mammalia, Cetacea) from the middle Eocene Drazinda Formation, with revised interpretation of ages of whale-bearing strata in the Kirthar Group of the Sulaiman Range, Punjab (Pakistan). Contrib. Mus. Paleontol. Univ. Mich. 30:55-81
Gingerich PD, Haq M, Zalmout IS, Khan IH, Malkani MS. 2001. Origin of whales from early artiodactyls: hands and feet of Eocene Protocetidae from Pakistan. Science 293:2239-42
Gingerich PD, Raza SM, Arif M, Anwar M, Zhou X. 1994. New whale from the Eocene of Pakistan and the origin of cetacean swimming. Nature 368:844-47
Gingerich PD, Smith BH, Simons AL. 1990. Hind limbs of Eocene Basilosaurus: evidence of feet in whales. Science 249:154-57
Gingerich PD, Wells NA, Russell DE, Shah SMI. 1983. Origin of whales in epicontinental remnant seas: newevidence from the early Eocene of Pakistan. Science 220:403-6
Thewissen, J. G. M. & Williams, E. M. 2002. THE EARLY RADIATIONS OF CETACEA (MAMMALIA): Evolutionary Pattern and Developmental Correlations. Annu. Rev. Ecol. Syst. 2002. 33:73-90
Thewissen, J. G., L. N. Cooper, M. T. Clementz, Sunil Bajpai, and B. N. Tiwari. Whales originated from aquatic artiodactyls in the Eocene epoch of India. Nature 450: 1190-1194.

IMAGENS – Carl Buell; Thewissen, J. G. M. et al. 2007; Thewissen, J. G. M. & Williams, E. M. 2002; Thewissen, J. G. M. et al. 2007.

VIDEO

Seca e venenosa

Comentário torpe da minha parte: se o artigo tivesse laivos de português de telemóvel, o nome da nova espécie seria mais que redundante: “Ei malta, ashei mais uma Naja!!”

Uma nova espécie de cobra-cuspideira (a maior) do Quénia, Naja ashei, foi apresentada ao mundo. Até há pouco tempo pensava-se que esta recém-baptizda constituiria apenas coloração diferente da Naja nigricollis mas análises do ADN mitocondrial revelaram ser este réptil uma nova espécie.
Seja bem vinda senhora Naja ashei!
Referência: Wüster, Wolfgang & Broadley, Donald G. (2007): Get an eyeful of this: a new species of giant spitting cobra from eastern and north-eastern Africa (Squamata: Serpentes: Elapidae: Naja). Zootaxa 1532: 51-68. (PDF grátis)

O mar e as entranhas – histórias de bactérias

(Publicado no jornal O Primeiro de Janeiro a 12/07/2007)
A escuridão é total. Mas há vida.
Não poderíamos viver nestes ambientes. Mas conhecemo-los.
Ou partes dele.
O fundo do mar.
O nosso sistema digestivo.
O grande desconhecido que é o profundo marinho tem equivalências no invisível interno humano.
O PNAS*, de 5 de Julho de 2007, publicou um estudo sobre a vida microscópica, onde se relacionam os dois ambientes, com personagens que estão mais relacionadas do que até aqui se imaginava.
Quer o sistema digestivo quer o fundo do mar são ambientes inóspitos – escuros e com baixas concentrações de oxigénio.
Ainda assim estão repletos de bactérias.

Sulfurovum litthotrophicum, descrita em 1984, e Nitratiruptor tergarcus são duas espécies de bactérias do grupo ε-Proteobacteria, que habitam o fundo do mar. Sobrevivem a temperaturas comos as que temos no frigorífico lá de casa, 4º C, até aos 70º C. Vivem ambas no substrato marinho de grandes profundidades obtendo energia através da fixação de azoto provenientes de fontes hidrotermais. São consideradas das mais resistentes formas de vida, pois conseguem sobreviver naqueles ambientes adversos, onde as temperaturas podem atingir mais de 100º C, a profundidades, como no caso da fonte hidrotermal “Menez Gwen” dos Açores, de 1700 m.
Apesar da enorme resistência daquelas bactérias em ambiente natural, só recentemente foram cultivadas em laboratório permitindo que fossem estudadas mais detalhadamente.

O outro grupo de bactérias que ninguém gostaria conhecer, pelo menos na prática ocupa, com maior ou menor frequência, o nosso sistema digestivo.

A Helicobacter pylori, descoberta em 1982, está presente em metade da população mundial, sendo a causadora da inflamação da mucosa do estômago bem como das úlceras gástricas e do duodeno. A descoberta desta relação concedeu, em 2005, o prémio Nobel da Medicina a Barry Marshall e J. Robin Warren.
O minúsculo ser vivo acompanha a espécie humana desde há muito num fenómeno coevolutivo, facilitado pela sua grande variabilidade genética.
Segundo investigadores do Instituto Max Planck em Berlim, a Helibobacter tem sido transmitido de pais para filhos desde a nossa ancestral saída de África.
Reconstruindo a árvore evolutiva desta bactéria, foi possível identificar dois grandes ramos – um que infecta os europeus e norte-americanos e outro que afecta sobretudo os asiáticos. Essas duas linhagens estão associadas às migrações humanas, permitindo reconstituir essas antigas movimentações.
Outro dos géneros de bactérias patogénicas analisado foi o Campylobacter jejuni, responsável por intoxicações alimentares nomeadamente a gastroenterite. Os ambientes favoritos para a sua disseminação são leite cru ou mal pasteurizado, aves mal cozinhadas e água não tratada (líquida ou em gelo).

A equipa de investigadores procedeu à análise do ADN presente nas bactérias que partilham o nosso ambiente digestivo – Helicobacter e Campylobacter – e o das bactérias das profundezas marinhas – Sulfurovum e Nitratiruptor.
Os dois grupos de bactérias apresentaram afinidades genéticas, que lhes possibilitam viverem em ambientes hostis. Entre as semelhanças estão a quase ausência de genes de reparação do ADN. Este facto permite não só a grande adaptação destes seres vivos a novas condições extremas, mas também ao próprio sistema de defesa de um organismo hospedeiro.
Segundo os investigadores, as bactérias humanas evoluíram a partir de ancestrais de grande profundidade, adquirindo o seu “mau-feitio” quando estabeleceram relações simbióticas com invertebrados marinhos.
Não era novidade que tínhamos todos uma origem marinha.

Foi de lá que viemos.
O profundo marinho e o sistema digestivo humano partilham coincidências evolutivas.
O sistema digestivo humano serve de mar a uma variedade de fauna microscópica; sabemos agora que parte dessa fauna tem parentes próximos nos fundos marinhos.

* Proceedings of the National Academy of Sciences


Referências consultadas

-Inagaki, F. et al. 2004. Sulfurovum lithotrophicum gen. nov., sp. nov., a novel sulfur-oxidizing chemolithoautotroph within the ε -Proteobacteria isolated from Okinawa Trough hydrothermal sediments. International Journal of Systematic and Evolutionary Microbiology, 54, 1477-1482.
-Nakagawa, S. et al. 2007. Deep-sea vent ε-proteobacterial genomes provide insights into emergence of pathogens PNAS published July 5, 2007, 10.1073/pnas.0700687104.
-Nakagawa, S. et al. 2005. Nitratiruptor tergarcus gen. nov., sp. nov. and Nitratifractor salsuginis gen. nov., sp. nov., nitrate-reducing chemolithoautotrophs of the -Proteobacteria isolated from a deep-sea hydrothermal system in the Mid-Okinawa Trough. International Journal of Systematic and Evolutionary Microbiology, 55, 925

Sobre ScienceBlogs Brasil | Anuncie com ScienceBlogs Brasil | Política de Privacidade | Termos e Condições | Contato


ScienceBlogs por Seed Media Group. Group. ©2006-2011 Seed Media Group LLC. Todos direitos garantidos.


Páginas da Seed Media Group Seed Media Group | ScienceBlogs | SEEDMAGAZINE.COM